Electronic Collogquium on Computational Complexity, Report No. 21 (2000) b rar

Improved Approximation of MAX-CUT on Graphs of
Bounded Degree

Uriel Feige* Marek Karpinskif Michael Langberg?

Abstract

We analyze the addition of a simple local improvement step to various known ran-
domized approximation algorithms. Let a ~ 0.87856 denote the best approximation
ratio currently known for the Max Cut problem on general graphs [GW95]. We con-
sider a semidefinite relaxation of the Max Cut problem, round it using the random
hyperplane rounding technique of ([GW95]), and then add a local improvement step.
We show that for graphs of degree at most A, our algorithm achieves an approximation
ratio of at least o+ ¢, where € > 0 is a constant that depends only on A. In particular,
using computer assisted analysis, we show that for graphs of maximal degree 3, our
algorithm obtains an approximation ratio of at least 0.921, and for 3-regular graphs,
the approximation ratio is at least 0.924. We note that for the semidefinite relaxation
of Max Cut used in [GW95], the integrality gap is at least 1/0.884, even for 2-regular
graphs.

1 Introduction

Given a graph G = (V, E), the Max-Cut problem on (is the problem of finding a partition
(X,Y) of the vertex set V' which maximizes the amount of edges with one endpoint in X
and another in Y. Let A be an approximation algorithm for the Max-Cut problem with
an approximation ratio of r. That is, running A on a given graph GG we obtain a partition
(X,Y) of value at least r times the value of the optimal partition.

Usually when considering random approximation algorithms A as above, one cannot be
sure that the partition (X, Y), obtained by running A on (7, is maximal with respect to local
improvements. For instance, it might be the case that a vertex : of G and more than half its
neighbors end up on the same side of the partition (X,Y) above. We denote such vertices
as misplaced vertices. Clearly such a partition can be improved by moving the misplaced
vertex ¢ from one side of the partition to the other, thus yielding a new partition of higher
weight.

In the following work, we analyze the expected approximation ratio of a number of
randomized approximation algorithms A which are enhanced by an additional local step

*Department of Computer Science and Applied Mathematics, the Weizmann Institute.
"Department of Computer Science, University of Bonn.
tDepartment of Computer Science and Applied Mathematics, the Weizmann Institute.

ISSN 1433-8092

that moves misplaced vertices from one side of the partition to the other, until none such
vertices are left.

This approach generalizes to other problems such as the Max-Sat and Max-CSP problems,
where we are given a Boolean formula ¢ and we are to find a truth assignment to the variables
of ¢ which maximizes the number of clauses satisfied. In this case, misplaced variables can be
defined analogously to misplaced vertices in the Max-Cut problem. Given a truth assignment
s = {81 ...8,} to the variables of ¢, we say that a variable z; is misplaced in s if the number
of clauses satisfied by s is strictly less than the number of clauses satisfied by the modified
assignment achieved by flipping the value of s;.

We address the restriction of the Max-Cut and Max-CSP problems to instances in which
each variable (vertex) shares a bounded number of constraints with other variables (vertices).
In the case of Max-Cut, we define the bounded Max-Cut problem as the restriction of Max-
Cut to graphs of bounded maximal degree, and in the case of Max-CSP we define the
bounded Max-CSP problem as the restriction of Max-CSP to instances in which each clause
is of bounded length and each variable appears in a bounded number of clauses.

Our main results are achieved on the bounded Max-Cut problem when we consider the
algorithm based on semidefinite programming presented in [GW95] as a base for the enhance-
ment described above. In this algorithm a semidefinite relaxation of the Max-Cut problem
on a given graph G is solved, resulting in a set of n unit vectors in B" corresponding to the
n vertices of (. These vectors are then rounded into a partition of G by choosing a random
hyperplane passing through the origin, and then setting all vertices corresponding to vectors
that lie ‘above’ the hyperplane to be on one side of the partition, and all remaining vertices
to be on the other side. It is shown by [GW95] that for each edge ¢ in G the ratio between
the expected contribution of the edge to the final cut and the contribution of the edge to
the objective function of the semidefinite program is at least 0.87856, thus implying (using
linearity of expectation) that the expected approximation ratio of this algorithm is at least
0.87856.

The Max-Cut problem on bounded degree graphs is mentioned in [BK98] where it is
shown that it is NP-hard to approximate the Max-Cut problem on regular graphs of degree
3 beyond the ratio of 0.997. To the best of our knowledge, the best known approximation
ratio for the Max-Cut problem on bounded degree graphs is that of the general problem
which is 0.87856. We improve this approximation ratio to 0.921 on graphs of maximal
degree three, to 0.924 on regular graphs of degree three, and to 0.87856 + ea on graphs of
maximal degree A, where €, is a positive constant depending on A alone.

These results are achieved using an algorithm that differs from the one presented in
[GW95] not only in the additional improvement step, but also in the fact that an improved
semidefinite relaxation of the Max-Cut problem is used as a base of our algorithm. Specifi-
cally, we add triangle constraints (mentioned in [FG95]) to our relaxation. These additional
constraints have been studied in the past in the context of several problems including the
Max-Cut problem. The results of [BM86] imply that the value of the Max-Cut semidefi-
nite relaxation with triangle constraints is equal to the value of the optimal cut on planar
graphs. Without these constraints it is shown in [GW95] that the original semidefinite re-
laxation has an integrality gap of 1/0.884 even on two regular graphs (the 5 cycle). In
[Zwi99] these constraints are used in order to achieve an improved approximation ratio on

the Max-Cut problem on graphs which have a fractional triangle covering. The addition
of such triangle constraints to the semidefinite relaxation of the Max-Cut problem on gen-
eral graphs is not known to yield an improved approximation algorithm nor is it known to
improve the worst case integrality gap of such a relaxation. In our work, the addition of
such triangle constraints to the semidefinite relaxation of the Max-Cut problem on graphs
of maximal degree three yields an improved approximation algorithm with a ratio of 0.921.
As the original semidefinite relaxation of [GW95] has an integrality gap of 1/0.884 on a two
regular graph, we conclude that the addition of such triangle constraints to our semidefinite
relaxation is crucial to the success of our algorithm.

