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On the Algebraic Complexity of Integer Programming

Valentin E. Brimkov* Stefan S. Dantchev!

Abstract

In the framework of the Blum-Shub-Smale real number model [3], we study the algebraic
complezity of the integer linear programming problem (ILPg) : Given a matrix A € R™*™ and
vectors b € R™, d € R", decide if there is z € Z™ such that Az < b, where 0 < z <d.

We show that there is an O (mlog ||d||) algorithm for ILPg, when the value of n is fixed. Asa

a:ﬁn), Gmin = min{as,...,an}
for the Knapsack problem (KPgr) : Given a € R}, decide if there is € Z™ such that aTe =1,
when the dimension n is fixed. We achieve these results in particular through a careful analysis
of the algebraic complexity of the Lovasz’ basis reduction algorithm and Kannan-Bachem’s
Hermite normal form algorithm, which may be of interest in its own.

We also obtain an O (mn®logn (n +log||d||)) depth algebraic decision tree for ILPg, for
every m and n.

Keywords: Algebraic complexity, Complexity bounds, Integer programming, Knapsack prob-
lem

consequence, we obtain a tight algebraic complexity bound © (log

1 Introduction
We study the algebraic complezity of the following integer linear programming (ILP) problem:

(ILPRr) Given a matrix A € R™*" and vectors b € R™,d € R",
decide if there is x € Z™ such that Az < b, where 0 < z < d.

The input entries are arbitrary real numbers and, accordingly, the adopted model of computation
is a real number model. This kind of model has been traditionally used in scientific computing,
computational geometry, and (although not explicitly) numerical analysis (see, e.g., [15, 16, 19]). In
our study we conform mainly to the model presented in [3], known as the BSS-model (named after
its creators Blum, Shub and Smale). In that model, the assumption is that all the reals—elements
of the input-have unit size, and the basic algebraic operations +, —, %,/ and the relation < are
executable at unit cost. Thus the algebraic complexity of a computation on a problem instance is
the number of operations and branchings performed to solve the instance. For more details on the
BSS-model and complexity theory over arbitrary rings, we refer to [3]. We notice that in this new
theory, aimed at providing a complexity framework for disciplines like the ones mentioned above,
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an important issue is seen in the comparison of results over the reals with classical results over the
integers, which may help elucidate some fundamental concepts like computability and complexity.

At this point it is important to mention that the requirement for bounded domain (i.e.,
0 < z < d) is essential and dictated by the very nature of the problem, namely by the fact that the
coefficients may be irrational numbers. In such a case, a problem with unbounded domain may be,
in general, undecidable, as shown in [4].

In a classical setting, integer linear programming with integer or rational inputs is among the
best-studied combinatorial problems. A substantial body of literature, impossible to report here,
has been developed on the subject. In particular, it is well-known that ILP is NP-complete [7].
Comparatively less is known about the complexity of ILPRr in the framework of the BSS-model.
Some related results are reported in [3, 1, 14, 6, 4]. In [2] Blum et al. pose the problem of studying
the complexity of an important special case of ILPg known as the “real” Knapsack problem:

(KPRr) Given a € R", decide if there is z € Z" such that o’z = 1.

With the present paper we take a step towards determining ILPgr’s and KPRr’s complexity.
As a main contribution we show in Section 3 that there is an O (mlog||d||) algorithm for ILPg
when the value of n is fixed.

A similar result is known for the integer case, namely, the well-known Lenstra’s algorithm
for ILP of a fixed dimension n [10]. Ours consists of two stages: a reduction of the given real input
to an integer input determining the same admissible set, followed by an application of Lenstra’s
algorithm. The first stage involves simultaneous Diophantine approximation techniques, while the
second one employs two well-known algorithms: the Lovdsz’ basis reduction algorithm [11] and the
Kannan-Bachem’s Hermite normal form algorithm [9]. It is straightforward to obtain an upper time
complexity bound that is quadratic in log||d||. Our more detailed analysis (presented in Section
2) reveals that the actual complexity of the latter two algorithms (and, as a consequence, of the
entire algorithm) is linear in log||d||. Applied to the Knapsack problem KPg of fixed dimension n,
our algorithm has complexity O (log ﬁ), Gmin = min{ay,...,a,}, and turns out to be optimal.

