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Abstract

We consider the deficiency §(F) := ¢(F) — n(F') and the mazimal
deficiency 0*(F) := maxpicr 6(F) of a set I of clauses (a conjunctive
normal form), where ¢(F) is the number of clauses in F' and n(F) is
the number of variables.

Combining ideas from matching and matroid theory with tech-
niques from the area of resolution refutations, we prove that for clause-
sets F' with 0*(F) < k, where k is considered as a constant, the SAT
problem, the minimally unsatisfiability problem and the MAXSAT
problem are decidable in polynomial time (previously, only poly-time
decidability of the minimally unsatisfiability problem was known, and
that only for & = 1).
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1 Introduction

Minimally unsatisfiable clause-sets

A conjunctive normal form F' (represented as a clause-set in this paper) is
called minimally unsatisfiable iff F is unsatisfiable, and any strict subset
is satisfiable. Let MUSAT denote the class of all minimally unsatisfiable
clause-sets. It has been shown in [13] that MUSAT is D -complete, where
DP = {LiNLy:Ly € NP ALy € co-NP} is the class of languages repre-
sentable as the intersection of a language in NP and a language in co-NP.

A fundamental property for minimally unsatisfiable clause-sets is proven
in [1]. Applying Hall’s theorem they show ¢(F) > n(F)+1for F € MUSAT
(attributing this lemma to M. Tarsi), where ¢(F”) is the number of clauses
of F', and n(F) is the number of variables in F'.

Now two special classes of minimally unsatisfiable clause-sets are known,
where the decision problem is in polynomial time:

- SMUSAT (1), the class of strongly minimally unsatisfiable clause-sets
F with ¢(F) = n(F) + 1, where “strongly” additionally requires, that
adding any literal to any clause of F' renders F' satisfiable (this class
has been introduced in [1], and from their characterisation of this class
poly-time decidability follows);

- MUSAT(1), the class of all minimally unsatisfiable F with ¢(F) =
n(F) 4+ 1 (characterised and shown to be poly-time decidable in [4]
(using a quite complicated proof)).

At the SAT’98 workshop ([6]) Hans Kleine Biining posed the question
whether all classes MUSAT (k) :={F € MUSAT : ¢(F) < n(F)+ k} for

constant k > 1 are poly-time decidable (answered positively in this article).

Furthermore, in [3] for F € MUSAT (k) the upper bound 28~1 . n(F)2
for the minimal number of resolution steps in a resolution tree refutation of
I’ has been established (a strengthening of this fact is basic for our consid-
erations).

In essence, most techniques from the work mentioned above is included in
our approach. Additionally, the following notions have been of importance.



Autarkies and the deficiency

Straightening and generalising prior work, the use of the notion of an au-
tarky for clause-sets I’ (partial assignments satisfying each clause of I’ they
“touch”) and of the deficiency §(F) := ¢(F) — n(F’) are basic for this paper.

Being unaware of [1], in [5] an alternative (inductive) proof of “Tarsi’s
lemma” is given, based on the (valuable) observation that substituting a
truth value for any (single) variable in ' € SMUSAT results in a clause-
set still in MUSAT. They notice that a clause-set I’ with 1 < ¢(F) < n(F)
must have a non-empty autark subset I’ C I, that is, I’ is satisfiable by
an autarky (not involving any variable appearing in F'\ F’).

Also not using [1], in [14] the property ¢(F) > n(F) 4+ 1 has been shown
for the more general class I € U MUSAT, the closure of MUSAT under
finite union. They also show for an arbitrary clause-set I’ and and a subset
F' C F with the property that ¢(F’) — n(F’) is maximal, that for every
subset I C F'\ F' one has c(var(F") x F"") — n(var(F') * F") < 0, where
var(I") * I is obtained from I by crossing out all variables appearing in
F'. Actually this says that '\ F' is an autark subset of F, and thus for
F e UMUSAT we must have I = F, and property (1) given in the next
paragraph follows. Unfortunately the argumentation in [14] is very lengthy
and does not arrive at such conceptual insights.