As in the algorithm of [GW95], many other algorithms based on semidefinite program-
ming use the random hyperplane rounding technique, and are analyzed in a local manner (for
instance [FG95, KZ97, Zwi99]). Le. for each edge a local expected approximation ratio is
computed, this ratio then holds as an expected approximation ratio for the algorithm as a
whole due to linearity of expectation. In our algorithm for the Max-Cut problem on graphs
with maximal degree three, we present an analysis in which we compute a local approxi-
mation ratio not on single edges but on clusters of edges. In particular we concentrate on
pairs of edges which share a common vertex. Such an analysis allows us to evaluate the
contribution of our additional improvement step as a function of the vector configuration
obtained by the semidefinite relaxation.

The paper is structured as follows. We address three different randomized approximation
algorithms as a base for the above enhancement. That is, we analyze the expected approxi-
mation ratio of these algorithms when a new step is added which flips the value of misplaced
variables, until none such are left. In Section 2 we consider the trivial random algorithm
for the bounded Max-Cut problem which given a graph G = (V, E) constructs a partition
(X,Y) by independently choosing each vertex to be in X with probability 1/2, and achieve
an approximation ratio strictly greater than 1/2. In Section 3 we consider the algorithm
presented in [GW94] for the Max-Sat problem in which we fix an assignment to the variables
of a given instance ¢ by independently setting each variable z; in ¢ to be {rue with some
probability p; derived as a solution of a linear program. By enhancing this algorithm with a
local improvement step, we slightly improve the original approximation ratio of 3/4 stated
in [GW94] when we restrict ourselves to instances of bounded Max-Sat. Finally in our main
Section 4, we return to the bounded Max-Cut problem and consider the [GW95] algorithm
discussed above.

2 The trivial algorithm for Max-Cut

Let G = (V, F) be a graph of maximal degree A where V' = {1...n}. For a partition (X,Y)
of Vlet w(X) = |E A (X x Y)| be the number of edges cut by the partition, and |F| be
the total number of edges in K. In the following we denote w(X) and |E| as the weight of
the partition (X,Y) and the weight of the total edge set respectively. Finally, denote the
number of edges cut by the optimal partition as Opt(G). Note that in this paper we consider
unweighted graphs only. Our methods can be extended to the case of weighted graphs of
bounded degree, though the analysis becomes more complicated, and is omitted from the

current version of the paper.

Consider the following trivial random algorithm for the Max-Cut problem on G which
constructs a partition (X,Y’) by independently choosing each vertex to be in X with prob-
ability 1/2. Tt is clear that the expected number of edges cut by the resulting partition
is exactly half the total number of edges in G, thus this trivial algorithm has an expected
approximation ratio of 1/2. We now improve this algorithm by adding a simple local im-
provement step which moves misplaced vertices from one side of the partition to another in
aim to increase the number of edges cut by the partition.

Consider a random partition (X,Y’) of the vertices of G obtained by the above trivial
algorithm. We say that a vertex v is misplaced in (X,Y) if it has more neighbors on its
side of the partition than on the opposite side. Moving such a vertex from one side of the
partition to the other will increase the value of the cut. Roughly speaking we will prove
that in a random partition of the vertex set V' the expected fraction of misplaced vertices
is constant. Combining this with the fact that moving each misplaced vertex may affect at
most A other vertices, we conclude that the expected contribution of the additional step to
the trivial algorithm is a constant fraction of the total number of edges in E (assuming A
is constant). This yields an approximation algorithm with an expected approximation ratio
strictly greater than 1/2 by some constant. Details follow.

We start by computing the probability that a vertex v will be misplaced in a random
partition. Consider all neighbors of v. With probability at least 1/2, the random partition
partitions them into two sets of unequal size. Thereafter, with probability at least 1/2, vertex
v is placed on the same side as the majority of its neighbors. Hence the probability that v
is misplaced is at least 1/4, and the expected number of misplaced vertices is at least n/4.
Moving a misplaced vertex v from one side of the partition to the other contributes at least
one edge to the partition. Such a movement can reduce the number of misplaced vertices by
at most A+1, because only v and its neighbors are affected. We conclude that enhancing the
trivial random algorithm described above by adding a step which moves misplaced vertices
from one side of the partition to the other until none such vertices are left will achieve a cut
of expected weight at least

|7 n 1 1 1 1
hy 0 s L > L
> Tiarn 2 et gy) 2D\t aaa)

thus yielding an improved expected approximation ratio of % + m We remark that

the term can be significantly improved by tighter analysis, but we wish to keep the

1
I 3ATAFT) .
analysis simple so as to clearly illustrate the method.

A similar argument can be used in order to improve the approximation ratio of the triv-
ial random algorithm on the maximization of any bounded constraint satisfaction problem
(Max-CSP) in which each variable appears in at most A clauses, and each clause is of length
at most k. In such cases, instead of moving a vertex from one side of the partition to the
other we flip the value of a variable in aim to increase the total amount of clauses sat-
isfied. If the trivial algorithm yields an expected approximation ratio of r, our enhanced
algorithm will yield an expected approximation ratio of r + ﬁ. Independently, Hastad

([Has99]) presents an algorithm for a related restriction of Max-CSP and achieves a better

approximation ratio of r + using algebraic techniques.