In view of the fact that Lovasz’ basis reduction algorithm and Kannan-Bachem’s Hermite
normal form algorithm are fundamental and very important combinatorial algorithms, we believe
that their algebraic complexity analysis within the BSS-model may be of interest in its own.

We also obtain an O (mn5logn (n +log||d||)) depth algebraic decision tree for ILPg, for
every m and n (i.e., in a model which is nonuniform with respect to them) (Section 3). This result
is in the spirit of the well-known Meyer auf der Heide’s n*logn+ O (n3) depth linear decision tree
for 0/1 KPg (i.e., KPgr with z € {0,1}" ) [12].

2 Analysis of the Basic Algorithms

In this section, we analyze Lovidsz lattice basis reduction algorithm [11] and Kannan and Bachem’s
Hermite normal form algorithm [9]. It is well-known that these are polynomial within the classical
computational model. This implies that, within the BSS model, they are polynomial with respect
to the dimensions m and n of the input matrices and the maximal bit-size S of their integer (or
rational) entries. Our more careful analysis shows that they are linear in S.

2.1 Some Useful Facts

In this section, we state some simple facts about vectors and matrices with rational entries of bit-
size at most S. Although trivial, these facts will be very useful in analyzing the algorithms in the



next sections.

1. Let a be a non-zero rational number. Then 1 /25 < |a| < 25.
2. Let by, by be non-orthogonal n-dimensional rational vectors. Then 1 / 2275 < by, by)| < n229.
3. Let B be a non-singular n x n rational matrix. Then 1 /2"25 < |det (B)| < n!2"5.

4. Let B; be an n X ¢ rational matrix of rank i, 4 < n. Then 1/22"25 < |det (BTB)‘ <
nlon(logn+2S)

2.2 Lovasz Lattice Basis Reduction Algorithm

In the description and analysis of the algorithm we follow [8]. The input consists of linearly
independent vectors by, bo, ... b, € Q™, considered as a basis of a lattice L. The algorithm transforms
them in iterations. At the end, they form a basis of L which is reduced in Lovazs sense.

First we recall some definitions, then describe the Loviasz lattice basis reduction algorithm,
itself. With a basis by, bg, ... b,, we associate the orthogonal system b7, b3,...b},, where b} is the
component of b; which is orthogonal to by, bs, ... b;—1. The vectors b7, b3, ... b}, can be computed by
Gram-Schmidt orthogonalization:

bl = by, .

by = by — X)) paghl, 2<i<n,

where Mij = <b,,b;>/ b;f 2

The basis by, by, ... by is size-reduced if all |p; ;| < . Given an arbitrary basis by, bs, ... by,
we can transform it into a size-reduced basis having the same Gram-Schmidt orthogonal system,
as follows:

For every i from 2 to n; For every j from i — 1 to 1;
Set b; :=b; — [pi ;] bj and update p;y for 1 < k <4 —1, by setting p; x = pix — i ;] 1k

Now, we can describe a variant of Lovasz lattice basis reduction algorithm.

1. Initiation. Compute the Gram-Schmidt quantities y; ; and b; for 1 < j <4 < n. Size-reduce
the basis.

2. Termination condition. If ||b*|| <2 ”bH—l“ for 1 <4 < n —1 then stop.

3. Ezchange step. Choose the smallest i such that [|bf]|* > 2 ||bz+1|| . Exchange b; and b;1.
Update the Gram-Schmidt quantities. Size-reduce the basis. Go to 2.

For completeness we give formulae for updating the Gram-Schmidt quantities in step 3:
||b*||new = ||bz+1“ + #z2+1 i ||b*||2
165112y = 18512 185421 /1B
usts = g 1717 /11671

Hig ' ) H ) r 1 <j<i—1
wiET g i g 0T

uer \ (1 ey, 0 1 Hijsi fori+2<j<n.
ﬂ‘?ii}l O 1 1 _H’i+1,’i uj7i+1 a -



The other ||b}*’s and i ;s do not change.

