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It is well known, that Andrei Kolmogorov in Russia and R. Solomonoff in
the USA discovered the basic notion and facts on complexity of finite objects
independently in mid-60s. In 60s and 70s the research of the area was con-
ducted mostly by students of Kolmogorov and members of the Moscow mathe-
matical community based on Moscow State (Lomonosov) University: L. Levin,
V. Vyugin, A. Zvonkin, N. Petri, P. G4cs. Chaitin considerably contributed
to popularity of the theory in the West; Solovay’s manuscript influenced re-
search in Russia as well. From the end of 70s till his death in 1987 Kolmogorov
was the Chair of Department of Mathematical Logic. Now his former stu-
dent Vladimir Uspensky, who also works in the field of Kolmogorov complexity,
heads it. In the first steps of his work as the chair of our department Professor
Kolmogorov proposed to the first author of this paper to start a seminar on
complexity. (The seminar is called Kolmogorov Seminar now.) Starting from
the very beginning the seminar included research reports and surveys on practi-
cal programming and computational complexity as well. In his first talks at the
seminar Kolmogorov introduced a program of research of frequency approach
to randomness and some other topics. This program was implemented in works
of V. Vovk, A. Shen, N. Vereshagin, An. Muchnik and others. In the following
years A. Shen and N. Vereshagin joined the leadership of the seminar and, af-
ter the death of Kolmogorov, became the major moving force of it. Professor
Uspensky contributed a lot to its development. In Kolmogorov and Uspensky
lecture at Bernoulli congress the results obtained by the Moscow group in the
period of Kolmogorov presence are summarized. Our work presented here is the
result of general cooperation and many specific discussions of the members of
Kolmogorov seminar which is 20 years old now.

Let us outline now the main results of the paper. A major relation of the
Kolmogorov complexity involve transformation of a condition y into an ob-
ject x using a description (program) p. The (Kolmogorov) entropy K(z|y) is
the minimal size (length) of such p, K(z) is K(z|a fixed object). Let us have
two conditions y; and ys now. What is the size of program p, using which
we can transform into z both conditions y; and ys7 It is easy to construct
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p of size K(z|y1) + K(x|y2). Tt is also evident that p cannot be smaller then
max{K (z|y1), K(z|ya)}. We prove that this bound can be reached up to (usual
for the theory) additive term const -log K (z). Moreover, we can choose p which
contains little information in addition to z: K (p|z) is less then const - log K (z).
Let us consider now all conditions y with limited entropy K(z|y). We can
construct a set of programs of the size limited by the same bound such as
the cardinality of the set is limited by a polynomial of K (z). Some important
constructions of the Kolmogorov theory can be interpreted in a calculus of prob-
lems. In particular, the construction of p by given y; and y; corresponds to a
realization of formula Y1 VY2 — X. Tt is interesting to compare or result with
a theorem from the paper [2], where a problem corresponding to the formula
X < Y is considered. It is proved there that the entropy of p which transforms
both z into y and y into z is close to maximum of entropies of programs that
transform z into y and y into 2. We can obtain a similar result from our theorem
mentioned above considering problems of transforming « and y into (x,y). The
key concept of our paper is the idea of code. We say that object r is a code of
object z with a condition y provided K (z|y, r) is small. Given a code r one can
easily construct a description p of z relative to condition y with the size of p
close to K (r).

Minimal codes in the Kolmogorov entropy theory

Complete proofs for these results were presented in September, 1999 at the
Kolmogorov Seminar at Moscow State University.

Define Kolmogorov entropy of z conditional to y (for constructible objects
z and y) as length of the shortest program that outputs z given the input y.!
We suppose that programs are written in some optimal programming language.
Here we consider not only sizes of programs converting y into z, but also some
other properties. We prove that for any y1, y2 and z there exists a program p
satisfying the following conditions. First, p(y1) = p(y2) = z; second, the length
of p is less than max{K(z|y1), K(z|y2)} + const -log K (z); third, K(p|z) <
const -log K (z).? The simplest program satisfying the first condition has length
K(z|y1) + K(x|y2). K. Ju. Gorbunov proved in [1] that the latter bound cannot
be improved for some objects y1, y2 and z with absolute entropy exponential in
K(x|y1) + K(x|y2). Therefore the const -K(x) difference is inevitable. Tt also
cannot be avoided in the following claim: the minimal information sufficient for
finding z when y is known can be obtained from 2 alone. We stress that these
bounds depend only on the entropy of 2, not on the entropies of the conditions y.
We have an interesting corollary: while there exist exponentially many programs
of a given length, we can obtain z from all y’s with given K(z|y) using only
polynomially many (in K (z)) programs of length K(z|y). We will also give a
lower bound for the cardinality of such “universal” set of programs.

