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Abstract
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1 Introduction

The notion of a pseudorandom generator originally introduced by Yao [Yao82]
has become by now one of the most important concepts in theoretical com-
puter science penetrating virtually all its subareas. In its simplest form it
says the following: a mapping G, : {0,1}" — {0,1}™ is (computationally)
secure w.r.t. some circuit class C if no “small” circuit C(yi,...,ym) € C can
distinguish between the two probabilistic distributions G, (@) and y in the
sense that |[P[C(G,(2)) = 1] — P[C(y) = 1]| is small (@ is picked at random
from {0,1}", and y is picked at random from {0, 1}™).

Propositional proof complexity is an area of study that has seen a rapid
development over the last decade. It plays as important a role in the theory
of feasible proofs as the role played by the complexity of Boolean circuits in
the theory of efficient computations. Although the original motivations for
this study were in many cases different (and originated from proof-theoretical
questions about first-order theories), it turns out after all that the complexity
of propositional proofs revolves around the following basic question. What
can be proved (in the ordinary mathematical sense!) by a prover whose
computational abilities are limited to small circuits from some circuit class
C (see e.g. [BPY8])? Thus, propositional proof complexity is in a sense
complementary to the (non-uniform) computational complexity; moreover,
there exist extremely rich and productive relations between the two areas
([Raz96, BP93]).

Given the importance of pseudorandom generators for computational
complexity, it is natural to wonder which mappings G,, : {0,1}" — {0,1}™
should be considered hard from the perspective of proof complexity? In this
paper we propose the following paradigm: a generator &, : {0,1}" — {0,1}"™
is hard for some propositional proof system P if and only if for any string
b € {0,1}™ there is no efficient P-proof of the (properly encoded) state-
ment G(zq,...,2,) # b (z1,..., 1, are treated as propositional variables). A
similar suggestion is independently made in the recent preprint of Kraijcek
[Kra99].

This definition is very natural: it simply says (to the extent allowed by
our framework) that P can not efficiently prove even the most basic thing
about the behavior of (G,,, namely that it is not an onto mapping. In fact,
one a priori reasonable concern might be exactly if this exceedingly natural
requirement is not at the same time too strong, and whether non-trivial



generators (say, with mm > n + 1) can exist at all: such a thing certainly can
not exist in the computational framework. This concern is best addressed
by exhibiting how several known lower bound results fit into our framework;
these examples also explain some of our motivations for introducing this
concept.

Example 1 (Tseitin tautologies) Let ¢ = (V. E) be a connected non-
oriented graph. Consider the (F,-linear) mapping Tg : {0,1}F — {0,1}V
given by Tg(Z), def Pesve, where T € {0,1}E is a {0,1}-valued func-
tion on edges. Then b € {0,1}" is not in im(G&) if and only if Gyevb, =
1, and if we properly encode this statement in propositional logic, we ar-
rive exactly at the tautologies introduced by Tseitin in his seminal paper
[Tse68]. These tautologies turned out to be extremely useful in proposi-
tional proof complexity, and the many strong lower bounds proved for them
[Tse68, Urg87, BW99, Gri98, BGIP99, Gri99, ABSRW99] never depend on
the particular choice of b € {0,1}V. This means that all of them can be
viewed as showing that the generators Ty are hard for the corresponding
proof system, as long as the graph G itself has good expansion properties.

Tseitin generators Tg : {0,137 — {0,1}V make little sense from the
computational point of view since the size of the seed |F| is larger than the
size of the output [V]. Our next two examples are more satisfactory in this
respect.

Example 2 (Natural Proofs) Let G, : {0,1}"" — {0,1}?" be any pseu-
¥ random bits to a Boolean
function in n variables viewed as a string of length 2" in its truth-table
representation. Assume that G, is hard w.r.t. 290" -sized circuits. Then
Razborov and Rudich [RR97] proved that for any function f, there is no
“natural” (in the strict sense also defined in that paper) proof of the fact

dorandom function generator that stretches n

fn & im(G,,). Although in this result we are primarily interested in the case
when f, is the restriction of SAT (or any other NP-complete predicate) onto
strings of length n, the argument, like in Example 1 absolutely does not
depend on the particular choice of f,.

One might argue that Natural Proofs is not a propositional proof system
at all, and that their definition rather explicitly includes the transition “the
proof works for a single f,, = it works for many f,”, which provides the link



to the ordinary (randomized) definition of a pseudorandom generator. Our
last example illustrates that this drawback sometimes can be circumvented.

Example 3 (Hardness in presence of Feasible Interpolation) Let G, :
{0,1}" — {0,1}™ be an arbitrary pseudorandom generator that is hard
w.r.t. poly-size (in m + n) circuits, and let n < m/2. Following Razborov
[Raz95b], let us take bitwise XOR of two independent copies of this gener-

ator G7 : {0,1}* — {0,1}™; G/ (z1,..., 20, @}, . 2") e Go(z1,...,2,) B

Gn(z},...,z.). Then G is hard for any propositional proof system P which
has the property of feasible interpolation (for a definition see e.g. [BP98]).

The study of such a keystone concept in computational complexity as
pseudorandom generators, but in the new framework of proof complexity,
should be interesting in its own right. As suggested by the examples above,
we also keep one quite pragmatic goal in mind: we believe that pseudorandom
generators is methodologically the right way to think of lower bounds in
the proof-theoretic setting for really strong proof systems. Whenever we
have a generator G, : {0,1}"* — {0,1}"*! which is hard for a propositional
proof system P, we have lower bounds for P. If we manage to increase
significantly the number of output bits and construct a poly-time computable
function generator (7, : {0,1}*" — {0,1}2" that is hard for P, we, similarly
to [RR97, Raz95b], can conclude that in the framework proposed in [Raz95a]
there are no efficient P-proofs of NP & P /poly.