3 The LP algorithm for Max-Sat

Let ¢ be an instance of the bounded Max-Sat problem in which each clause of ¢ is of length
at most k and each variable in ¢ appears in at most A clauses. We denote this restricted
problem as the Max-k-Sat(A) problem. Let {z;...z,} be the variables of ¢ and {C;...C,}
be the set of clauses in ¢.

Consider the following relaxation of the Max-A-Sat(A) problem on ¢ :

(LP) Maximize Y0 %
subject to:
(]> Zj S inECJ €Ly + ZE‘Z‘ECJ I — € fOI' 7 € [m]
(2) i,z € [0,1] for i € [n], j € [m]

Where [n] ={1...n}.

Let {7} ... 2%} be the optimal fractional solution obtained by solving (LP). In [GW94] an
algorithm which obtains an assignment s = {s; ...s,} to the variables of ¢ by independently
choosing each s; to be true with probability z} is analyzed. In particular, it is shown in
[GW94] that combining such an algorithm with a trivial random algorithm, an approximation
ratio of 3/4 on the Max-Sat problem is achieved.

Applying the same principles described in Section 2 to the above algorithm based on
linear programming we obtain the following proposition.

Proposition 3.1 Adding a local improvement step to the algorithm based on relazation (LP)
yields an expected approvimation ratio of 3/44¢ on the Maz-k-Sat(A) problem for some ¢ > 0
dependent on A and k alone.

The proof is omitted from the current version of the paper.

4 Semidefinite programming

Consider the well known Max-Cut algorithm based on semidefinite programming presented
in [GW95]. In this algorithm, given a graph G, a semidefinite relaxation of the Max-Cut
problem on G is solved yielding an embedding of G' on the n dimensional sphere. This
embedding is then rounded using the random hyperplane rounding technique, into a partition
of G. It is shown in [GW95] that the expected weight of this partition is at least 0.87856
the weight of the optimal cut in G.

We enhance the above Max-Cut algorithm by adding a local improvement step, analogous
to the one presented in the previous sections, which improves the expected approximation
ratio of 0.87856 on graphs of bounded degree A. In contrast to the previous sections, the
random hyperplane rounding technique does not round vertices independently. Hence we
need more sophisticated methods in order to argue that there will be misplaced vertices
after applying such a rounding technique. These more sophisticated methods use the fact

5

that the graph is of bounded degree, a fact that was not used for this purpose in Section 2.
In the following section, we present a detailed analysis in the case of graphs with maximal
degree three, and sketch the analysis for graphs of higher maximal degree.

4.1 Max-Cut on graphs of maximal degree 3

Using the notation of Section 2, let ¢ = (V| E) be a graph of maximal degree 3 and let
w(X) = |E A (X xY)| denote the number of edges cut by the partition (X, Y’). Denote the
total number of edges by | F|, and the number of edges cut by the optimal partition of G as
Opt(G). We present an algorithm which given G = (V, E) as above will output a partition
(X,Y) of V such that w(X) > rOpt(G) for r > 0.921. Our algorithm is an extension of the
well known Max-Cut algorithm presented in [GW95].

In the first step of our algorithm a semidefinite relaxation of the Max-Cut problem on GG
is solved to achieve a set of n unit vectors {vy...v,}.

(SDP-Cut) Maximize ¥, o ‘=u

subject to:
(1) v; € 5, for1<i:<n
(2) Vivj + VU + U0k 2 —1
Vv — VivE — Vv > —1 for all 7, 7,k € [n]
By restricting the vectors {vy ... v,} to be one dimensional, and setting the vertex ¢ to be in

X if and only if the vector v; = 1 it can be seen that (SDP-Cut) corresponds to the Max-
Cut problem on (. Note that we have added additional triangle constraints (mentioned in
[FG95]) that do not appear in the original relaxation presented in [GW95]. Without these
constraints it is shown in [GW95] that the above semidefinite relaxation has an integrality
gap of 1/0.884 even on 2 regular graphs (the 5 cycle). Hence these additional triangle
constraints are crucial to our analysis which results with an approximation ratio of 0.921
on such graphs. The value of the integrality gap for this semidefinite relaxation is open.
See [FG95] for a discussion of this issue.

It is shown in [GW95], that obtaining a cut (X, Y) in G by rounding the vector configura-
tion obtained by (SDP-Cut) using the random hyperplane rounding technique, the expected
contribution of each edge ¢;; to the cut is 9%, where 0;; is the angle between the vectors v;
and v;. As the contribution of each edge to the objective function of (SDP-Cut) is w

we conclude that the expected approximation ratio achieved on each edge is %. This
expected ratio is minimal only when 6;; = 6, = 2.3311, and in this case obtains the value
a = 0.87856. We conclude that the expected weight w(X) of the partition (X,Y") obtained
by the random hyperplane rounding technique, is at least aOpt(G), and will be exactly
aOpt(G) when for all edges e;; we have that the angle 6;; is g or zero.

Our main observation is the fact that in both worst cases (where for all edges in GG the
angle between the corresponding vectors is zero or) there is some constant probability
that a vertex and two of its neighbors lie on the same side of the partition obtained by the
random hyperplane rounding technique. In such cases moving the vertex from one side of
the partition to the other will increase the weight of the partition. As earlier, we denote such
vertices as misplaced ones. Using this observation we add a second step to our algorithm in

which misplaced vertices are moved from one side of the partition to the other, until none
such vertices are left. This step is done in a greedy manner, thus we denote this second step
as the greedy phase of our algorithm.