Independent of [14], the notion of deficiency 6(F) = c¢(F') — n(F) has
been introduced in [7] and made fruitful for lucid argumentation. The class
of matched clause-sets I', given by the property, that for all I/ C F we
have §(F") < 0, is introduced, and it is shown that this class is poly-time
decidable and contains only satisfiable clause-sets. A short proof of the
statement

VF' C F:6(F) < §(F) (1)

for ' € MUSAT is given (since 6(T) = 0, where T is the empty clause-set,
Tarsi’s lemma follows).

These attempts have been unified and strengthened in [9], starting a
systematic investigation of the notion of autarkies and autark subsets. Gen-
eralising MUSAT (and UMUSAT), the class LEAN of lean clause-sets
F has been introduced, where all clauses of F' can be used in a resolution
tree refutation of F. It is shown, that a clause-set F' is lean if and only if
T := ( is the only autark subset of F.



In order to obtain special cases of autark subsets, which are computable
in polynomial time, the notion of linearly autark subsets is introduced, and
the class LEAN has been enlarged to LLEAN, the class of linearly lean
clause-sets where T is the only linearly autark subset. LLEAN is poly-time

decidable (using Linear Programming), and property (1) in fact holds true
for all clause-sets F' € LLEAN .

Finally, in [9] the maximal deficiency 6*(F) := maxpcr 6(F') has been
investigated. This notion in fact is of basic importance (see at the end of
the following subsection). Note that I’ is a matched clause-set iff §*(F) =0,
and that for all minimally unsatisfiable I’ we have §*(I") = §(F") by (1).

The contributions of this paper

Using C(k) :={F € C : *(F) < k} for any class C contained in the set CLS
of all clause-sets (note the consistency with the prior use of this notation),
we prove for any k > 0 (see Section 4):

o SAT (k) as well as the classes
SMUSAT (k) C MUSAT (k) CUMUSAT (k) C
C LEAN (k) CUSAT (k)u{T}

are poly-time decidable (SAT and USAT are the satisfiable resp. un-

satisfiable clause-sets).
e For I € CLS (k) the two decompositions
F=F UF, FFnFi=0
(i =1,2) given by

- F} is the largest lean subset of I, I} is the largest autark subset
of

- F} is the union of all minimally unsatisfiable sub-clause-sets of
F, F} the intersection of all mazimally satisfiable sub-clause-sets

are computable in polynomial time, as well as a largest satisfiable sub-
set.



Furthermore the improved (and now tight) upper bound 28"(F)=1. 5 (F) for
the minimal number of resolution steps needed in a resolution tree refutation
is derived.

The basic new insights towards these results are:

1. In Theorem 3.2 lean sub-clause-sets of F € CLS are shown to be
(special) circuits of some matroids, derived from the transversal ma-
troid T(F) given by the (natural) bipartite graph associated with
F. The maximal deficiency §*(I”) for subsets I/ C F'is the nullity
c(F') — rank(F") in T(F) (using the rank function of T'(F)).

It follows that for fixed maximal deficiency of F a set of sub-clause-
sets containing all lean sub-clause-sets can be computed in polynomial
time. (See Appendix A, where also some basic notions from matroid
theory are explained.)

2. In Theorem 3.11 it is shown that unsatisfiable clause-sets with fixed
maximal deficiency have small “DPL-like refutations” (or “(gener-
alised) semantic tree refutations”) of a special form, which can be
searched for in polynomial time.

2 Notation

CLS is the set of all clause-sets (conjunctive normal forms treated as sets),
where we require clauses to be complement-free, SAT is the set of all satis-
fiable clause-sets and US AT the set of all unsatisfiable clause-sets. The set
of minimally unsatisfiable clause-sets is denoted by MUS AT (unsatisfiable
clause-sets such that every strict subset is satisfiable), while SMUSAT
(called “strongly minimal” in [1] and “saturated” in [5]) is the set of min-
imally unsatisfiable clause-sets such that adding any literal to any clause
renders them satisfiable. Finally U MUS AT is the closure of MUSAT
under finite union (introduced in [14]). The complement of a literal z is
denoted by Z, while for a clause C' we set C := {Z : z € C'}. Variables ap-
pearing in a literal z, a clause C or a clause-set F' are denoted by var(z),
var(C') and var(F') respectively (the latter two being sets).