In this paper we begin looking at a class of generators inspired by Nisan-
Wigderson generator [NW94] on the one hand, and by Example 1 on the
other. Let A be an (m x n) 0-1 matrix, gi(z1,...,2n), ..., Gm(21,...,2p)

be Boolean functions such that ¢; essentially depends only on the vari-
ables X;(A) o {z;la;; =1}, and G, : {0,1}" — {0,1}"™ be given by
Go(z1,...,xp) e (g1(z1,- . yx0n), ooy gm(1, ..., 2,)). Nisan and Wigderson

[INW94] proved that if A satisfies certain combinatorial conditions (namely,
if it is a (k, s)-design for suitable choice of parameters), and the functions g;
are computationally hard, then G, is a good pseudorandom generator in the
computational sense. In this paper we study which combinatorial properties
of the matrix A and which hardness assumptions imposed on g; guarantee
that the resulting generator (G, is hard for such proof systems as Resolution
or Polynomial Calculus.



The framework of proof complexity, however, adds also the third specific
dimension that determines hardness properties of G,,. Namely, in our exam-
ples the base functions g; are at least supposed to be hard for the circuit
class underlying the propositional proof system P. Thus, P can not even ex-
press the base functions, and we should encode them using certain extension
variables. Using these extension variables, our tautologies can be written
as 3-CNFs, and thus can be expressed in any proof system. The choice of
encoding makes an important part of the framework. We propose three dif-
ferent encodings - functional, circuit, and linear encodings, all natural from
both computational and proof complexity viewpoints.

Our results are strong lower bounds for each of these encodings (and ap-
propriate choices of base functions and combinatorial properties of the matrix
A) in such standard proof systems like Resolution, Polynomial Calculus, and
PCR (which combines the power of both). Naturally, the results get weaker
as the encoding strength increases.

We strongly believe that this set of tautologies can serve as hard examples
for much stronger systems, and specifically that the hardness of the base
functions in the generators should be a key ingredient in the proof. This
factor is evident in our modest results above, and if extended to stronger
systems, it may be viewed as a generalization of the feasible interpolation
results, reducing proof complexity to computational complexity.

The paper is organized as follows. In Section 2 we give necessary defini-
tions and describe precisely combinatorial properties of the matrix A, hard-
ness conditions imposed on the base functions g; and types of their encodings
needed for our purposes.

The next section 3 contains our hardness results for resolution width
and polynomial calculus degree that hold for the most general functional
encoding similar in spirit to the Functional Calculus from [ABSRW99]. These
can be considered as far-reaching generalizations of lower bounds for Tseitin
tautologies from [BW99, BGIP99]. We also state here size lower bounds
directly implied by our results via the known width/size and degree/size
relations.

Section 4 contains a stronger lower bound for the weaker linear encoding.
In Section 5 we consider the question of maximizing the number of output
bits m = m(n) in the generators constructed in the previous sections. For
that purpose we show that with high probability a random matrix A has
very good expansion properties. The paper is concluded in Section 6 with



several open questions.

2 Preliminaries

Let z be a Boolean variable, i.e. a variable that ranges over the set {0,1}.
A literal of x is either z (denoted sometimes as z') or  (denoted sometimes
as ). A clause is a disjunction of literals.

For any Boolean function f : {0,1}"* — {0,1}, Vars(f) will denote the
set of its essential variables. An assignment to f is a mapping a : Vars(f) —
{0,1}. A restriction of f is a mapping p : Vars(f) — {0,1,%}. We denote
by |p| the number of assigned variables, |p| Lo lp~'({0,1})].

The restriction of f by p, denoted f|,, is the Boolean function obtained
from f by setting the value of each z € p~({0,1}) to p(z), and leaving each
x € p~'(x) as a variable.

We say that an assignment a satisfies f if f(a) = 1. For Boolean functions
Jiy-ooy fu, g wesay that fi, ..., fi semantically imply g, (denoted fi,..., fi E

g), if every assignment to V o Vars(fi)U...UVars(fy)UVars(g) satisfying

fise s fi, satisfies g as well (i.e. Va € {0,1}V (fi(a) =+ = fila) =1 =
gla) =1)).
For n, a non-negative integer let [n] o {1,2,...,n}.

Let A be an (m x n) 0-1 matrix,
J(A)E {j € [n] ] ayy =1}, (1)

Xi(A) df {z;]7€ Ji(A)} and g1(z1,...,20), .., gm(21,...,2,) be Boolean

functions such that Vars(g;) C X;(A). We will be interested in systems of
Boolean equations

gz, z,) =1

.. 2)

Ggm(T1,.. ., 2,) = 1.

We want to state combinatorial properties of the matrix A and hardness
conditions of the base functions g; such that if we properly encode the system
(2) as a CNF 7(A, ), then every refutation of this CNF in a propositional
proof system P must be complex. This sentence has four ingredients, and
the necessary definitions for each of them are provided fairly independently.



2.1 Combinatorial properties of the matrix A

All hardness results proved in this paper will be based on the following com-
binatorial property generalizing the “edge-expansion” property for ordinary
graphs. It is similar to the expansion defined in [BW99].

Definition 2.1 For a set of rows I C [m] in the matrix A, we define its
boundary 04(I) as the set of all j € [n] (called boundary elements) such that
{ai;|1 € I'} contains exactly one 1. We say that A is an (r, s, ¢)-expander if
|Ji(A)] < s for all i € [rn] and VI C [m](|I| < r = |04(])| > ¢ |I]).

Let us relate (r, s, ¢)-expanders to several other combinatorial properties
already known from the literature.

Example 4 For an ordinary graph G = (V, ), its edge-expansion coefficient
cg(G) is defined by

e(U,V -U)
min ————=,
wisvlz - [U]
where e(U, W) is the number of edges between U and W (see e.g., [Alo98§]
and the literature cited therein). Let Ag be the incidence matrix of a graph

G with m vertices and n edges (i.e., a,. 1 if and only if v € €), and let d

be the maximal degree of a vertex in (. Then Ag is an (m/2, d, ¢)-expander
if and only if cg(G) > c.

Example 5 Let us turn to the combinatorially property originally used in
[N91, NW94]. A matrix A is called (k, s)-design if |J;(A)| = s for all i € [m]
and

|‘]i1 N ‘]¢2| < k (3)

for all 1 <y <19 < m. We have the following:

Fact 1 Fvery (k, s)-design is also an (r, s, s—kr)-expander for any parameter
r.