Geometrically speaking, one can view our observation in the following way. Let v be
some vertex in V', and y;, y2 be two of its neighbors. Denote the corresponding vectors in
the optimal vector configuration as v, yq, y2 respectively. If the angles between the vectors
v and y;, v and y; are exactly 6y, (i.e. the expected approximation ratio achieved on the
edges (v,y;) and (vy,) is exactly «) then by constraint (2) of (SDP-Cut) above, it cannot
be the case that all three vectors lie on the same plane. Furthermore, this constraint implies
that the angle between the vector v and the plane containing the vectors y; and y; is at least
0.57. Implying a probability of at least 0.07 that after the randomized rounding the vertex
v will be misplaced.

We now add an additional constraint to the relaxation (SDP-Cut) which will simplify the
analysis yet to come, and fill in the details regarding the greedy phase of our algorithm.

Semidefinite relaxation :
Consider an optimal partition (X,Y") of a given graph G = (V]) of maximal degree three.
For every vertex v it cannot be the case that v and two of its neighbors lie on the same
side of the partition (i.e. v is misplaced). In such a case moving v to the other side of the
partition would increase the weight of the partition, which is a contradiction to its optimality.
Hence we may add a corresponding constraint to (SDP-Cut) which rules out the possibility
of misplaced vertices, when the corresponding vectors of (SDP-Cut) are restricted to be one
dimensional.

Let T' be the set of all triplets (i, 7, k) such that i, 75,k € [n], j < k and ¢;;,¢;, € E, we
enhanced the previous semidefinite relaxation by adding the new constraint (3) below. The
resulting relaxation will be used in our algorithm :

(SDP-Cut) Maximize >, cp 1—;%

subject to:
(1) v; € 5, for1<i:<n
(2) vv; + vivg + Vv > —1
vv; — VU — Vv > —1 for all 7,7,k € [n]
(3) v Vv + v = —1 for all (1,7,k) €T

Greedy phase :
As mentioned earlier after the first step of our algorithm it might be the case that for some
triplet (1, j,k) € T, defined above, the vertices ¢, j and k lie on the same side of the partition.
In such a case, moving the misplaced vertex ¢ to the other side of the partition will increase
its weight. We denote such a triplet (¢, 7,k) € T'in which 7 is misplaced as a good triplet.
Given a partition (X,Y) we are interested in moving all misplaced vertices until none
are left. In general at each step of this greedy process we could decide to move the one
misplaced vertex that increases the weight of the partition by most. But as moving one
misplaced vertex affects other vertices, we are also interested that the vertex moved does
not destroy many good triplets (a good triplet is destroyed if it is no longer good). In order
to combine these two interests, at each stage of our greedy process we move the vertex for

which the ratio between the weight added to the partition by moving it from one side of the
partition to another and the number of good triplets destroyed by this act, is maximal. We
are now ready to define our algorithm on a given graph G' of maximal degree 3.

Algorithm A.,; :

1. Solve (SDP-Cut) to obtain an optimal vector configuration {v;...v,} of value Z.
Round the vector configuration using the random hyperplane rounding technique from

[GW95]. Denote the partition obtained by (X,Y).

2. Greedily move misplaced vertices from one side of the partition to the other according
to the procedure above.

Theorem 4.1 A..: has an expected approzimation ratio of o > 0.921.

Proof : First we note that w.l.o.g. we may assume that G does not have any vertices
of degree 1. Otherwise we may run algorithm A.,; on the graph (i obtained by iteratively
removing all vertices of degree one in . It can be seen that an approximation algorithm
with ratio r on G yields an approximation algorithm with ratio at least r on G.

Assume (7 is as above, and let (X, Y') be the partition after step (1) of algorithm A..;. Let
W = w(X) be the weight of this partition. The upcoming lemma analyzes the contribution
of the second greedy step of algorithm A.,:, and uses the following refinement of the set T

For each edge ¢;; let d;; be the number of triplets in 7" in which e;; appears. It can be
seen that in a graph of minimum degree 2 and maximum degree 3, d;; = 2 if the degree of v;
and v; are 2, d;; = 3 if the degree of v; differs from the degree of v;, and d;; = 4 otherwise.
Let T be the set of triplets in G, for [= 4...8 denote the set of triplets (i, j,k) € T in which
d;; + diy, = [by T;. Given a partition (X,Y’) we denote by S; the number of good triplets in
T;.

Lemma 4.2 Let (X,Y) be some partition in G of weight W. Let T, T}, and S; forl =4...8
be defined as above. Ezeculing step (2) of algorithm Ay on the partition (X,Y) will yield a
new partition of weight at least

2 1 2 3 1
W+ §S4+ 5554- 556+ §S7+ gSS

Proof : Roughly speaking, we define the contribution of each triplet (z, j, k) that is good
in (X,Y) as the number of edges it adds to the partition the moment it is destroyed by the
greedy phase of our algorithm. Let 7 be one of the vertices ¢, j, or k. If (1, j, k) is destroyed
by the movement of the vertex 7, and by this act p edges are added to the partition and ¢
triplets (including (i, j,k)) are destroyed, we fix the contribution of the triplet (z, 7, k) to be
p/q. Hence, due to the nature of our greedy phase, we may bound the contribution of the
good triplet (¢, 7, k) from below by computing the ratio between the number of edges added
to the partition and the number of triplets destroyed by the act of moving any one of the
vertices 1, 7, or k from one side of the partition to another. By finding such a lower bound
for each good triplet in T; (I =4...8) we conclude our assertion.

Note that for any good triplet (i,7,k) and any vertex 7 as above, the contribution of
moving 7 from one side of the partition to another is at least one edge, while this act will
destroy at most 9 triplets. It follows that we may trivially claim that executing step (2) of
algorithm A.,; on the given partition (X,Y) will yield a new partition of weight at least

1
W+a&+&+&+&+&»

The following case analysis refines this trivial analysis and provides full proof of the asserted
lemma.