For FF € CLS let n(F) be the number of variables and ¢(F') the number
of clauses, while #,(F) is the number of occurrences of literal z; § (F') :=
c(F) —n(F) and 6*F := maxpcp 0(F).



Forany C CCLS and k> 0 let C(k) :={F € C:6*(F) < k}.

For any partial assignment ¢ (assigning truth values to variables) we
denote by ¢ * F the result of applying ¢ to F, that is, all clauses satisfied
by ¢ are removed, and from the remaining clauses all literals falsified by ¢
are cancelled. (& — €) denotes the partial assignment setting literal z to
(and the complement T to £). ¢ is called an autarky for F' if each clause
of F either is satisfied by ¢ or has no variables given a value by .

And for a set V' of variables let V % F denote the clause-set resulting
when crossing out all literals with variables in V. (V % F' is equal to the
union of all ¢ * F' with var(¢) = V.)

3 The main lemmas

3.1 Circuits of the transversal matroid T'(F’)

Definition 3.1 For F' € CLS and k > 0 let €x(F) be the set of all sub-
clause-sets F' C F with §(F') = k + 1 such that for all F" C F' one has
§(F") < k. Furthermore €(F) := Uycpess(r) S (). B

Theorem 3.2 Consider F© € CLS and k > 0. Then €41 is the set of
circuits of a matroid Ty, (F) on F (the elements are the clauses of I'), where
the independent subsets of Ty (F) are those F' C F with §*(F') < k.

Proof: First we consider the case &k = 0. The set {F' C F : 6*(F') =0} is
the set of independent subsets of the transversal matroid T(F) = T(B(F))
induced by the bipartite graph B(F) = (F, R,var(F)), where the relation
(Cyv) € R C F x var(F) holds iff v € var(C') (see Appendix A).

The set of circuits of T'(F) is €o(F). For the rank in T'(F) = To(F)
we have rank(F") = ¢(F') — §*(F') for all F' C F. The function f(F') :=
rank(F’) 4+ k is submodular and increasing, and thus the set ¢ consisting
of all F' C F which are minimal w.r.t. the property “f(F’) < ¢(F')” is the
set of circuits of a matroid 77 (F), whose set of independent subsets is

3 ={F CF:NF'CF[f(F")>c(F")]}

(see [12], page 380, 12.1.1 and 12.1.2). Since for C' € F and F' C F we
have f(F"U{C}) < f(F') + 1, in fact 3}, = {I" C F: f(F') > ¢(I")} =
{FI' CF:6*(F') <k} and € = & holds. 1



Using the enumeration of the circuits of T%(/’) in Appendix A, we get

Corollary 3.3 For k > 0 and F € CLS(k) the sets Co(F), ..., Chr(F)
can be computed in polynomial time (k is treated as constant). 1

3.2 Lean clause-sets

For F' € CLS we call F' C F an autark subset of F iff there is an autarky ¢
for F' with F' = {C € F : ¢(C') = 1}. We make frequent use of the following
reformulation:

F'is an autark subset of F < var(F'\ F') x F' € SAT. (2)

Generalising minimally unsatisfiable clause-sets, in [9] the notion of lean
clause-sets has been introduced, which are clause-sets such that every clause
can be used in a resolution refutation. It has been shown, that a clause-set
is lean if and only if it has no non-trivial autarky. In our context, we take
this as the definition of lean clause-sets.

Definition 3.4 Let LEAN be the set of autarky-free clause-set F' € CLS,
that is, the only autark subset of I is T. 1

Simple properties (for more information see [9]):

1. UMUSAT C LEAN CUSAT U {T}.

2. LEAN is closed under crossing out variables, that is, for I' € LEAN
and V C VA we have V x F € LEAN .

3. LEAN is closed under union: Fy, Fy € LEAN = Fy U Fy € LEAN.

4. F € LEAN & F\{Ll} € LEAN.

For detecting autarkies in our context, the following inequality (with
straightforward proof) from [9] is basic.

Lemma 3.5 For any clause-set F' € CLS and any subset F' C F we have
(var(F')y« (F\ F"))+ §(F") <é&(F).