Proof. Let I C [m]and |I| < r. Then, due to the property (3), every J;(A)
with ¢ € I has at most k- (r — 1) elements which are not in d4(7). Hence it
contains at least s — k- (r — 1) elements which are in d4(7).m



2.2 Hardness conditions on the base functions

As explained in the Introduction, we are interested in the methods which,
given a mapping G, : {0,1}" — {0,1}™, allow us to show that the fact
b ¢ im(G,) is hard to prove for any b € {0,1}™. This means that we want
our lower bounds on the refutation complexity to work uniformly not only
for the system (2) but also for all 2™ shifted systems

91(-’151, . ,.Ln> = bl

G (T1, ..oy Tp) = by,

b € {0,1}™. We will enforce this simply by requiring that the conditions
placed on the base functions g1, ..., g, are symmetric, i.e., they are satisfied
by some f if and only if they are satisfied by (= f).

Definition 2.2 A Boolean function f is £-robust if every restriction p such
that f|, = const, satisfies |p| > /.

Clearly, this property is symmetric. The most important example of
robust functions are the PARITY functions z; & - - @z, ®b, b € {0, 1}, which
are n-robust. Our strongest hardness results for the polynomial calculus work
only for this specific function.

In fact, f-robust functions are already well familiar from the computa-
tional complexity literature. [FSS84, Ajt83, Yao85, Has86] proved computa-
tional lower bounds for f-robust functions (when £ is close to n = |Vars(f)|)
w.r.t. bounded-depth circuits. (1 — #)n-robust functions (where 6 is meant
to be a small positive constant) were recently used in [BST98] for obtaining
strong lower bounds for branching programs (property “P(#)”). In this paper
we will use f-robust functions for constructing generators that are hard for
propositional proof systems. It is easy to see that most functions on n-bits
are (say) 0.9n-robust.

2.3 Encodings

Having constructed the system (2), we still should decide how to represent
it in propositional logic. This step is non-trivial since we are deliberately
interested in the case when the propositional system P can not directly speak
of the functions ¢y, ..., g,. We consider three major possibilities: functional,
circuit and linear encodings: all of them lead to CNFs that in fact w.l.o.g.
can be further restricted to 3-CNFs (see the proof of Corollary 3.5 below).



2.3.1 Functional encoding

This is the strongest possible encoding which is also universal in the sense

that it obviously simulates any other conceivable encoding (in fact, it is a “lo-
calized” variant of the Functional Calculus system considered in [ABSRW99]).

Definition 2.3 Let A be an (m x n) 0-1 matrix. For every Boolean func-
tion f with the property 3i € [m](Vars(f) C X;(A)) we introduce a new
extension variable ys. Let Vars(A) be the set of all these variables.

Given Boolean functions § = (g1, ..,¢m) such that Vars(g;) C X;(A),
we denote by 7(A, §) the CNF in the variables Vars(A) that consists of those
clauses y% V...V ys” for which there exists 7 € [rn] such that

Vars(fi)U...UVars(f,) C Xi(A) (4)
and
g E V.V o (5)

Fact 2 7(A, ) is satisfiable if and only if the system (2) is consistent.

Proof. If (a;,...,a,)is a solution to (2), then the assignment which assigns

every ys to f(ai,...,a,) is satisfying for 7(A,§). In another direction, let

b= (bflys € Vars(A)) be a satisfying assignment for 7(A, g). Let a; af bs;;

then, using those axioms y V... Vy}” from 7(A, §) for which f{' V...V fir =
1, we can show by induction on the circuit size of f that by = f(a1,...,a,)
for every y; € Vars(A). In particular, g;(a1,...,a,) = b,, = 1 (since 7(A, é)
contains the axiom y,, ). Thus, the vector (ai,...,a,) is a solution to the
system (2).m

2.3.2 Circuit encoding

This encoding is much more economical in terms of the number of variables
than the functional encoding. Also, it looks more natural and better con-
forming to the underlying idea of the Extended Frege proof system. The
tautologies under this encoding will be polynomial-size as long as all g;’s
have poly-size circuits, and thus are potentially hard for Frege (assuming
P /poly contains functions computationally hard for NC*/poly).



Definition 2.4 Let A be an (m x n) 0-1 matrix, and C4,...,C,, be single-
output Boolean circuits over an arbitrary fixed finite basis, C; being a circuit
in the variables X;(A). For every ¢ € [m] and every gate v of the circuit
C'; we introduce a special extension variable y,, and we identify extension
variables corresponding to input gates labeled by the same variable ;. Let
Varsa(A) be the set of all these extension variables.

By 7(A, CY) we denote the CNF that consists of the following clauses:

Loy V... VyV yZ(“"“’Cd), whenever v := m(vy,...,v4) is an instruction
of one of the circuits C,...,C,, and € € {0,1}¢ is an arbitrary vector;

2. y,, when v; is the output gate of C;, for all 7 € [m].
For a circuit C, let ||C|| be the Boolean function it computes.

Fact 3 7(A, 6) is satisfiable if and only if the system ||Ch]| = ... = ||Cnl| =

1 s consistent.
Proof. Similarly to the proof of Fact 2.m

Fact 4 There exists a substitution o of variables from Varsz(A) by vari-
ables from Vars(A) such thalt o(7(A, 6’)) is a subset of the set of clauses
(A, ||C_"||) In particular, every refutation of T(A, 6’) in every “reasonable”
propositional proof system can be transformed (by applying o) into a refuta-
tion of T(A, ||C_"||) in the same system which is simpler w.r.t. any “reason-
able” complexily measure.

Proof. Let o(y,) o Y||v||> where ||v]] is the function computed by the gate
v.m

2.3.3 Linear encoding

This encoding makes sense only when g;s are Fy-linear forms. It is only
somewhat more economical than the functional encoding in terms of the
number of variables. However, it is much better structured, and we will take
advantage of this in Section 4.

10



Definition 2.5 Let A be an (m x n) 0-1 matrix. For every J C [n] such
that 30 € [m](J C Ji(A)) we introduce a new extension variable yy (with
the intended meaning y; ~ @©jesx;). Let Varsg(A) be the set of all these
variables.

Given a Boolean vector b € {0,1}™, we denote by 74(A,b) the CNF in
the variables Varsg(A) that consists of the following clauses:

L. y3 V... Vy5, whenever there exists ¢ € [m] such that J; U...UJ; C
Ji(A), the symmetric difference J;1 A...AJyis empty and & F...Deg =
1.