Case 1: Let (7,7,k) be a good triplet in Ty, i.e. the vertices ¢, j and k are of degree 2, and
all lie on the same side of the partition (X,Y"). As the greedy step (2) of A..: continues as
long as there is some misplaced vertex, the triplet (z, 7, k) will be destroyed sometime during
our greedy procedure. Denote the vertex moved when (1, j, k) is destroyed by 7 (7 is either
i, j or k). Let p be the number of edges added to the partition when (1, 7, k) is destroyed,
and ¢ be the number of good triplets destroyed along with (i, 7, k).

As mentioned above the degree of 1, j and k are 2. Hence, if (1, j, k) is a good triplet, then
by moving the vertex ¢ we destroy at most 3 triplets and increase the weight of the partition
by exactly 2 edges. Due to the nature of our greedy phase, we conclude that by moving 7
from one side of the partition to the other, the ratio between the number of edges added to
the partition and the number of triplets destroyed is at least 2/3. We conclude that when
(1,7,k) is destroyed it contributes at least 2/3 to the partition.

Case 2 : Let (4,7,k) be a good triplet in T5, using the same line of analysis displayed in
the previous case, it is enough to analyze the movement of the vertex ¢ from one side of the
partition to the other. Assume that the vertex j is of degree 3 and vertices ¢, k are of degree
2 (it cannot be the case that ¢ is of degree 3). In Figure 1 a schematic view of our case is
presented. Solid lines represent edges that preserve sides of the partition (for instance the
vertices 7,7 and k lie on the same side of the partition), dotted lines represent edges that
are not known to preserve sides of the partition, and bold lines represent edges that are
known not to preserve sides of the partition. It can be seen that moving ¢ from one side
of the partition to another we gain exactly 2 edges to the partition, but destroy at most 4
triplets. We conclude that (z, 7, k) contributes at least 1/2 edges to the partition.

R " R ‘
N | N |
N | N |

> i rY

Figure 1: Case 2.

Case 3 : Let (7,7, k) be a good triplet in Ts. There are two possibilities, either the vertex

9

i 1s of degree 2 and the vertices j, k are of degree 3, or the vertex 7 is of degree 3 and 7, k are
of degree 2. Both cases are presented in Figure 2. In the first case (a), moving ¢ to the other

e o e o
\\} J \\} J
i - i
{k k
¢ o ¢ o
@
o oo
i
o-- i o-- i
k
Y °
(b1) (b2)

Figure 2: Case 3.

side of the partition increases the weight of the partition by 2 edges and destroys at most 5
triplets. Hence, if we are in this case then (i, 7, k) contributes 2/5 when it is destroyed.

In the second case we consider two sub-cases : (b1) the case in which one of the vertices j
or k are on the same side as their additional neighbor z, (b2) the case in which the additional
neighbors to 7 and k are both on the opposite side of the partition. In the first case we have
that moving 7 from one side of the partition to the other will contribute 2 edges to the cut
and destroy at most 5 triplets, yielding a ratio of 2/5, and in the second we obtain a ratio of
3/5 by again moving j (note that in the case (62) one must fix the side of the third neighbor
z of ¢ and only then analyze), thus we conclude our assertion.

Case 4 : Let (4,7,k) be a good triplet in T7. It must be the case that the vertex i is of
degree 3 and the vertices j, k are of different degree (we assume that j is of degree 2). We
consider three cases that are presented in Figure 3. In the first case (a) all three neighbors
of ¢ are on the same side as ¢. In such a case moving 1 one can see that a ratio of at least
3/8 is achieved. In the second and third cases we assume that the additional neighbor of i
is on the opposite side of the partition.

In the second case (b) we assume that the additional neighbor x of j is on the same side
as J. In this case moving j we achieve a ratio of at least 2/4.

At last in the third case (¢!) and (¢2) we assume that the additional neighbor of j is
also on the opposite side of the partition, and we consider two situations. The first when all
additional neighbors of k are on the same side of the partition as k, and the second when
there is some neighbor z of k on a different side. It can be seen that moving k in the first
case results with a ratio of at least 3/8, and moving ¢ in the second results with a ratio of

at least 1/2.

10

(c1) (c2)

Figure 3: Case 4.

Case 5 : Let (7,4, k) be a good triplet in Ty. It must be the case that all three vertices are
of degree 3. In Figure 4 three sub-cases are considered. In case (a) all three neighbors of ¢
are on the same side of the partition as 7, in this case moving 7 we obtain a ratio of 3/9. In
the remaining cases (b), (¢) we assume that the additional neighbor of ¢ is on the opposite
side of the partition.

In case (b) we assume that for one of the vertices j or k, all three of its neighbors are on
the same side of the partition as it is (in Figure 4 we assume the above for j). In such a case
moving j results with a ratio > 3/8.

In the last case (¢) both i, j, and k have at least one neighbor on an opposite side. In
this case moving ¢ we have a ratio > 1/3. O

Corollary 4.3 Let W be the weight of the partition (X,Y') oblained by step (2) of algorithm
Acut, and let S; (I =4...8) be the number of good triplets in (X,Y) according to the above
definition. The expected weight of the partition received by algorithm Acy is :

2 1 2 3 1 8
Elw(Acu)] = F [W + 38+ 55+ 28+ o5+ gsg] = EW]+ > aiE[S]
=4

8
= Z Pr(e;; is cut) + Z Z aiPr(v;, vj, v are not separated)
€i; 1=4 (i,j,k)€T,

_ 28: Z Pr(e;; is cut) n Pr(e;x is cut)

™ + aPr(v;, v;, vy are not separated).
K3

=4 (27.77k)€Tl dZJ
For as. s =(2/3,1/2,2/5,3/8,1/3).

