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Abstract

During the past three years there was an explosion of algorithms solving MAX-SAT and
MAX-2-SAT in worst-case time of the order ¢, where ¢ < 2 is a constant, and K is the number
of clauses in the input formula. Such bounds w.r.t. the number of variables instead of the
number of clauses are not known.

Also, it was proved that approximate solutions for these problems (even beyond inapproxima-
bility ratios) can be obtained faster than exact solutions. However, the corresponding exponents
still depended on the number of clauses in the input formula. In this paper we give a randomized
(1 — e)-approximation algorithm for MAX-k-SAT. This algorithm runs in time of the order ckN’ o
where N is the number of variables, and ¢, < 2 is a constant depending on k and e.

1 Introduction

SAT (the problem of satisfiability of a propositional formula in conjunctive normal form (CNF))
can be easily solved in time of the order 2V, where N is the number of variables in the input
formula. In the early 1980s this trivial bound was improved for formulas in 3-CNF (every clause
contains at most three literals) to ¢V, where ¢ < 2 is a constant [4, 17, 18]. After that, many
upper bounds for SAT and its NP-complete subproblems were obtained ([6, 13, 20, 21] are the
most recent). Most authors consider bounds w.r.t. three main parameters: the length L of the
input formula (i.e. the number of literal occurrences), the number K of its clauses and the number
N of the variables occurring in it. The algorithms corresponding to the best known bounds w.r.t.
K and w.r.t. L (these bounds are! 1.239% and 1.074% [13]) are designed for general SAT. However,
nothing better than 2V is known for general SAT w.r.t. the number of variables, such bounds are
known only for k-SAT (the best known bounds for 3-SAT are (4/3)" for randomized algorithms
[21], and 1.481% for deterministic algorithms [6]).

In the past three years there was a significant progress in proving worst-case time bounds for
MAX-SAT problem which is an important generalization of SAT. An algorithm for MAX-SAT has
to find an assignment satisfying the maximum possible number of clauses even if the input formula
is unsatisfiable. The research concentrated on MAX-SAT and MAX-2-SAT (every clause contains
at most two literals), both these problems are N'P-complete. The best known bounds are:
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'Here and in what follows, we write the bounds upto a polynomial factor poly(L), for example, 1.239% is in fact
poly(L) 1.239% etc.
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e 1.342K and 1.106% for MAX-SAT [3],
o 2K/% and 28/8 for MAX-2-SAT [11].

No non-trivial upper bounds w.r.t. the number of variables are known for MAX-SAT and MAX-2-
SAT.

An a-approximation algorithm for MAX-SAT finds an assignment satisfying at least aim clauses
of the input formula (m is the maximum possible number of simultaneously satisfiable clauses).
There are polynomial-time a-approximation algorithms for MAX-SAT and MAX-k-SAT [2, 7, 15],
for example, a 7/8-approximation algorithm for MAX-3-SAT [15]. On the other hand, for each of the
MAX-k-SAT/MAX-SAT problems there is an ag (inapprozimability ratio) such that polynomial-
time (ap + §)-approximation algorithms (§ > 0) do not exist unless P = NP (see, e.g., [1, 10]).
In particular, for 3-SAT the inapproximability ratio is 7/8 [10]. The paper [5] explains how to
construct faster (ag + §)-approximation algorithms than the algorithms for the exact solution of
MAX-k-SAT/MAX-SAT. However, the exponential-time bounds obtained in this way are w.r.t. the
number of clauses (and not w.r.t. the number of variables), for example, for MAX-3-SAT there is
a (7/8 + 6)-approximation algorithm running in 289K time.

Experimental study of SAT and MAX-SAT algorithms is also very extensive ([9] is a survey).
Both complete and incomplete algorithms are studied in this field, the incomplete algorithms mainly
use local search or/and random walk. Theoretical study of worst-case upper bounds for such
algorithms was very limited [14, 16, 19]. Recently, Schoning [21] presented a striking randomized
local search algorithm for k-SAT resembling Papadimitriou’s polynomial-time algorithm for 2-
SAT [19]. Schoning’s algorithm runs in the time (2(k — 1)/k)". This algorithm picks an initial
assignment A at random and then performs a local search: at each step, it (deterministically?)
chooses a clause unsatisfied by the current assignment A, picks a variable from this clause at
random, and changes the value of this variable in A. Clearly, at each step the assignment A
is getting closer to some satisfying assignment with probability at least 1/k (since at least one
variable of the chosen unsatisfied clause has different values in A and in the satisfying assignment).