I

2. yLb]”;(A), for all 7 € [m].
Let us denote by ¥;(A,b;) the Boolean function @jeJ,'(A) z; P b;.

Fact 5 74(A,b) is satisfiable if and only if the system X1(A, b)) = X3(A, by) =

. =3,(A,b,) =1 of linear equations over Fy is consistent.

Fact 6 There exists a substilution o of variables from Varsg(A) by vari-
ables from Vars(A) such that o(7g(A,b)) is a subsel of the sel of clauses

(A, S(A,5) E (A, (A, by), Ta(A, by), ..., S (A, b))

def
Proof. o(y;) = Yep,c,vi-m

It might be instructive to look at the place occupied in our framework
by original Tseitin tautologies (cf. Examples 1,4). Let Ag be the incidence
matrix of an undirected graph G. Then our framework provides three dif-
ferent ways' to talk of Tseitin tautologies for graphs G of arbitrary degree.
All these possibilities are reasonable in the sense that although the resulting
CNF 7 may have a huge size, it always possesses a sub-CNF of polynomial
size that is still unsatisfiable. The fourth (unreasonable!) encoding is primi-
tive: we allow no extension variables at all and simply represent the functions
Yi(A, b;) themselves as CNF's of exponential size. For graphs of bounded de-
gree (which is the only case researchers were interested in prior to this paper),
the subtle differences between the four encodings disappear, and the whole
rich spectrum of various possibilities collapses to ordinary Tseitin tautologies.

'For the circuit encoding we additionally have to fix some natural circuits computing
the functions X; (A, b;).

11



In fact, the unreasonable primitive encoding can in principle be consid-
ered in the framework of our paper as well. Namely, as we will see in Section
5, good (r, s, c)-expanders exist even for large constants s (say, s = 10). And
for constant values of s results proved in any of our reasonable encodings
can be translated to the primitive encoding with only constant time increase
in the size of the tautology. The primitive encoding, however, is very coun-
terintuitive to the main idea that the base functions g;’s should be hard for
the circuit class underlying our propositional theory, and to the hope of us-
ing these tautologies for stronger proof systems. For this reason we do not
discuss in this paper neither the primitive encoding itself, nor the trade-off
between the tautology size and the bounds appearing in this encoding when
5 — 0.

2.4 Propositional proof systems
2.4.1 Resolution

Resolution is the simplest and probably the most widely studied model. Tt
operates with clauses and has one rule of inference called resolution rule:

AVz BVz
AV B

A resolution refutation of a CNF formula 7 is a resolution proof of the empty
clause from the clauses appearing in 7.

The size of a resolution proof is the number of different clauses in it. The
width w(C) of a clause C' is the number of literals in C. The width w(r)
of a set of clauses T (in particular, the width of a resolution proof) is the
maximal width of a clause appearing in this set.

The story of propositional proof complexity began over 30 years ago when
in the seminal paper [Tse68] Tseitin proved super-polynomial lower bounds
on the size of any resolution refutation of (what was afterwards called) Tseitin
tautologies under one extra regularity assumption on the structure of refu-
tation. Haken [Hak85] was the first to remove this restriction and prove
exponential lower bounds for general resolution (for the pigeonhole princi-
ple). Urquhart [Urq87] proved exponential lower bounds on the size of general
resolution refutations for Tseitin tautologies.

Ben-Sasson and Wigderson [BW99], strengthening a result from [CEI96]
(cf. Section 2.4.2 below) proved the following width-size relation:

12



Proposition 2.6 Let 7 be an unsatisfiable CNF in n variables that has a
resolution refutation of size S. Then 7 has a resolution refutation of width

at most w(t) + O(y/nlog 9).

[BW99] also established a linear lower bound on the width of resolution
refutation for Tseitin tautologies. In combination with Proposition 2.6 this
gave an alternate (and much simpler) proof of the size lower bound from

[Urq87].

2.4.2 Polynomial Calculus and Polynomial Calculus with Resolu-
tion

Polynomial Calculus, introduced by Clegg, Edmonds and Impagliazzo in
[CEI96] is a proof system that models common algebraic reasoning. De-
spite its algebraic nature, Polynomial Calculus (PC) turned out extremely
useful for studying “pure” propositional proof systems.

PC operates with polynomials P € F[xy,...,z,] for some fixed field F}
a polynomial P is interpreted as, and often identified with, the polynomial
equation P = 0. Polynomial Calculus has polynomials 27 — z; (i € [n]) as
defaull axioms and has two inference rules:

P

Wﬁpz; a,B8 € F  (Scalar Addition)

and

[z (Variable Multiplication).
"I/‘ .

A polynomial calculus refutation of a set of polynomials I' is a polynomial
calculus proof of 1 from I'. The degree of a PC proofis the maximal degree
of a polynomial appearing in it. The size of a PC proofis the total number
of monomials in the proof.

First non-trivial lower bounds on the degree of PC refutations were proved
by Razborov [Raz98] (for the pigeonhole principle). Grigoriev [Gri98] proved
linear lower bounds on the degree of Nullstellensatz refutations (which is a
subsystem of Polynomial Calculus) for Tseitin tautologies. Finally, Buss,
Grigoriev, Impagliazzo and Pitassi [BGIP99] extended the latter bound to
arbitrary polynomial calculus proofs. Following [BGIP99] and the research
whose outcome is presented in this paper, Ben-Sasson and Impagliazzo [B199]

13



further simplified this argument, and derived linear degree lower bounds for
random CNFs.

[CEI96] proved that small size resolution proofs can be simulated by low
degree PC proofs (Proposition 2.6 is a later improvement of this result).
[IPS99] observed that the same simulation works also for small size polyno-
mial calculus proofs.

Motivated in part by this similarity, [ABSRW99] proposed to consider
the following natural system PCR extending both Polynomial Calculus and
Resolution. PCR operates with polynomials P € Flzy,...,2,,%1,..., %],
where zy,...,x, are treated as new formal variables. PCR has all default
axioms and inference rules of PC (including, of course, those that involve new
variables z;), plus additional default axioms 2;+z; = 1 (i € [n]). The size and
degree of a PCR proofare defined in the same way as for Polynomial Calculus.
It should be noted that there is not much sense in giving a separate definition
for the degree of PCR proofs since the linear transformation z; — 1—xz; takes
a PCR-proof to (essentially) PC-proof while preserving degree. This system,
however, becomes extremely convenient when it is the number of clauses

which matters (see [ABSRW99]).