Since §*(F') = 0 implies I’ € SAT (every maximum matching in B(F)
induces a satisfying assignment; clause-sets F with §*(F) = 0 are called
“matched clause-sets” in [7]), by (2) we get the following sufficient condition
for a subset being autark (also included in [14], while a forerunner can be
found in [5]; for a refinement using linear programming see [9]).

Corollary 3.6 For F' € CLS and F' C F with 6(F') = §*(F) the set F'\ F’
is an autark subset of F'. 1

From Corollary 3.6 and Definition 3.4 we obtain the following fundamental
lemma (see [9] for a generalisation; in [7] Lemma 3.7 is proved for the special
case of minimally unsatisfiable clause-sets).

Lemma 3.7 For ' € LEAN we have YF' C F : §(F') < 6(F). Since
(T)=0 it follows §(F) > 1. 1

Hence all lean sub-clause-sets of I’ (and thus all minimally unsatisfiable
sub-clause-sets) are contained in €(F):

VFeCLSYF CF:F € LEAN = F' € ¢(F). (3)

Corollary 3.8 MUSAT (1) = LEAN (1)\{T}. 1

3.3 Splitting up lean clause-sets

Now we turn to the problem of investigating the deficiency of clause-sets
when performing splitting, which is, besides Corollary 3.3, the basis for our
decision algorithms, and also establishes the connection to tree-like resolu-
tion. For the proofs of Lemmas 3.9 and 3.10 see Appendix D.

In general for any clause-set I € CLS and any literal 2 we have
F{(z—1)xF) <& (F)+1 (4)

since for every F' C (z — 1) x F' there is a F” C F with ¢(F") = ¢(I")
and n(F") < n(F')4 1. Our problem is to actually reduce the deficiency by
splitting.

Part 3 of the following lemma generalises (and simplifies) the “splitting
theorem” from [3].



Lemma 3.9 Consider ' € LEAN with Vv € var(F) : (#, + #) (F) > 3.
1. For 0 £V Cvar(F): ¢c({C € F:var(C)NV #0}) > |V]|+2.
2. For F' C F with var(F") C var(F): 6(F') < §(F) — 2.
3. For all literals x with #,(F) > 2 we have
Sz — 1) x F) < §(F) - 1.

Using “Davis-Putnam resolution” (see Appendix B) we get

Lemma 3.10 Consider ' € USAT and F' C F with I’ € MUSAT and
8(F") > 2. Then there is a variable v € var(F') such that for both ¢ € {0,1}
the clause-set (v — €) x F contains some F. € MUSAT (§(F') —1).

The following theorem now immediately follows.

Theorem 3.11 Consider F' € USAT (k) for some k > 1. Then there is a
binary tree T (directed from the root to the leaves) of height at most k — 1
such that

- the root of T is labelled by F;

- the two direct successors of an inner node labelled by I’ are labelled
by (v — 0) x I resp. (v — 1) x I’ for some variable v € var(F’);

- every leaf label G contains some G' C G with G' € MUSAT(1). 1

From the results in [10] it follows that the class
C:={FeCLS|IF CF:F e MUSAT(1)}

of possible leaf labels of trees T is (properly) contained in the class of
clause-set refutable by “read-once” resolution (resolution refutations in tree
form, where every input clause can be used at most once), shown to be
NP-complete in [8]. It is an interesting question whether also the problem
“FeC 7?7 is NP-complete.

We conclude this section by an application to resolution complexity.

Theorem 3.11 together with Lemma C.3 yields immediately

Corollary 3.12 25"(F)-1 -n(F) is an upper bound for the minimal number
of inner nodes in resolution tree refutations of FF € USAT. 1



4 The poly-time computability results

Theorem 4.1 For fized k > 0 the class SAT (k) is decidable in polynomial
time. It follows that also MUSAT (k) and SMUSAT (k) are poly-time
decidable. Furthermore for F € CLS(k) a satisfiable F' C F of largest size
(containing at least c(F) — §*(F') clauses) is poly-time computable (that is,
the MAXSAT problem is poly-time solvable for CLS(k)).

Proof: Given F' € CLS(k), search for a tree T" according to Theorem 3.11:

For a leaf label G we have 6*(G) < k+ (k— 1) =2k — 1 by (4). Hence
the property “3G' C G : G' € MUSAT (1) 7 is decidable in poly-time by
Corollary 3.3 and Lemma C.3.