Unfortunately, this trick does not work for MAX-k-SAT: a MAX-k-SAT instance can contain
many clauses that are unsatisfied even by an optimal assignment. Therefore, a deterministic choice
of an unsatisfied clause is not satisfactory here. What is done in this paper:

e We allow the algorithm to pick an unsatisfied clause at random.

e We prove that the obtained algorithm is able to find an (1 — €)-approximate solution of
MAX-£-SAT in time cﬁ o» Where ¢ < 2 is a constant depending on k and e.

In fact, to prove this result it suffices to use even a simpler algorithm than Schéning’s one (the
same situation is in [6] which derandomizes also a simpler algorithm). However, the constant cj
is better if we use Schoning’s construction.

Curiously, the derandomization of Schoning’s algorithm suggested in [6] does not work for our
algorithm (at least, literally).

21t is not important for Schéning’s algorithm how to choose this clause, and thus it is not specified in Schéning’s
paper.



2 Results

2.1 A less-than-2" bound for (1 — ¢)-approximating MAX-k-SAT.

We consider formulas in k-CNF represented as multisets of clauses. Every clause of a formula in
k-CNF is an i-clause for i < k. An i-clause consists of exactly 7 literals (a literal is a Boolean
variable or the negation of a Boolean variable).

The MAX-k-SAT problem is to find a truth assignment that satisfies the maximum possible
number OptVal(F') of clauses of the input formula F' in k-CNF (an optimal assignment). An
a-approximation algorithm for MAX-k-SAT is an algorithm that for every input formula F finds
an assignment satisfying at least a-OptVal(F') clauses of F'. In this section we describe a randomized
(1 — €)-approximation algorithm for MAX-k-SAT (for arbitrary constant e > 0). This algorithm
returns an assignment satisfying at least (1 —e¢)-OptVal(F') clauses with probability at least 1—1/e
(where e = 2.71828...), and otherwise returns an assignment satisfying less clauses.

Our algorithm is very close to Schoning’s k-SAT randomized algorithm [21]. Starting from a
random initial assignment, we perform a local search. The local search procedure iteratively chooses
an unsatisfied clause and changes the value of one of its variables. Schoning’s proof uses the fact
that for k-SAT this procedure has a constant probability of going in the direction of a satisfying
assignment because

The value of at least one variable from an unsatisfied clause is different in the current
(not satisfying) assignment and in an optimal (satisfying) assignment.

(1)

For MAX-k-SAT this is not guaranteed because even an optimal (maybe not satisfying!) assign-
ment can make many clauses false. However, if the current assignment satisfies much less clauses
than an optimal assignment, then for a significant portion of unsatisfied clauses statement (1) holds.
Therefore, for such current assignment a random choice of an unsatisfied clause gives a constant
probability of going in the “right” direction.

In this subsection we give the simplest form of our algorithm and prove the worst-case bound
on its running time. In the next subsection we describe how to improve the obtained exponent
(using Schoning’s arguments and other constructions) and how to generalize our result.

Algorithm 1.

Input: A formula F' in k-CNF with N variables.
Output: A (1 — €)-approximation solution of MAX-SAT problem for F.

Method:

1. Repeat (2 — ¢ +§ike)N times the following steps:

(a) Pick an assignment A at random.
(b) Repeat N — 1 times the following step:

(i) If A satisfies every clause of F', then return A. Otherwise pick an unsatisfied clause of
F' at random, pick a variable from this clause at random, and change its value in A.

2. Among the N-(2— ﬁ)N assignments considered by this algorithm, choose an assignment
satisfying the greatest number of clauses of F, and return this assignment.




Theorem 1. Algorithm 1 returns a correct answer with probability at least 1 — 1/e, where

e =2.171828.... Its worst-case running time is poly(N)ckN,E, where ¢, =2 — <2.

k—l—e—l—ke
Proof. Consider an (optimal) assignment S satisfying m = OptVal(F') clauses of F. Let K be the
total number of clauses in F. If at some moment of time the current assignment A satisfies at least
(1 — €)m clauses, then we are done. Otherwise, A does not satisfy u > K — (1 — €)m clauses of F,
among them there are at least u — (K —m) clauses satisfied by S. Therefore, the algorithm changes
the value of a variable that has different values in A and S with probability at least

K K- _ € € _ €
Pke = (ku ) = E - kum 2 Ilc k(K—(lTe)m) - k(K—(T—e)m) 2 k(2m—zrll—e)m) ~ k(1+e)

(the second inequality is based on the fact that
m > 1K, (2)

this fact can be shown by a simple probabilistic argument).