PCR is an extension of PC by definition. Also, PCR extends Res-
olution via the following translation. For a clause C, let C} [(C_)] be
the set of positive [respectively, negative| literals appearing in it. Then a
CNF formula 7 gets translated into the set of polynomials I', defined by

I, def { (Ha‘cec‘— T - ercu, a‘c) Ce T}. Clearly, 7 is satisfiable if and only if

I'; has a common root in F satisfying all default axioms

O
T; = X5 X

P=ap a4 a=1 (6)

Moreover, it is easy to see that every width w size S resolution refutation of
7 can be transformed into a degree (w + 1) size O(nS) PCR refutations of
the associated set of polynomials I';. For ease of notation, we will omit the
translation and define a PCR refutation of a CNF 7 as PCR refutation of
I'.. A PC refutation of 7 is a PC refutation of the set of polynomials

& [M=JI-2||cer (7)
obtained from I'; by the linear transformation z; — 1 — z,.
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In fact all our lower bounds for PC hold also for PCR so we will usually
use the translation to PCR and prove PCR lower bounds which imply the
hardness for PC.

[ABSRW99] observed that the two simulations from [CEI96, IPS99] can

be merged into one as follows:

Proposition 2.7 Let T be a system of polynomials in the variables x,, ..., x,,

T1,y..., T, that have no common roots in F' salisfying all defaull azioms (6),
def

and let d(I') = max{deg(P)| P € I'}. Then every size S PCR refutalion
of I' can be transformed into another PCR refutation of I' that has degree al

most d(T') + O(y/nlog S).

3 Lower bounds on width and degree in the
functional encoding

In this section we establish strong lower bounds on the resolution width
and PC degree in the most general functional encoding, and derive from
them some size lower bounds. Our results in this section can be viewed as
a far-reaching generalization of the corresponding lower bounds for Tseitin
tautologies from [BW99, BGIP99].

But first a word about important and less important parameters. The
parameters s, ¢, [ of the defining tautologies will feature in most of the calcu-
lations (recall that s is the number of 1’s in each row of the matrix A, which
is also the number of arguments to each function g;, ¢ is the expansion factor
of the matrix A, and ¢ will lower bound the robustness of the g;’s). We will
show in Section 5 that almost all matrices satisfy ¢ > 0.9s. Similarly, most
functions satisfy £ > 0.9s. Assuming this, Theorem 3.1 and Theorem 3.7
provide €(r) lower bounds on the width of Resolution and degree of Polyno-
mial Calculus, respectively (recall that r is the key parameter defining what
size sets expand, and can be taken to be essentially n/s; see Section 5 for
details). Our corollaries for the size lower bounds implied by the width and
degree lower bounds will be stated (for simplicity) only for this situation.

Theorem 3.1 Let A be an (r,s,c)-expander of size (m X n), and g1, ..., gn

be L-robust functions with Vars(g;) C X;(A), where c+€ > s+ 1. Then every
r(c+l—s)
2/ :

resolution refutation of T(A, §) must have width >
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Proof. The proof follows the ideology developed in [BW99]. We define a
measure g with sub-additive growth on the clauses, we show that the measure
of the empty clause is large (¢(0) > r), hence there must be a clause with
medium size measure (r/2 < p(C) < r). We show that such a clause must
have large width.

Fix an (r, s, ¢)-expander A of size (mxn) and -robust functions g1, ..., g

with Vars(g;) € X;(A), where ¢4+ £ > s+ 1.

Definition 3.2 For C a clause in the variables Vars(A), define u(C) to be
the size of a minimal I C [m] such that the following pair of conditions hold:

Vy;eC Fiel (Vars(f) C X;(A)); (8)

{gilie I} EIIC. (9)

. . r(ct+l—s
Claim 3.3 1. For a clause C with r/2 < p(C) <r, w(C) > ( o7 )

2. u(0) >r.

Proof. Part 1) Let I be a set of minimal size satisfying Definition 3.2.
Since 1| < r, we get |04(I)| > ¢ |I|. Let us partition [ into I, any minimal
subset satisfying (8), and I; = I\ Iy. Notice that by the minimality of 7,
removing any row from /; will ruin property (9).
We claim that for any i; € I, J;,(A) has small intersection with d4(7).
Namely,
|Ji, (A) N aa(1)] < s — 1. (10)

Indeed, as we noticed above, {g;|i € I'\ {i1}} [~ ||C||. Let « be any
assignment such that g;(a) =1 (2 € I\ {t1}) but ||C]|(e) = 0. Let p be the

restriction given by

Then, since p is totally defined on Vars(g;) for i # i1, and also on Vars(||C|])
(by (8) and 1y & Iy) we have g;i|, =1 (1 # 11) and C|, = 0. Hence, using
(9), we conclude that g;, |, = 0. Since g;, is f-robust and |.J;,(A)| < s, this
implies the desired inequality (10).

16



Now we may sum up:

e [I] < |0a(1)]
< s o+ (s = O)]h| (11)
= (s =OU[+ -1
< (s=O|+1-w(C).

Recalling that |7]| > r/2, we get our bound. Part 1) is proven.

Part 2) Suppose the contrary, that is 4(0) < r. Then we can repeat the
first part of the above argument (since that part did not use the condition
|[7| > r/2) and still get (11). But now Iy = ), hence (11) alone implies a
contradiction with the expansion property. This proves part 2).m

Claim 3.4 Any refutation of 7(A,g) must include a clause C with r/2 <
p(C) <r.

Proof. p is sub-additive, i.e. if C' was derived from Cy, C7 by a single
resolution step, then u(C) < u(Cy) + p(Ch). Additionally, for any axiom C,
p(C) = 1. The statement now follows from Claim 3.3(2).m

Theorem 3.1 is immediately implied by Claims 3.4, 3.3(1).m

In order to see which size lower bounds are implied by Theorem 3.1 via
Proposition 2.6, we consider only the typical (and most important) case

¢+l — s =18Q(s), for which our width lower bound is Q(r).