It follows that the existence of such a T" can be decided in poly-time,
and hence SAT decision for F is poly-time.

W.r.t the properties “minimally unsatisfiable” and “saturated minimally
unsatisfiable” now we can simply check whether the definitions hold.

And w.r.t. MAXSAT note that a basis F’ of the transversal matroid
T(F) is computable in polynomial time. We have I’ € SAT and ¢(F') =
c(F) — 6*(F), and now the question is whether a larger satisfiable subset

exists. So we simply search through all (polynomially many) subset F”/ C F
with ¢(F") > ¢(F) — 6*(F) and decide whether F” € SAT holds. 1

The unique ”autarky-decomposition”

From [9] we get the following unique decomposition of F' € CLS into the
largest lean subset F] and the largest autark subset F,

F=RKRUF, RNE=0 (5)
where I has the following characterisations:
- I} is the union of all lean subsets I/ € LEAN of F;

- F is the largest lean subset F' € LEAN of F;

- Fj is the set of all clauses C' € F such that a resolution tree refutation
of F exists using C' as an axiom;

10



on the other side, F, has the following characterisations:

- I, is the union of all autark subsets of F;

- F, is the largest autark subset of F.

Theorem 4.2 For fized k > 0 and F € CLS(k) the unique decomposition
of F' according to equation (5) is computable in polynomial time. Thus the

class LEAN (k) is poly-time decidable.

Proof: Since F, is the largest autark subset of F', by (2) and (3) we can
characterise F as the smallest subset (w.r.t. inclusion) F’ C F with

F' € ¢(F) and var(F')* (F\ F') € SAT.

Lemma 3.5 gives &*(var(F') « (F'\ F')) < & (F) — 6(F") < 6*(F) — 1.

Hence by Corollary 3.3 and Theorem 4.1 we can find Fj in polynomial
time. 1

”Minimally unsatisfiable” vs. ”maximally satisfiable”

Lemma 4.3 For a clause-set F let
min(F) := {F' CF:F minimally unsatisfiable}
max(F) := {F' C F:F' mazimally satisfiable},

where F' C I’ is maximally satisfiable ¢ff I/ is satisfiable and every F'"' C I’
with I C F" is unsatisfiable. Then

Umin(F) U mmaX(F) =F, Umin(F) N mmaX(F) = 0.

Proof: Consider C € F:

If there is a minimally unsatisfiable I/ C I with C' € I/, then consider a
maximally satisfiable I/ C I with '\ {C} C I — here we have C' ¢ F".

If there is a maximally satisfiable I/ C F with C ¢ F’, consider a
minimally unsatisfiable F”" C F with F” C F'U{C} —now C € F". 1

Note that the largest autark subset F, from equation (5) is contained in
(1max(F) (since for an autark subset F; of F and a satisfiable subset I, of
I also Iy U F is satisfiable).

11



Theorem 4.4 For fized k > 0 and F' € CLS(k) the unique decomposition
of I according to Lemma 4.3 is computable in polynomial time. Thus the

class U MUS AT (k) is poly-time decidable.

Proof: By Corollary 3.3, (3) in Subsection 3.2 and Theorem 4.1 all mini-
mally unsatisfiable subsets of I’ can be enumerated in poly-time. W

To conclude, it seems to me an interesting observation that U MUSAT

is the closure of MUSAT under crossing out variables (stated without a

proof here, since it is not the subject of this extended abstract), that is

UMUSAT = {V* F:V CVAANF € MUSAT }.
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APPENDIX

A The transversal matroid of a bipartite graph

We recall some basic matroid theory (see any introductory text on the sub-
ject, like [12], Chapter 1). Let X be a finite set. A set 3 C P(X) of subsets of
X is the set of independent subsets of a matroid M (X) on X iff the following
“independence axioms” are fulfilled:

13



I1 03
I2VAeIVA'CA: A €T
I3 VA1, Ay € T:|A1| > |Ag] = Fa € Ay [AU{a} €T].

M (X) is uniquely determined by J fulfilling (I1) - (I13). A circuit of M(X)
is a minimal dependent (that is, not independent) subset of X. The set €
of all circuits fulfils the “circuit axioms”

Cif¢c

C2V(C,,Chel:Ch#Cy=C1 €y

C3 V(C,CheVeeCiNCyIC€C:CC(CLUCY) N\ {z}.