After termination of the above algorithm, we have a size-reduced basis for which ||b¥]|* <
2|b; +1||2, 1 <i<mn—1. We call such a basis reduced in Lovdsz sense (there are other definitions
of this concept in the literature, but for our purposes they are essentially equivalent). Important
properties of such a basis are

161]] < 2% |(shortest vector in L)||

and

n n(n—1)
[T 16l <277 det(L). (1)
i=1

Let us analyze the running time of steps 2 and 3. Consider the function

n n—1
F (57,65, b3) == [ 155170 = [ det (BY By)
=1 =1

where B; is a matrix having by, bo, ... b; as column vectors. No size-reduction operation changes F,
as it does not change ||b}||s. After an exchange step, we obtain

* 2 2
Frew _ ||bz Hiew _ Hb;k-}-IH + M%—}-Li ||b;k|| <
- 2 2
F 1651 165

(2)

>~ w

It is not hard to see that every iteration of steps (2-3) consists of O (n?) basic arithmetic operations
(because of the size-reduction, an updating needs only O (n) such operations). The only problem
might be the [.| operations during the size-reductions. We observe that the absolute values of their
arguments are at most O (nu{‘f{’ﬂ) Then the time needed for one such an operation is

0 (togn +log uft;) = O (logn + log(5 ° /1165 7cu)) -

)

FS ar
0 ((#itemtions) n?logn + n?log %) . (3)

end

Thus, the time complexity of one iteration is

0 (n? (10gn -+ 1og([1:]* /11 ) )) = O (n? (10gm + 1og

and then the time complexity of all iterations is

Because of (2), the number of iterations is O (log };it“y), so that the overall complexity of steps

2and 3is O (n2 log n log %L“;t) What remains is to estimate the running time of step 1 and the
ratio fatert.
By definition, p;; (1 < j <i—1) can be considered as a solution of the following linear

system
(b1,b1) (b1,bi—1) M1 (b1, b;)

(bi—1,b1) (bi—1,bi—1) Wii1 (bi—1,b;)



for 2 <7 < n. From here and fact 4 of Section 2.1, it is not hard to conclude that before the size-
reduction phase of step 1, [|u; ;|| < 20(57) " The size-reduction itself takes O (n?) [.] operations
on these numbers, so that the time complexity of step 1 is clearly O (Sn?).

Lastly, we need to estimate Fiyrr and Feg. Fipore is a product of the determinants of n — 1
matrices B B; for 1 <4 <n —1, so that |Fygt| < 90(n*(10gn+5)) Ty esitmate F,,4, let us observe
that any of the vectors b"?, b§™4, ... b2 is an integer linear combination of b§tart, pstart .. pstart,
Therefore, for 1 < i < n, we have Bf" = B3 4; where A; is an n x i integer matrix. This

implies det (Bend" Bg*d) = det (AT A;) det (Bjtert” Bstart) > 1 /2275 by fact 4 of Section 2.1,

and consequently Fp,4; > 1 / 920(n*S)  Thus log %ﬁ&? = O (n3S) and the overall complexity of the

Lovész basis reduction algorithm is O (Sn%logn).
Finally, we will prove that the bit-size of the entries of the reduced basis is O (Sn3). Let us
remember inequality (1):

Il

1=

n(n—1) n(n—1)

bf"dH < 2" det (L) = 2

det (B3lert)|

and denote by a the least common multiple of all entries of Bs!t. Note that the bit-size of a
is O (Sn?). Since b{"%’s are integer linear combinations of b{!4"!’s, the vectors ab¢™® are integer.
Therefore, we have

det (Bjret)| < 9™ 9Sn® 198 — 90(50°),

" n(n—1)
] <22
i=1

Thus, every entry of aB¢™ is of bit-size O (Sn®) and so is every entry of BS*Y. In terms of the
adopted denotations, we have proven the following lemma.

Lemma 1 The algebraic complezity of Lovdsz’ basis reduction algorithm is O(Sn5logn), and the
bit-size of the entries in the reduced basis is O(Sn?).