Suppose at step (a) the algorithm chooses an assi]%nment that differs from S by the values of
exactly n variables (this happens with probability (QLN)) For such initial assignment, the algo-
rithm finds a required assignment without choosing a different initial assignment at step (a) with
probability at least pgcn = (& a6l +€))"

Summing over all possible choices of n, we have that the probability of success of local search

for one initial assignment is at least

N
QLNZgZO(]Z)(k(Ie—l—e))n ( 1+ k(l-l—e)))

N
Since we choose (2 — =2 )V = [ —2— independent initial assignments, the probability of
k+e+ke I+ b g

k(14¢€)
error is at most 1/e.
The running time bound is straightforward. O

2.2 Generalizations and improvements.

Weighted MAX-K-SAT. A simple modification of our algorithm solves weighted MAX-k-SAT
problem (with arbitrary reasonable weights). Instead of picking a random unsatisfied clause uni-
formly, we pick it with probability proportional to its weight. The running time bound remains the
same.

Allowing longer local search. Arguments from [21] count not only the probability of obtain-
ing the answer by making n steps in the “right” direction, but also the probability of doing it by
making i steps in the “wrong” and i 4+ n steps in the “right” direction. For this, step (i) should
be repeated 3N (and not N — 1) times. Although in [21] the probability of going in the “right”
dlrectlon isp>1 ; for an integer ¢, the construction works for arbitrary p and gives the probabil-
ity t—1 = /poly(N ) of reaching a required assignment. In this way, the probability py ., can be

improved to (m)"/poly( ).
Arguments similar to the proof of Theorem 1 then give the probability

( (1 + k(1—|—e) 6))N/P01Y(N)

of success before choosing another initial assignment. Therefore, it is enough to pick only poly(N) -
(2- )Y initial assignments to get a constant probability of error. Thus Ck,e can be improved

to 2 —

(1+ )
k(1+e) .



MAX-2-SAT particular case. The MAX-2-SAT part of Yannakakis’s MAX-SAT approxi-
mation algorithm [22] contains a maximum symmetric flow algorithm which reduces (weighted)
MAX-2-SAT to weighted MAX-2E-SAT, i.e. to the instances containing only weighted 2-clauses
(and no 1-clauses). More precisely, this algorithm, given a formula F' in 2-CNF, outputs a formula
F' in 2E-CNF, such that an a-approximation assignment for F' can be reconstructed in polyno-
mial time from any a-approximation assignment for F'. Therefore, the inequality (2) can be made
tighter:

m > %K .
Thus the bound for py ¢ improves to prgo for k = 2. Combining with the previous arguments
gives an algorithm with ¢y = 2 — % —9_ _253_%6_

Remark. The MAX-2-SAT part of Yannakakis’ MAX-SAT approximation algorithm has already
been used in the context of exponential-time worst-case upper bounds [12]. However, [12] contains
an error: Yannakakis’ algorithm may introduce clauses with non-integer weights which break the
algorithm of [12]. This error is fixed in [11] at the cost of replacing Yannakakis’ algorithm by
another procedure. Note that for the algorithm of this paper it is not important that Yannakakis’
algorithm may introduce non-integer weights and increase the number of clauses.

3 Further research and open questions

The c,]c\{ ~time (1 — €)-approximation algorithm for MAX-k-SAT suggested in this paper may lead
to other new exponential-time algorithms for optimization problems. For example, the algorithm
generalizes to a MAX-k-CSP approximation algorithm in the same way as Schoning’s algorithm.
Also, combining with approximation algorithm of [5] or/and parametrized bounds of [8] may give
some new bounds.

It is still an open question whether MAX-2-SAT can be solved ezactly in ¢V time, where ¢ < 2
is a constant and N is the number of variables. The same question is still open for SAT. Also,
it would be interesting to derandomize the algorithm suggested in this paper (we have already
mentioned that the construction of [6] does not work here).
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