M (X) is (also) uniquely determined by € fulfilling (C1) - (C3). The rank of

A C X is the size of a maximal independent subset of A (called a basis of
A — all basis’ have the same cardinality).

A submodular function on X is a map f : P(X) — R from subsets of X
to real numbers fulfilling
VA, BEP(X): [(ANB)+ [(AUB) < f(A) + f(B).
Consider a bipartite graph G = (X, R,Y) (R C X x Y). The function
ACX — |R(A)]

is submodular (on X), increasing, integer-valued, and fulfils f(@) = 0, and
thus

Jo={ACX|VA CA:|A|<|RA}

is the set of independent sets of a matroid on X, called the transversal
matroid T(G) (w.r.t. X). For a proof of this basic property of submodular
functions see for example [12], Chapter 12.1 or [2], Chapter VI.1.

By Hall’s theorem, the independent subsets of T'(G) are exactly the
“partial transversals” A C X, that is, subsets A of X which can be covered
by a matching in G, which in turn means, that there is an injective mapping

m:A—=Y withVae A:(a,m(a)) € R.

14



For the rank in T'(G) we have the formula
rank(A) = |A| — 6" (A)

for A C X, where §(A)* := maxaca 6(A), and §(A) := |A| — |R(A)] is the
deficiency of A (see also [11], Chapter 1).1) rank(A) is the size of a largest
matching in the subgraph (A, R[(A x Y),Y), and thus rank(A) as well as

d*(A) are computable in polynomial time. Note that A C X is independent
iff rank(A) = |A| iff §*(A) = 0.

For a clause-set F' € CLS the bipartite graph B(F’) associated with F is
(F, R,var(F)) with (C',v) € R < v € var(C), that is, the “left side” of the
bipartite graph are the clauses of F’, the “right side” are the variables of F’,
and an edge joins clause C' and variable v if v is contained in C (positively
or negatively).

Computing the set of all circuits of a matroid

The set of all circuits of a matroid can be computed in polynomial time as
follows (pointed out to me by Giinter M. Ziegler).

Given a basis B of X and an element z € X \ B, there is a unique circuit
Cy(B) C BU{z} (see [12], page 18, 1.2.6), and since every independent
subset can be extended to a basis, it is easy to see that for every circuit C
there is a basis B and an element z € X \ B with C' = C(B).

Consider a matroid M (X) such that the property “A C X is indepen-
dent” is decidable in polynomial time (w.r.t. | X|). (Now for a given depen-
dent subset A a circuit C' C A can be found in poly-time, and for B C X
we can decide in poly-time whether B is a basis of M(X) or not.)

Assume furthermore that the corank of M(X) is bounded by a constant
k, that is | X| — rank(X) < k. Then by running through all subsets of X of
size rank(X') we can enumerate all bases” B in polynomial time, and then
considering all z € X \ B yields all circuits C(B) of M(X) (in poly-time).

U For general matroids M(X) the quantity |A| —rank(A) for A C X has been called the
“nullity” of A in the fundamental paper [15], which generalises the notion of deficiency.
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B Reduction by ”Davis-Putnam resolution”

For clauses C, D with exactly one “clashing literal” z, that is C N D = {z},
let Co D :=(C\{z})U(D\{7}) denote their resolvent.

For a,b € NU {co} and clause-sets F, I’ € CLS the relation F 20 g
holds if there is a variable v with

#o(F) < a, #5(F) <b or #,(F) <b, #35(F) <a

such that F” is obtained from F by Davis-Putnam resolution on v without
any “blockings” or contractions, that is for

P:={(C,D)e F?:ve CATE D}
the following conditions hold:
- P # 0 (neither v or T is pure)

- (C,D)e P= CnD={v}and CoD ¢ F (all pairs (C, D) € P are
resolvable, and none of their resolvents is already contained in F)

- (C,D),(C",D"y € P and (C,D) # (C",D') = CoD # C'"o D' (any

two different pairs from P yield different resolvents)
and we have
F'={CeF:vé¢var(C)} U{CoD:(C,D)e P}.