2.3 Kannan and Bachem’s Hermite Normal Form Algorithm

In our description we follow [18]. The input for the algorithm is an m x n (m < n) integer matrix
A of full rank. The algorithm uses the matrix

M
A=14
M

where M is the absolute value of some nonsingular m x m minor of A. A’ has the same Hermite
normal form as A. The algorithm consists of the following five steps:

1. Cause all the entries of the matrix A to fall into the interval [0, M), by adding to the first n
columns of A’ proper integer multiples of the last n columns;

2. For k from 1 to m do 3-4;

3. If there are i # j, k < 4,j < n+k such that aj ; > a}c’j > 0, then subtract from the ith

column the jth one multiplied by [a;m- / a}c,jJ, and then reduce the ith column modulo M.
Go to 3;



4. Exchange the kth column and the only column with a;m- > 0;

5. For every ¢ from 2 to n; for every j from 1 to ¢ —1 add an integer multiple of the ith column
to the jth one, to get a}; > a; ; > 0.

In order to show that the time complexity is polynomial in m,n and linear in S, we need to analyze
step 3. For this, we introduce the function

! ! ! - !
F (ak,kﬁak,k+1’ . "a’k,n—l—k) = H aj ;-
E<i<n+k
!
Qi > 0

After one iteration of step 3, we have

which implies both Fpep /F < 1/2 and Fpep /F < a;m- /a}c’i. It is not hard to see that one
iteration of step 3 can be performed in O (m log(ay, ; /a}c,j)) = O (m1og(F /Fpey)) time. So, step

3 takes O (mlog(Fystart /Fena)) time. Since Fypry < M™! | Fog > 1,and M = O (m!2m5) by fact

3 of Section 2.1, the overall running time of step 3 is O (nm (logm + S)). Then the complexity of
Kannan-Bachem’s algorithm is O (nm? (logm + 9)).

Since all the resulting integers are smaller than M, their bit-size is O (Smn). Thus we have
proven the following lemma.

Lemma 2 Let A be an m x n (m < n) integer matriz of full rank. Then the algebraic complezity
of Kannan-Bachem’s algorithm that reduces A into Hermite normal form, is O(m?n(logm + S)).

3 Basic Results about ILPgr

In this section we use the algorithms’ analysis from the previous section to obtain the first two of
the results announced in the Introduction.

To solve ILPR algorithmically within the BSS-model, we follow the idea of our method devel-
oped in [4]. We notice that there the complexity of that method is analyzed within a strengthened
version of the BSS-model, in which the floor operation |.] is considered as a basic one, executable
at unit cost. Here we will apply and analyze it within the standard BSS-model.

As mentioned before, the algorithm consists of two main stages. In the first stage, it reduces
the constraints with real coefficients to ones with integer coefficients determining the same admissi-
ble set. The first step of this reduction is the substitution of a given real vector with an appropriate
rational vector, justified by the following lemmal.

Lemma 3 Given a vector « € R™ with |aj| < 1,5 = 1,2,...,n, and L € Z,, there exists an
O(n*logn(n + log L)) algorithm that finds p € Z" and q € Zy such that |a; — pj/q| < 1/(qL),
§=1,2,...,n, and 1 < g < [2r(n+5)/4 "],

'To reduce the given real constraints to an equivalent set of integer constraints, one can also use the approach
from [17].



Proof The proof is analogous to the one of [4, Lemma 4.4], therefore we omit some technical
details. Let us sketch the algorithm finding a vector p € Z™ and an integer ¢ € Z, with the
required properties. For each «; we find the closest rational fraction a; with denominator G =
[2n(n+9)/41n+17 " This can be done in time O(nlogG) = O(n® 4+ n?logL) in the BSS-model.
(Note that in the BSS-model extended with a unit cost floor operation-the case handled in [4,
Lemma 4.4]-this requires O(n) operations.) Next we use the algorithm for finding simultaneous
Diophantine approximations [12, Corollary 6.4c]). For a given rational vector v € Q" and a
rational number 0 < £ < 1, this algorithm finds an integer vector p and an integer number ¢ with
lv — (1/q)p|| < e/q and 1 < g < 2M"+1)/4e=" We apply this algorithm to the constructed rational
vector a = (a1,a9,...,a,) and ¢ = 1/(2L), and obtain a vector p € Z™ and an integer ¢ € Z
satisfying the desired conditions.