Proof : All probabilities above are taken over random hyperplanes cutting the unit sphere
of R™. The second and third equalities are due to linearity of expectation, and the fourth is
due to the fact that each edge ¢;; is in exactly d;; triplets in T'. a

11

(b) (©)
Figure 4: Case 5.
Lemma 4.4 For every triplet (1,5,k) € Ty, using the fact that d;j, dix € {2,3,4}, | = d;; +
di. € {4...8} we have thal :

Pr(e;; is cut) — Pr(e; is cut)
d;; dig,

1—-—vv; 1-vw
+ aPr(v;, vy, vy are not separated) > r (4 - k)

Qdij 2d;1
for r =10.921.

Proof : Let [=d;; + d;;, define the following functions :

0,; 0; 1
f(0:5,0:) = di;ﬂ + di:ﬂ + o (1 — %(92-]- + 0,1, + arccos(—1 — cos(6;;) — Cos(@ik)))>
1 —cos(b;;) 1 —cos(Oi)
5.00) = f
96z B o, T 2dy
h(0i;,0;) = —F———+
Gii-be) =065, 0)

Where 6;; (6;1) is the angle between v; and v; (v; and vy).

The function f(;;,0;) represents the expected contribution of the triplet (i, 7, k) to the
cut. As stated earlier summing over f(6;;,0;x) for all triplets (¢, 7, k) in T' yields the expected
size of the cut obtained by Acy. Similarly, the function g(6;;, 0:x) represents the contribution
of each triplet (i, 7, k) to the objective function of (SDP-Cut).

In order to prove the above claim it is suffice to show that h(6;;,6;z) > r in the range
;; € [0,7], 0, € [m — 0;;,7] (the triangle constraints added to (SDP-Cut) imply that
cos(0;;) + cos(0;) < 0). By evaluating the value of A over a number of points in the above
range and bounding the derivative of h over the whole range our lemma is proven. O

12

By Corollary 4.3 and Lemma 4.4 we have that the expected weight of the partition obtained
by algorithm Agy; is

E[’U)(Aout>] > 7'28: Z

1 —vv; 1 — v;ui
J 1
(+
I=4 (i,5,k)€T,

=rZ > rOpt(G),
2, 2y) r7 2 rOpl(G)
for r = 0.921.
This completes the proof of Theorem 4.1. The same line of analysis yields an 0.924
approximation ratio on 3 regular graphs. O

4.2 Max-Cut on graphs of maximal degree A

In the following section we deal with the Max-Cut problem on graphs of maximal degree A.
We present a slightly different algorithm and analysis than the ones presented in the case
where A = 3, and achieve an improved approximation ratio of oo + ea where a = 0.87856 as
before and ea > 0 decreases as A increases.

As in the previous section, the starting point of our enhanced algorithm is the following
semidefinite relaxation of the Max-Cut problem on a given graph G = (V, E).

(SDP-Cut) Maximize 3. g 1—12@»,

subject to:
(1) v; € 5, for1<i<n
(2) vv; + vivg + Vv > —1

Vv — vivE — Vv > —1 for all 7, 5,k € [n]

Note that constraint (3) used in the previous section is no longer valid.

As earlier, solving (SDP-Cut) on a given graph (i, we obtain a set of n vectors corre-
sponding to the vertices of G. We are interested in the case in which for all edges e;; in G the
angle between the corresponding vectors v; and v; is 8y = 2.3311, for in this case the random
hyperplane technique will yield a partition (X,Y) of expected weight exactly o times the
weight of the optimal partition in G. !

In this worst case, we will show that there is some probability (depending on A alone) that
a vertex and more than half its neighbors lie on the same side of the partition obtained by the
random hyperplane rounding technique. As earlier, we denote such vertices as misplaced, and
by adding an additional step which moves misplaced vertices from one side of the partition
to the other, we are able to achieve an improved approximation ratio.

Consider the following algorithm for the Max-Cut problem on graphs with bounded
degree A.

Algorithm Agy, :

' As noted earlier, there are other worst cases for the [GW95] algorithm, namely when for some edges ¢;;
the angles between the corresponding vectors is zero. In [Zwi99] it is shown how to deal with these cases
by the use of an improved rounding technique which uses outward rotations. We deal with such cases in a
different manner which will be explained in the proof of Theorem 4.7.

13

1. Solve the semidefinite relaxation (SDP-Cut) and round the resulting optimal vector
configuration using the random hyperplane rounding technique. Denote the partition

obtained by (X,Y).

2. Move misplaced vertices in (X,Y’) from one side of the partition to another in aim to
increase the value of the partition, until none such vertices are left.

As mentioned above, in order to prove that Ag,; has an improved approximation ratio,
one must prove that given an optimal vector configuration {v; ...v,} in which for each edge
¢i; the angle between the vectors v; and v; is 6, there is some non-negligible probability that
any vertex v; will be misplaced after the rounding mentioned above. We are able to prove
such a claim using the triangle constraints appearing in relaxation (SDP-Cut).

Consider a vertex v; and all its neighbors {y;...ya}. If the angle between v; and y; is
by for all j € [A], then constraint (2) of (SDP-Cut) above implies that the angle between
y; and yj; for any couple j, 7" € [A] is at most 1.184 (significantly smaller than 7/2). We
are interested in the probability that v; along with more than half its neighbors end up
on the same side of a random hyperplane. Let {g;...9Ja} be the projection of the vectors
{y1...ya} on the subspace orthogonal to v;. Roughly speaking, the above probability can
be bounded by the probability that a random hyperplane containing v; partitions the vectors
{g1...9a} in an unbalanced manner (i.e. more than half of the vectors g; lie on the same
side of the random hyperplane). As the angle between y; and y;s is bounded by 1.184, it
can be seen that the angle between g; and ;s is bounded by 1.763 (a bit above 7 /2). Hence
we are interested in the probability that a set of A vectors {g;...9ya} which are relatively
close to each other (i.e. the angle between each pair §; and §; is bounded) are separated
in an unbalanced manner by a random hyperplane. Intuitively, this probability seems non-
negligible (for instance consider the related case in which the angle between each pair g; and
g is m/2 or less, in such a configuration it can be seen that with probability at least 274
all vectors g; will lie on the same side of a random hyperplane).