Corollary 3.5 Let ¢ > 0 be an arbitrary fived constant, A be an (r,s,es)-
exzpander of size (m xn), and g1, ..., gn be (1 —€/2)s-robust functions. Then

every resolution refutation of (A, §) must have size exp (Q (ﬂf;)) /2°.

Proof. Fix a resolution refutation of 7(A, g) that has size S. It is easy to
see that every axiom in 7(A, §) contains a sub-clause of width < 2* which is
also an axiom of 7(A, g). Moreover, this latter clause can be easily inferred
in O(2*) steps from those axioms in 7(A, §) that have width < 3. This allows
us to replace the original refutation by a refutation that may have a slightly
bigger size O(S-2°) but uses only those axioms from 7( A, §) that have width <
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3. Hence, by Proposition 2.6, 7( A, ) also has a resolution refutation of width
@) <\/|Vars(A)| -log(S - 25)> <0 <\/m -22° - log(S - 23)). Comparing this
with the lower bound of Q(r) that comes from Theorem 3.1, we finish the
proof of Corollary 3.5.m

We can obtain much better size lower bounds (i.e., get rid of the disap-
pointing term 22" in the denominator) for the circuit encoding. We further
confine ourselves to the optimal case when the circuits Cy, ..., ), have size

O(s).

Corollary 3.6 Let ¢ > 0 be an arbitrary fived constant, A be an (r,s,es)-
ezpander of size (m x n), and Cy,...,Cy, be single-output Boolean circuils
over arbitrary fired finite basis such that C; is a circuit of size O(s) in the
variables X;(A), and all functions ||Ci|| are (1 — €/2)s-robust. Then every

resolution refutation of (A, 6’) must have size exp (Q <i>>

ms

Proof. By Fact 4 and Theorem 3.1, every resolution refutation of 7(A, C_")
must have width Q(r). Since [Varsz(A)| < O(ms), the required bound
immediately follows from Proposition 2.6.m

Our second major result in this section generalizes the bound from [BGIP99].
Unfortunately, it also inherits all the limitations of their technique: essen-
tially the only base functions ¢y,..., g, we can handle are F;-linear forms,
and for char(F') = 2 our approach fails completely (cf. [Gri98]). On the posi-
tive side, note that although we do require the linearity of the base functions,
the bound itself still holds for the most general functional framework.

Theorem 3.7 Let A be an (r, s, ¢)-expander of size (mxn), and by, ..., b, €
{0,1}. Then every PCR refutation of 7(A, i(A, b)) over an arbitrary field F
with char(F) # 2 must have degree > °.

Proof. As the first step toward proving Theorem 3.7, we show one simple
reduction to a lower bound problem about PC refutations in the original
variables zy,...,x,. This step is very general and does not depend on the
linearity of the base functions ¢;.
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Definition 3.8 For a Boolean function f(zq,...,z,), Ps(z1,...,2,) is the
(unique) multi-linear polynomial such that

(0 fla) =1
Pf(“)—{nff(a):o

for all a € {0,1}".

Lemma 3.9 For any (m X n) 0-1 matriz A and any functions g1, ..., gn
with Vars(g;) € Xi(A), every degree d PCR refutation of 7(A,g) can be
transformed into a PC refutation of the system

P,=...=F, =0 (12)
(in the original variables xq,...,x,) that has degree < s - d.
Proof of Lemma 3.9. Let us consider some PCR refutation = of 7(A, g).
Substitute in m the polynomial Pfc(z1,...,z,) for every variable y§. Since
deg(Psc) < s for any f(zi,...,z,) such that Vars(f) C X;(A) for some
i € [m], the degrees of all lines resulting from this substitution are at most s-d.
Moreover, any axiom from 7( A, §), as well as default axioms, gets transformed
into a polynomial P such that for some ¢ € [m] P contains only variables from
X;(A), and is a semantical corollary of P,, on {0, 1}*4). Hence, it can be
inferred from P, in degree < s, using only variables from X;(A). Appending
these auxiliary inferences to the beginning of the transformed refutation m,

we obtain the required PC refutation of the system (12). Lemma 3.9 is
proved.m

Thus, in order to complete the proof of Theorem 3.7, we should establish
the = lower bound on the degree of any PC refutation 7 of the system (12)
for g, = Eﬁ(A, bz)

The original proof, found in September of 1998, directly adapted the
argument from [BGIP99] to our setting. After that, [BI99] came up with an
elegant connection between PC-degree and Gaussian width (another concept
considered by us in August of 1998). With this connection in hand, we may
quote here, word by word, Theorem 3.3 from [BI99], plugging in our current
parameters.

Theorem 3.10 For A an (r, s, c) expander, {g;} linear equations mod 2, and
F a field of characteristic # 2, any PCR refutation of P,, = ... =P, =0
has degree > 7.

19



Theorem 3.7 follows.m

Corollary 3.11 Let € > 0 be an arbiltrary fived constant, A be an (r, s, €s)-
expander of size (m xn) and by, ..., b, € {0,1}. Then every PCR refutation
of T(A, i(A,b)) over an arbitrary field F' with char(F) # 2 must have size

exp (Q (mr—;s>> /2°.
Proof. Identical to the proof of Corollary 3.5, using Proposition 2.7.m

Corollary 3.12 Let ¢ > 0 be an arbilrary fived constant, A be an (r,s,es)-
ezpander of size (mxn), by,..., by, € {0,1}, and C4,...,C,, be single-oulput
Boolean circuits over arbitrary fived finite basis such that C; is a circuit of
size O(s) in the variables X;(A) that compules the function ¥;(A,b;). Then
every PCR refutation of (A, C") over an arbitrary field F' with char(F) # 2

2

must have size exp (Q (T—)>

ms

Proof. Identical to the proof of Corollary 3.6, using Proposition 2.7.m

4 Size lower bounds for linear encoding

In this section we show better lower bounds (although our requirement on
the expansion rate is somewhat stronger) on the size of PCR refutation for
the more structured linear encoding than those provided by Corollaries 3.11,
3.12. We will apply the random restriction method for killing large clauses
rather than directly refer to the general degree/size relation from Proposition
2.7. In this sense our approach is similar in spirit to that of [BP96].