In order to evaluate the algorithm’s complexity, we have to evaluate the complexity of the
simultaneous Diophantine approximation algorithm. Note that the latter is, in fact, a specialization
of the Lovasz basis reduction algorithm, applied to a matrix of the form

1 al
1 a9

1 a,

1/G

(see, e.g., [12, Corollary 6.4c]). This matrix entries are rational numbers, all with the same de-
nominator G = 20(n("+19e L)) " Tt is shown in [4, Lemma 4.4] that in this special case the number
of iterations of the algorithm is O(log E’Fj‘;dﬂ) = O(n3 + n?log L). Combining this fact with (3), we
obtain the result stated. O

It is shown in [4] how the algorithm of the above lemma can be used to substitute any
real linear constraint ax < b with an integer one, preserving the same admissible integer points
z with 0 < z < d, d € R™. For this, at most n applications of the algorithm are needed, with
L = ||d|| (see [4, Lemma 5.1]). Hence, the overall time complexity of the reduction stage turns out
to be O(mn®logn(n +log||d||)). Also, the bit-size of the generated integers is O(n?(n + log||d||)),
therefore the overall bit-size of the reduced problem is O(mn?(n + log||d||))-

At this point, one of the announced results follows immediately. First we unfold the applica-
tions of the Lovész basis reduction algorithm in an algebraic decision tree with depth O(mn5log n(n+
log||d||)). After that, we branch on every bit of the obtained integer data problem, which adds
O(mn3(n +1log||d||)) to the depth of the tree. Thus we can state the following theorem.

Theorem 1 There is an O(mn’logn(n + log||d||)) algebraic decision tree for ILPR.

To obtain our other results, we continue with the second stage of the algorithm, which is an
application of Lenstra’s algorithm [10] to the integer data problem obtained as an output of the first
stage. A recursive step of this algorithm reduces an n-dimensional problem to a set of subproblems
of dimension n — 1, whose number is exponential but depending only on n. The basic algorithms
used in this reduction are the Lovasz basis reduction algorithm and Kannan-Bachem’s Hermite
normal form algorithm. In addition, a linear programming problem of dimension (m + 2n) X n is
to be solved.

The two algorithms are applied on matrices of dimension depending only on n and with entries
of bit-size O(log||d||), when the value of n is fixed. Then by Lemmas 1 and 2, their complexity
and the bit-size of the integers they generate are bounded by O(log||d||). The linear programming



problem can be solved in time O(m + n) (that is, linear in m) using the well-known Megiddo’s
algorithm [13]. Hence, if n is fixed, the overall complexity of this stage is O(mlog||d||). Thus we
have obtained the following theorem.

Theorem 2 There is an O(mlog||d||) algorithm for ILPR of fized dimension n.

Theorem 2 implies a tight bound for the algebraic complexity of the Knapsack problem.

Corollary 1 The algebraic complezity of the Knapsack problem KPr of fized dimension n is
O(log ).

Gmin

Proof An upper bound O(log %) follows from Theorem 2. A lower bound (log GL) follows from

[5], where a tight bound ©(log ﬁ) was proved for the algebraic complexity within the BSS-model
of the two-dimensional Knapsack problem with real coefficients. O

4 Concluding Remarks

We have presented an O(m log ||d||) algorithm for integer linear programming with real coefficients
and fixed number of variables, within the Blum-Shub-Smale computation model. A further task
would be to show that this complexity bound is tight.

Some of the obtained results (e.g., Corollary 1) show that the integer programming problems
are, in general, intractable in the framework of complexity theory over the reals, since their com-
plexity cannot be bounded by any polynomial in the input size, the latter being a polynomial only
in m and n. Some further refinements of the theory suggest, however, that these problems can be
considered as efficiently solvable. Following Smale [20], a numerical algorithm can be considered
as efficient only if its complexity is bounded by a polynomial in the problem dimensions and the
logarithm of its weight. The weight function is defined in dependence on the problem specificity
and used to measure the difficulty of a problem instance. Under such a convention, let us define
the weight of ILPg as a number ||d|| which bounds the norms of the admissible solutions. Then
the results of Section 3 imply that ILPg and KPR are efficiently solvable in the above sense.
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