IThe results in this article are equally true for both simple and prefiz entropy.
2By definition, absolute entropy K (w) = K(w|A), where A is some fixed object (for exam-
ple, an empty string).



Let us explain the informal meaning of the word “code” in this article’s name.
The object p is called a code for z with known y if K (z|y, p) is sufficiently small.
It is obvious that, given p, we can construct a program ¢ that outputs z given
an input y and that has length not much more than K(p). Tt is often convenient
to consider codes instead of programs.

It is interesting to compare the results for the formula AV B — C', and the
results for A <> B. In [2] it is proven that minimal entropy of program ob-
taining y from z and vice versa approximately equals the maximum of minimal
entropy of program obtaining z from y and minimal entropy of program obtain-
ing y from z. This result can be deduced from ours by considering a problem
of obtaining (y, z) from y and z. However, this method is accurate only up
to const -log K ((y, z)) while the proof in [2] is accurate up to const. There is
another difference. There exists a minimal program p obtaining « from y and a
minimal program ¢ obtaining x from z such that (p, ¢) contains no information
about any minimal program obtaining 2 from both y and z. A pair of minimal
programs p and ¢ obtaining z from y and y from xz respectively, however, always
contains much common information with a suitable minimal program obtaining
both y from z and z from y.

Theorem 1 (An. A. Muchnik) There ezxists a number ¢ and a partial com-
putable function Axl.F(x,l) such that the following is true: if K(x) <! then

i) F(z,l) is a set with cardinality less than I;gll consisting of strings with

length | (this is a universal code set for x);

ii) for any y1, ya, there exist py, py such that for some p € F(z,l) p’s prefix
of length K (z|y1) equals p1, p’s prefiz of length K (z|y2) equals ps and

K(z|y1,p1) < clogl,  K(z|yz,p2) < clogl.

From i) and 11) it follows that K (p1|z) < const -logl and K (ps|z) < const -logl.

Proof. For every number [ define a number r; (we will have further K(z) <,
r = [log F(z,0)]). We will give exact value for r; later on; sometimes we
will omit the subscript . By L and R denote the sets of binary strings of
length { and r respectively. Consider the space of functions L x R — L and
uniform probability distribution over this space. This distribution help us prove
the existence of a function f satisfying the condition (1) (shown below) for
every n < | —logl. (We will have further n = K(2]y).) Let M be the set of
binary strings of length m = n + [log!]. By ¢(z, p) denote the prefix of f(z, p)
of length m. Consider the condition:

VBC M |B|<2" = |{z: [{p: ¢(z,p) € B} > 277" }| < [Bl. (1)

Consider the probability of the following: (1) does not hold for a randomly
chosen f. We want to bound this probability from above. First, fix some
values of n, 2 € L, p € Rand B C M, where |B| < 2". Now ¢(z,p) € B with



probability % < 22—:1 < }. Now fix values of n, z, B and R', where |R'| > |R|/2.

Now the event ¥p € R ¢(z,p) € B has probability less than I=I71/2 So for

fixed n, z and B we have
Pr(Hp: plz.p) € BY| > 27") < ol [IRIfZ ¢ g const-ostiB
Now fix n, s < 2", B C M, where |B| = s, and Z C L, where |Z| = s, and get
Pr(v:€Z |p:plep) € BY| > 271) < 2mcomt-IogtiAl

Multiplying this by the number of possible pairs (B, 7), we get the upper bound
on the probability of the following event not happening;:

VBCM [Bl=s=|{z: {p: p(z,p) € B} > 27 '}| <5

(for fixed values of n and s). This upper bound is 9= const logl|Rl's gms  ols <

(2= C""“'bgl'm""?l)s. Letting |R| be locél, we achieve
1
2—const«logl«|R|+2l < —.
21

Therefore,

Z (2_const~10gl‘|R|+2l)s < 1/1

S

This sum bounds the desired probability from above for a fixed value of n.
We have n < [, so the probability of (1) being false for some n is less than 1.
We defined 7, = log |R| and proved that for each [ there exists a function f
satisfying (1). Since we can effectively verify whether (1) is true or not, we can
find f by trying every function possible.

By vi(u) denote the first program ¢ of length / such that ¢(A) = u (if no such
program exist, v;(u) is undefined). We will write vu instead of v;(u) where [ is
clear from the context. Suppose we find, by enumerating the entropy K from
above, that K (z) <!. Let f be the function satisfying (1) with the parameter [.
Define F(z,1) as the set of strings f(z, p) for all p. Let us check the condition ii)
of the Theorem. Let y be one the objects y; and y»; n = K(z|y). Let d be an
auxiliary parameter whose value we will specify later. We will use the numbers r
and m, the sets R and M and the function ¢ defined earlier. Define

D={u: K(u) <l & K(uly) <n}.