Theorem 4.1 Lel A be an (r, s, 3s)-expander of size (mxn), and let by, . .. b, €

199 4
-

{0,1}. Then every PCR refutation of 74(A,b) over an arbitrary field F' with
char(F) # 2 must have size exp <Q (ﬁ))

m

Proof. As the first step toward proving Theorem 4.1, we show how to get rid
of the variables y; for large (= of size > s/2) sets .J. For technical reasons,
we also switch during this step from the linear encoding to the functional
one.
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Definition 4.2 For an (m x n)-matrix A, the set of variables Varsg(A) C

Vars(A) consists of those yy € Vars(A) for which f has the form ®je.7 Tj.
ef

Let also ‘7;_7"/5@(14) d: {y(® o) € Varsg(A)||J] < 5/2}.

75(A,b) [Ta(A, b)] is the set of those axioms in 7(A, i(A, b)) that contain
variables only from Varsg(A) [from Varsg(A), respectively].

It is worth noting that 74(A,b) possesses the following clean algebraic
description: if g; = ¥;(a, b;), and fi,..., f, are Fy-linear forms then (5) holds
if either the system of linear equations f; = €,..., f,, = €, is inconsistent
or the vector space spanned by these equations contains g;.

Lemma 4.3 Suppose that A is an (2, s, %s)-exp(mder. Then every PCR refu-
tation of 74(A,b) can be transformed into a PCR refutation of 74(A,b) that
has the same size.

Proof of Lemma 4.3. For every two distinct rows 2; and i, we have
|04({i1,72})| > %s which implies |J;, (4) N J;,(A)| < s/2. Hence, for every
J C [n] with |J| > s/2 there can exist at most one tow i € [m] such that
J C Ji(A). Therefore, the following mapping:

yg;{x”jej} if |.]| S 5/2
Yy b; .
Y@ (o, icsangy il [ > s/2and J C Ji(A)

is well-defined. It is easy to see that it takes every axiom from 74(A,b) to
an axiom from 7g(A, b) which proves Lemma 4.3.m

Now, for a monomial m = yi! ...y} in the variables %@(A), we define
its A-degree deg,(m) as the minimal cardinality of a set of rows [ with
the property Vars(fi) U ... U Vars(fs) € U,y Xi(A). The A-degree of a
polynomial is the maximal A-degree of a monomial in it, and similarly the
A-degree of a PCR proof is the maximal A-degree of a polynomial in it. The
following lemma rephrases Theorem 3.7 for deg 4:

Lemma 4.4 Let A be an (r, s, c)-expander of size (m x n), and by, ..., b, €
{0,1}. Then every PCR refutation of 7(A, i(A, b)) over an arbitrary field F
with char(F) # 2 must have A-degree > 7-.
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Proof of Lemma 4.4.

The only difference from Theorem 3.7 is that we consider here A-degree
instead of ordinary one. It is easy to see by inspection that this change does
not affect the reduction in Lemma 3.9, and the same proof applies here as
well.m

Lemmas 4.3 and 4.4 determine the strategy of the rest of the proof (cf.
[BP96]). We want to hit the prospective refutation of 74(A,b) by a random
restriction p in such a way that p preserves the structure of 7(A, i(A, b)),
and, if the size of the original refutation is small, with a high probability also
kills all monomials in the variables %EB(A) that have high A-degree.

Definition 4.5 For a set of rows I, let us denote by Mj the set of all re-
strictions p such that p='({0,1}) = U, Xi(A) and p satisfies all equations
Yi(Ab)=1forall i€l

Note that if |I| < r, then, since A is an (r,s,3s)-expander, the linear
forms @ {z;|z; € Xi(A)} = X;,(A,b;) & b; are linearly independent and
thus M; is a non-empty linear subspace. Let A|; be the result of removing
from the matrix A all rows ¢ € I and all columns j € [J;c; Ji(A). Any

restriction p € M[ can be naturally extended to the variables from Vars(A)

by letting p(yf) = yf| p takes variables from Vars(A) to variables from
Vars(Alr). Moreover, those ys for which 30 € I (Vars(f) C X;(A)) are set
to a constant. Finally, p always takes axioms from 7(A, ¢) to axioms from
7(Alr,4|,). The only remaining problem is that A|; may not inherit good
expansion properties: as an easy example shows, it may even contain an
empty row! We circumvent this difficulty by further removing all rows that
have large intersection with UZeI i(A), and show in the following lemma
that this can always be done in an efficient manner.

Lemma 4.6 Let A be an (r,s,c)-expander. Tth every sel of rows I with
|I] <r/2 can be extended to a larger sel of rows [ D I such that |1] < 2-|I|
and A|; is an (r,s,3c — 2s)-expander.

Proof of Lemma 4.6. Let us recursively add to I new rows (one row i, at
a time) o) N (User i ‘ > 2(s — ¢), where [I" is the
current value of /. We claim that this process will terminate (i.e., no new
row can be added) in less than || steps.
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Suppose the contrary, and let I be the set of cardinality 2-|7| reached after
|7| steps. Then every row io € I \ T contains less than | /i (A) — 2(s — ¢)| <
(2¢—s) boundary elements from 8A(j). Hence, |8A(j)| < s+ I+ (2¢—s)- 1] =
2¢ - |1|, a contradiction.

We choose as our I the result of termination of this process. Let [y be a
set of rows in A|; (i.e., Ip N I = () of cardinality at most r. Then 0A|;([0) =
aA([O)\UiEj Ji(A). Since for every i € Iy, |J;,(A) N (Uz’ef JZ(A))‘ <2(s—e¢),
we have the bound ‘aAh([o)‘ > |04(lo)|—2(s—c¢)-|Io] = ¢ |Io]| —2(s—c)| o] =
(3¢ — 2s) - |Iy|. Lemma 4.6 is proved.m

Now we are ready to finish the proof of Theorem 4.1. Fix a PCR refutation
m of 7g(A,b). Assume w.lo.g. that 18 divides r, and pick at random a
set of rows I of cardinality r/3. Choose arbitrarily Ior according to
Lemma 4.6, i.e., such that |j| < 25—7" and A|f is an (r,s,s/4)-expander. Pick

pE Mf at random, and apply this restriction to our PCR-refutation w. This

will produce a PCR-refutation p(m) of ?@(A|IA,p(E(A,b))). By Lemma 4.4
(with ¢ = s/4), p(m) must contain a non-zero monomial p(m) of A|j—degree

> r/18. Thus, 7 contains a monomial m that has A-degree > r/18 and is
not killed by p. In order to finish the proof, we only have to estimate from
above the probability P[p(m) # 0] for every individual monomial m with
deg 4(rn) > r/18.