In the following we present a few technical lemmas which confirm this intuition. Let
{vy...v,} be the vector configuration obtained after solving the semidefinite relaxation
(SDP-Cut) on (. Let (X,Y) be the partition received after rounding this vector config-
uration using the random hyperplane rounding technique ([GW95]). Define an edge e;; to
be bad if the inner product (v;,v;) is equal to —0.688 (i.e. #;; = 6y). Define a vertex i to be
all bad if for all neighbors j of ¢ we have that the edge e;; is bad. Denote by N(i) the set of
vertices adjacent to 1.

Lemma 4.5 Let v be some vector in R* of norm ||v||, and let r = (rq,...,1,) € R" be the
normal of a random hyperplane in R™ (i.e. each r; has normal distribution N(0,1)). The
size of the projection of v on r can be bounded as follows :

Pr(|(v,r)| = 8||v[]] = Pr[r] = o] = 1 4.
Pr(v,r) € [0,8][|v[|]] = Pr[r, € [0,0]] € [¢/8,6/2].
Where § € [0,1].
Proof : As the distribution of r is spherically symmetric ([Ren70] Theorem IV.16.3), we

may assume that v is the vector (|[v]|,0,...,0), thus (v,r) is exactly r||v]|. a

14

Lemma 4.6 Let (X,Y) be the partition oblained after the random hyperplane rounding tech-
nique. Let 1 be an all bad vertex of degree d. With probability at least § it is the case that
more that half of the vertices in N(i) lie on the same side of the partition (X,Y) as the
vertex 1, where § = dg > ﬁ.

Proof : Let N(i) = {u1...uq} and denote the vector v; corresponding to the vertex ¢ as v.
As the vectors v, {uy ... uq} lie in a common d+1 dimensional space, the following representa-
tion of v, {u1 ... us} may be assumed without loss of generality. Let v = (1,0,...,0) € R¥*!
and u; = (aj,B;,7;) for j € [d]. Where a; € R, 3; € R, v; € R*™!, and «j, 3;, 7; are
vectors in mutually orthogonal subspaces. The vertex ¢ is all bad, thus for all j € [d] we
have that the inner product (v, u;) = a; equals —0.688, and that the vector (3;,7;) € R? is
of norm 0.725. Furthermore, we may assume for the vector u; that 8; = 0.725 and v, = 0.
For 7,7 € [d] the following constraint appears in our semidefinite program :

(v, ui) + (v, u5) + (g ug) = =1,

We conclude that (u;,u;) = azo; + 3i8; + (7i,7;) > 0.376. Hence 3;8; + (vi,7;) = —0.097
meaning that the angle between the vectors (3;,7;), (8;,7;) € R® is at most 1.763. Note that
the vectors (3;,7;) are the projection of u; to the subspace orthogonal to v and are norm
0.725.

Let r = (r1...r441) be a d + 1 dimensional random variable representing the normal to
a random hyperplane, i.e every r; is an independent standard normal random variable. As
above, denote r by (o, 8,,7,) where o, =1y, 8, = ry, and v, = (rs,...,7441).

In general we intend to prove that with some probability é; over r, the vector v and
more than half its neighbors lie on the same side of the hyperplane corresponding to r. Let
0, be the probability that the vector v lies very close but above the random hyperplane
corresponding to r, i.e. the inner product of (v,r) is small but positive. Note that this
probability is dependent on r; alone, and corresponds to a positive r; of low magnitude.
Conditioning on such r (i.e r1), we are interested in the probability that more than half of
the vectors in N(7) also lie above the hyperplane corresponding to r. As ry is small, this is
roughly the probability that more than half of the projected vectors (3;,7v;) € R? for j € [d]
will be above the random hyperplane corresponding to the random vector (rq,r3).

If the number of vectors in N(i) is odd (i.e. d is odd), then the above will happen with
probability 1/2, and we may conclude that d, is roughly &, /2.

Otherwise we condition on an additional projection. Let d, be the probability that the
vector uy 1s also very close but above a random hyperplane corresponding to a random vector
r. As before this probability is dependent on ry and ry alone (recall that uy = (ay, 51,0)).
Now conditioning the random vector r on ry and ry (in order to assure that both v and u,
lie close to and above the random hyperplane corresponding to r), we are interested in the
probability that more than half of the remaining vectors in N(¢) also lie above the hyperplane
corresponding to r. As above, due to the fact that ry and r; are of small magnitude this
probability is roughly the probability that more than half of the projected vectors v; € R4~
for 7 € {2...d} will be above the random hyperplane corresponding to the random vector
r3. We are now in a case similar to the case in which d is odd, and conclude that 4, is

roughly §102/2. Detailed proof follows.

15

By Lemma 4.5 we have that with probability at least §/16 (over o, € R) it is the case that
(v,r) = a, € [6/8,6], and with probability at least §/2 (over 3, € R) we have that 3, € [4, 84]
(we assume that § < 1/8). We conclude that with probability at least g—i over the random
vector r we have that both v and u; lie above the hyperplane corresponding to r.