We know that € D. Clearly |D| < 2"*!. For every ¢ € M define the following
subset of D:

Ef={u:Ip€R q=p(vup)}
Define
G=1{q:|E>2% C M.

Evidently |G| < D] - |R|/2% < 20t Define

H = {u: [{p: p(vu,p) € G}| > 2~}



We will specify the parameter d to be greater than r, so |G| < 2”. Using (1),
we get |H| < |G|. Note that D is uniformly enumerable w.r.t. [, n and y, E? is
uniformly enumerable w.r.t. [, n, y and ¢, G is uniformly enumerable w.r.t. [,
n, y and d, H is uniformly enumerable w.r.t. I, n, y and d. Suppose z € H.
Then K (z]y) is less (up to an additive constant) than sum of the entropy of H’s
enumerator program (conditional to y) and the length of z’s position in this
enumeration. We have

K(zly) < K(I) + K(n) 4+ K(d) + log, |H| + const
=K()+K(n)+ K(d)+n+r—d+ const.

Putting d = alog! for a sufficiently large constant «, we get
K(l)+ K(n)+ K(d)+n+r—d+ const < n.

However, n = K (z|y). This contradiction shows that z ¢ H.

Since we could take either 4 or ys for y, we actually constructed two families
of sets: D1, EY, G1, Hy for y = y1 and D2, EZ, G, Hy for y = ys. Since z ¢ H;
and z ¢ Ho, we have

Hp:pr(ve,p) € G} <27~ and  [{p: pa(va,p) € Go}| <277

Since |R| = 27, there exists pg € R such that o1 (vz, po) ¢ Gi and pa(vz, po) ¢
G4. Therefore, |Ef1(”’p°)| < 2% and |E;2(”’p°)| < 2% From the definition
of F1, we have z € Efl(”’pu) and z € E;2(”’p°). So, the entropy of z con-
ditional to (y1, p1(va, po)) is less (up to an additive constant) than sum of the
entropy of enumerator for EY" v200) conditional to (y1,¢1(ve, po)), and the
number of z in this enumeration. That is,

K (xly1, ¢1(va, po)) < K (1) + K (n1) +logy | BY" 77| + const
= K()+ K(n1) + d + const .

Just the same,
K (z|ya, pa(ve, po)) < K(I) + K(ng) + d + const .

Recall that d = alogl. Let p be f(vz, po), p1 be the p’s prefix of length nq, ps
be the p’s prefix of length ny. Since @1 (v, po) is the p’s prefix of length my,
wa(ve, po) is the p’s prefix of length my and my = ny +[logl], ms = na+[logl],
for some constant ¢ we have K (z|y1,p1) < clogl and K (z|ys,pa2) < clogl. O

Note that the number of conditions y in the proven theorem can be made
polynomial in K (z) instead of two.

Interestingly, the semi-lattice introduced in [3] always contains the difference
of two elements, but may not contain their intersection.

The following theorem shows that the code set constructed in the previous
theorem cannot be made significantly smaller.



Theorem 2 (An. A. Muchnik) For every number « there exists a number c

such that for any binary string x and any code set P of cardinality less than

K(x
clog K
the following conditions hold:

i) K(y) < cK(x);
ii) K(zly) < K(z)/2;

i) Vp € P K(z|y,p) > alog K ().

6 containing codes of length [K(z)/2] there exists a string y such that

Proof. Let ¢ be a sufficiently large number. Suppose P = {p1,...,p;} and
Jj< %1%)@' By v; denote the prefix of p; of length clog K (2)/3. Let w be a
concatenation of vy, ... ,v;. We have

K(w) < jelog K (z)/3 4 const = K(x)/3 + const and
K(z|lw) > K(z) — K(w) — const -log K (x) > K(x)/2

for sufficiently large K (z). Consider the value of K (x|wz) where z is a prefix
of 2. When the length of z changes by 1 the value of K (2|wz) changes by no more
than a constant. Since K (z|wA) = K(z|w) > K(x)/2 and K (z|wz) < const,
there exists a prefix zg of « such that K(z)/2 > K(x|wzg) > K(x)/2 — const.
Take wzg as y. Check the condition i):

K(y) < K(w) + K(z0) < K(x)/3 4+ K(z) + const .
Check the condition ii):

K(z|y) = K(z|wzo) < K(z)/2.

Check the condition iii). For each i the string y contains “much” information
about p;, namely,

K(pily) < K(z)/2 — clog K(z)/3 + const -log K (z).

Using this inequality, we obtain for all i

K(zly, pi) > K(2ly) — K(pily) — const -log K (2)
> (K(z)/2 — const) — (K(z)/2 — clog K (z)/3 + const -log K (z))

— const -log K (z).

Let ¢ be sufficiently large; the condition iii) now follows. O
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