It is well known that DP,(F') and F are satisfiability equivalent. The fol-
lowing invariance properties are basic.

Lemma B.1 For clause-sets F, F' with F L% 1 we have

1. 8(F)=4(F") (and n(F') =n(F) -1)
2. F e MUSAT © F' ¢ MUSAT
3. FeLEAN & F' € LEAN .
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Proof: Part 1 and 2 follow directly from the definition of Lo For part 3
consider v and P according to the above definition and assume w.l.o.g. that

P={CYx{Di,..., Dy}

If ¢ is a (non-trivial) autarky for F' (satisfying at least one clause) then
¢ is also a (non-trivial) autarky for F”.

If on the other side ¢ is a non-trivial autarky for F”, then, assuming
w.l.o.g. v & var(p), we construct a non-trivial autarky ¢’ for F as follows:

- if p(C) =1, then ¢’ :== U (v — 1);
- if var(C) Nvar(p) = 0, then ¢’ := ¢;

- otherwise ¢(D;) = 1 for all D;, and we set ¢' := U (v —1). 1§

Note that if for some variable v, occurring in one sign at most once in F,

the additional conditions on P in the definition of ~°% are violated, then
F is not minimally unsatisfiable.

The proof of Lemma 3.10 uses the following compatibility properties
(here the proofs are somewhat technical, and the reader may skip them).

Lemma B.2 To unify notations, for clause-sets F, F' the relation F del, g
holds iff there is a clause C' € F with F' = F\ {C}. (As usual, by “—*”

we denote the reflexive-transitive closure of the relation “—7”.

For all clause-sets F, Iy, Iy and partial assignments ¢ we have

1L P2 = s F 2 ou .

2. If var(p) C var(Fy), then there is F' € CLS with JABSEENy AN
o P 3 pr %% oy

3. There is ' € CLS with F 22 py 4 gy — p 3o pr L%

Proof: We only have to consider ¢ = (z — 1) for some literal z, and also
only single applications of the reductions.

Part 1: For Iy = F'\ {Co} either (z — 1)« F' = (z — 1) * (F'\ {Co})
holds or

((z = 1) x F)\N{Co \ {T}} = (z = 1) » (F\ {Co})-

17



For parts 2 and 3 let
={CeF:v¢gvar(C)} U{CoD:(C,D)e P}

. ey 1, . . .
according to the definition of —=% from the beginning of this section. We

have to take care that also for the modified application of L% the three
conditions on P (applied accordingly) are fulfilled. W.l.o.g. we may assume
#,(F) = 1. So there is exactly one Cy € F with v € C.

Part 2: Since var(z) € var(F}), we have var(z) # v. Let
P={(C,D)e (x> 1)xF) :veCATDED}.
If P' =0 then we have
(2=« F)\{Ce(z=1)«xF:vevar(C)} = (z— 1) % F.
So assume P’ # (). Let

G = ({CoD:(C,D)e P} (xz—1)xF)
U{D|3D":(Co,D),(Co,D') € PPAD #D'NCooD =ChoD’
A (Co,DU{z}) € P}.

Using Davis-Putnam resolution on v we get

(2= 1)« F)\ G255 (z — 1) F.

Part 3: Let I, = F;\{F}. If £ € F then F\{F} L% Fy. Otherwise let
E =CyoDfor (Co, D) € P. In case of #5(F) = 1 we have F\{Cy, D} = F5.

So assume #z(F) > 2. Now F'\ {D} L% F) holds. 1

C Minimally unsatisfiable clause-sets with § = 1

In this subsection we give a simplified prove of the result from [4], that the
class MUSAT (1) is poly-time decidable. For further characterisations of
MUSAT (1) as well as of SMUSAT (1) and related classes see the forth-

coming paper [10] (including short proofs of all known characterisations).

The following lemma motivated the use of SMUSAT in [5] ( called

“saturated minimally unsatisfiable clause-sets” there).
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Lemma C.1 [5] For any clause-set F' € SMUSAT and any literal z we
have (z — 1) FF € MUSAT.