Furthermore, considering a vector v;, we conclude using Lemma 4.5 that with probability
at least 1 — ;= (over) the value of |(y;,7,)| is at least 5||v;||. Hence with probability at
least 3/4 (over 7;) we have for all vectors v; that |(v;,7.)] > 75v]/-

Finally, consider the probability over 4, that more than half the inner products (v;,~,)
are non-negative (j € [d]). As described above, this probability is at least half, due to the
fact that for any 7, we have (y1,7,) = 0. We conclude, that with probability 1/4 over ~,,
we are in the case in which (v,,7;) > 75]|v;|| for more than half of the vectors 7;. Denote
the set of these vectors as N(z) Note that u, € N(L)

Let r be a random vector r = (e, 8,,7,) with a,, B, 7, as above (this happens with
probability at least g—i) We now claim that choosing an appropriate §, we obtain for all
vectors u; in N(z) that the inner product (u;,r) > 0, as |N(z)| > d/2 this completes the
proof of our lemma.

Let u; = (a;,3j,7;) be some vector in N(z) If 3; > 0.7 then we have that

1
(uj,r) = aja. + B; 8, + (v;,7) = (B; — 0.688)d + @H%‘H > 0.

Otherwise assume that for u; € N(Z) we have 3; < 0.7. As we have shown earlier, the norm
of (8;,7;) is 0.725 for all vectors in N(z), thus we conclude that in this case ||v;|| must be at
least 1/8. Furthermore, for any vector u; € N(i) the inner product (uq,u;) = aja; + 4153;
is at least 0.376, thus implying that 3; must be at least —0.14 (recall that u; = (a4, 81,0)).
We conclude that

1 1
(uja T‘) = 0;Q + ﬁ]ﬂr + (7j177") Z (_112 - 0688)5+ EHPYJH > ﬁ - 24.

Setting 4 to be less than 2§—d the above inner product is positive.

All'in all, the proof of our lemma. is complete with §; > 555 O

Theorem 4.7 (Sketch) There exists a semidefinite based algorithm that for every A > 0
approximates the Max-Cul problem on graphs with bounded degree A within an expected
ratio of o + ex where ep = ﬁ

Proof : Consider the optimal vector configuration {v;...v,}, and the partition (X,Y)
achieved after step (1) of algorithm Ac,;. Let Z be the value of the above optimal vector
configuration, and w(X) the weight of the partition (X,Y"). Using the analysis of [GW95]
it can be seen that the expected value of w(X) is at least aZ where a = 0.87856. Define
an edge ¢;; to be bad if the inner product (v;,v;) is close -0.688, i.e. (v;,v;) € [—0.688 —
0.01,—0.688 + 0.01].

We start by assuming that a (1 — ;) fraction of edges in E are bad. As each edge that is
good (i.e. not bad) may affect at most two vertices, we conclude that at most |E|/A vertices
are not all bad. Hence at least n — |E|/A > n/2 vertices are all bad. Moving an all bad
vertex from one side of the partition to another has an expected contribution of § edges to

16

the cut. Where by Lemma 4.6 we have that § > d, = ﬁ. Note that in Lemma 4.6 we
dealt with the case in which ¢;; was assumed to be bad if (v;,v;) was exactly —0.688. As
our analysis in Lemma 4.6 was slack, it can be seen that we obtain the same results for the
above definition of a bad edge as well. As each vertex moved may affect at most A other
vertices, we conclude that the additional step of our algorithm has an expected contribution
of soxz edges, which is at least gﬁf(ﬁ). In such a case we achieve an approximation ratio of
at least o + ﬁ

Otherwise there are at least g edges ¢;; such that v;v; € [—0.688 — &7, —0.688 + &¢]. In
general, using the analysis of [GW95] we conclude that the expected approximation ratio on
each of these edges is strictly greater than « by at least 2%

Let Z;,04 be the contribution of these edges to the value Z defined above, and ¢ be some

small positive constant. If Z,,,4 is greater than ¢Z we have that

. 1 €
Flo(X)] 2 (7 = Zyows) + (04 553) Zaowa 2 (0 +) 7
We are left with the case in which the contribution of the good edges, Z;,.4, is less that ¢Z.
In such a case neglecting these edges and running step (2) of A¢ys on the original graph ¢
without the set of good edges, we are able to achieve a cut of value

1
o (14 55) (1-2)7
1

Setting ¢ to be mrxz our proof is complete. O

Acknowledgements

The first author is the Incumbent of the Joseph and Celia Reskin Career Development Chair.
This research was supported in part by a Minerva grant, and by DFG grant 673/4-1, Esprit
BR grants 7079, 21726, and EC-US 030, and by the Max-Planck Research Prize.

References

BK98] P. Berman and M. Karpinski. On some tighter inapproximability results, further im-
g
provements. FCCC, TR98-065, 1998. Extended abstract appears in ICALP 1999, pages
200-209.

[BM86] F.Barahonaand A.R. Mahjoub. On the cut polytope. Mathematical Programming, 36:157—
173, 1986.

[FG95] U. Feige and M.X. Goemans. Approximating the value of two prover proof systems with
applications to Max-2-Sat and Max-Dicut. Proceedings of th 3rd IEEFE Israel Symposium
on Theory of Computing and Systems, pages 182-189, 1995.

[GW94] M.X. Goemans and D.P. Williamson. New 3/4-approximation algorithms for the maximum
satisfiability problem. STAM Journal on Discrete Mathematics, 7(4):656—666, 1994.

17

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of ACM, 42:1115-
1145, 1995.

[Has99] J. Hastad. On approximating CSP-B. FCCC, TR99-039, 1999.

[K7Z97] B. Karloff and U. Zwick. A 7/8-approximation algorithm for Max-3-Sat? In Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, pages 406—415,
1997.

[Ren70] A. Renyi. Probability theory. Elsevier, New York, 1970.

[Zwi99] U. Zwick. Outward rotations: a new tool for rounding solutions of semidefinite program-
ming relaxations, with application to Max-Cut and other problems. In Proceedings of the
31th ACM Symposium on Theory of Computing, pages 679-687, 1999.

18

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