Proof: Consider F/ C (z = 1)« F, F' € MUSAT and assume there is
Ce(x—1)*xF,C ¢ F'. Since F is minimally unsatisfiable we must have
C € F (otherwise for Cy € F with Cg \ {Z} = C both (z — 1) * (I'\ {Co})
and (z — 0) « (F'\ {Co}) would be unsatisfiable). But now replacing C in
F by C'U {2z} maintains unsatisfiability (since application of (z — 1) and
(z — 0) still yield unsatisfiable clause-sets), contradicting the assumption
that I’ is saturated.

As an easy application, in [5] an alternative proof (by induction on n(F))
is given for the fact 6(F') > 1 if I is minimally unsatisfiable:

If n(F) =0 then /' = {1} and thus 6(F) = 1. Otherwise saturate I’ and
obtain F' € SMUSAT. Choose v € var(F) with #, (F")+#%(F’) minimal.

By induction hypothesis and the previous lemma we have §({(z — 1)* ") > 1
while §((z = 1) x F') < (c(F) = 1) = (n(F) = 1) =6(F") = 6(F). +/

For the special case k = 1 the next lemma has been shown in [4] (using
a quite complicated proof).

Lemma C.2 For any clause-set ' € MUSAT (k) with F # {L} there is
a variable v € var(F) with #,(F), #+(I") < k.

Proof: Assume the contrary and saturate I’, obtaining ¥ € SMUSAT.
Consider v € var(F) with #,(F’) + ##(F’) minimal. W.l.o.g. we assume
#,(F') > k+1. Now (v = 1)x F' € MUSAT and thus §((z — 1) F') > 1,
but c((z = 1)« F') <c(F)—(k+1) and n((z > 1)« I"') =n(F) - 1. 1

The following characterisation of MUSAT (1) (first proven in [4]) is an
immediate consequence of Lemma C.2 and Lemma B.1.

Lemma C.3 For I € CLS the following conditions are equivalent:
1. F e MUSAT (1)
2. F 1% {L} (for some or any order of applications of 1’—00>)
3. F 1l {L} (for some or any order of applications of Ll ).

Thus “F € MUSAT (1) ?7 is poly-time decidable. B
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D The proof of the Splitting theorem

Proof of Lemma 3.9: For part 1 let V* := var(F) \ V and
F* = (V5 P)\{L}, I/ :={C € F:var(C)NV # 0}.

By definition we have ¢(£™) < ¢(F’) and var(#*) = V. Lemma 3.7 gives
S(F*) > 1. If there is a variable v € V with #,(F™) + #5(F™*) < 2 then in
fact ¢(F") > ¢(F*) + 1, and thus ¢(F') — |V| > §(F*) + 1 = 2. Otherwise
Corollary 3.8 and Lemma C.2 yield ¢(F") — |V| > §(F™) > 2.

For part 2 let

V* i=var(F) \ var(F'), F*:={C € F:var(C)NV* # 0}.

Because of F* N F' = () we have ¢(F') < ¢(F) — ¢(F*), while part 1 gives
c(F*) > |V*|4+2 = n(F)—n(F")+2, which altogether yield §(F") < §(F)—2.

For part 3 consider F' C (z — 1)« F. If n(F") = n(F) — 1, then 6(F") <
(e(F)=2)— (n(F)-1)=4(F) - 1.

Otherwise consider I C F' with ¢(F)) = ¢(F”) and (z — 1) * I) = F'.
Now we have F} C I, and thus by part 2: 6(F') < 6(Ij) +1<4é6(F)—-1. 1

Proof of Lemma 3.10: Consider "/ such that F/ 2% F" and every
variable occurs in F” in both signs at least twice.
By Lemma 3.9, part 3, for any variable v € var(F") and both ¢ € {0,1}
there is F!' with
(v = &) % F" 2 B¢ MUSAT(S(F') - 1)
(using the relation 2L from Lemma B.2). Altogether:

del

del 1,
F S B2 P (v e) x BTSSR

By Lemma B.2, part 2 there is G with

del del 1, del
FEF P o (voe) s B S5 G5 (v e) s B S5 FY,

and part 1 of this lemma now yields

(v—se)y* I’ ey i D% (v—=e)yx " el

Finally by part 3 of that lemma there is F! with

del , 00

1
(v ey I/ — F/ = F/,

and Lemma B.1 gives F] € MUSAT(§(F')—1). 1
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