Fix any such m =y ... yj,j, and recall that fi,..., f; are Fy-linear forms
of weight < s/2. W.l.o.g. assume that fi,..., f; form a linear basis of the
space Span(fi,..., fs). Then Uizl Vars(f,) = Ule Vars(f,) and, there-
fore, deg,(y} ... y}) = deg,(m) > r/18. Hence, w.l.o.g. we can assume
from the very beginning that fi,..., f; are linearly independent.

Let us now introduce one variation of the notion of A-degree. Namely, for
m=yp ...y, let deg'y(m) be the minimal cardinality of a set of rows I such
that these rows “cover” m in the stronger sense Vv € [d]3i € [(Vars(f,) C
X;(A)). Clearly, deg,(m) < deg’,(m). Also, deg’, is “continuous” in the
sense that for every monomial m, and every variable y5, deg’y(m) < deg'y(m -
y5) < deg';(m) + 1. Therefore, we can gradually remove variables from the
monomial m, one variable at a time, until we find in it a sub-monomial m’
such that deg’,(m’) is ezactly equal to r/18. For ease of notation, assume
w.l.o.g. that deg’;(m) = r/18 for the original monomial m.
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Fix now any set of rows Iy with |ly| = r/18 and such that
Vv € [d]3e € Iy(Vars(f,) C X,;(A)). (13)

We estimate the probability P[p(m) # 0] as follows:

Plplon) # 01 < P|IfonT] < o] + s Plolon) 0117 = 111

2
r
[ToNI]|> T00m

Since |Ip] = r/18 and |I| = r/3, we can estimate the first term by Chernoff
inequality as
2

IOTOm:| < exp (_Q (TQ/m)) : (14)

P[|[OOI| <

For estimating the second term, fix any individual I such that |I| = r/3
and |[IoNT| > %, and let [ D I be a corresponding set of rows satisfying
the conclusion of Lemma 4.6. We want to estimate P[p|;(m) # 0], where p|;
is picked at random from M;.

Let I' = Ion I, I, = {iy,...,is}; £ > r?/100m. Since I is minimal with
the property (13), for every v € [{] we can choose f € {fi,..., fa} such that
Vars(f) C X;, (A) but Vars(f) € X;(A) for any other i € I,. Hence, we
can assume w.lo.g. that Vars(f,) C X, (A) forv=1,... L.

Now, let Vg df Span(fi,..., ft) be the Fy-linear space generated by
the linear functions fi,..., fs, and let V o Span ({@jng(A) Tj|1 € j})
P[p|1:('m) #0] < P[p|1:(y2 .. y;i) + 0], and the latter probability is equal
either to 0 or to 2-(V0:VonV) — odim(VonV)—¢, Hence, we only have to upper
bound dim(V5 N V)

Let us denote by [+ the set of all rows i € [ which appear with coefficient
a; = 1 in at least one sum of the form

Do @ - 1
iel JETi(A)

that happens to belong to V4, and let v+ Span ({ ®jEJi(A) il € I+ })

Then, clearly, V5 N V=V,NV* and dim(Vo N V) < |f+|

In order to bound from above |[A"'|7 we apply the expansion property to
I, U I (its cardinality does not exceed r/18 4+ 2r/3 < r). We get |0a(1) U

24



f+)| > 25 |Iju [*]. Note that rows from I*\ I} may not contain elements

from d4(I) U f+) at all; otherwise, the corresponding variable would have
appeared in the left-hand side of (15), and this would prevent the latter from
being in Vj.

The key observation is that every row 7, from +n I}, may also contain
only a relatively small number of boundary elements, namely, at most (s/2).
Indeed, |Vars(f,)| < s/2 (see Definition 4.2). Therefore, if .J;, would have
contained > s/2 border elements, then at least one of them would not belong
to this J}, and would once more prevent the sum (15) from lying in V5.

Summing up the above remarks, we have the upper bound [04(/jU f+)| <
s |\ TH| + SRaLAl [*|. Comparing the two bounds on |d4(I} U )], we
obtain via elementary calculations that |f+| <2 = %Z.

Therefore, dim(VOﬂV) < Zand Plp|;(m) # 0] <273 <exp (—Q(r?/m)).
Together with (14) this implies P[p(m) # 0] < exp (= (r*/m)). Hence, 7
must contain at least exp (€ (r?/m)) monomials (of A-degree > r/18) since
otherwise we could find a restriction p that kills all of them, contrary to

LLemma 4.4. The proof of Theorem 4.1 is complete.m

5 Existence of strong expanders and hard gen-
erators

All our hardness results in the previous two sections are based upon the
notion of an (r,s,c)-expander. As we noticed in Introduction, one of our
eventual goals is to be able to stretch n seed bits to as many output bits m
as possible so that the resulting generator is hard for as strong propositional
proof systems P as possible. In this section we will see what 1/0 ratio can
we achieve with the results from the two previous sections.

All explicit constructions of (r, s, ¢)-expanders we know of are based upon
Examples 4, 5 from Section 2.1. Unfortunately, the resulting expanders turn
out to be virtually useless for our purposes since they can not even break
the barrier m = n. Let us turn instead to a simple probabilistic argument.
We note that in the context of proof complexity, there is not that much
advantage to having explicit constructions of hard tautologies over existence
proofs.
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Theorem 5.1 For any parameters s, n there exists an (Q(n/s) A %s)-
expander of size (n? X n).

Proof. Let us construct a random (n? x n) matrix A as follows. For every

€ [n?, let J;(A) f {Ji1y-+-yJis}, where all g, (i € [n*],v € [s]) are

picked from [n] independently and at random (in fact, we would also obtain
the same result by letting .J;(A) be uniformly and independently distributed
over all s-subsets of [n], but with our choice of J;(A) calculations become
simpler). We wish to show that

P[A is not an (r,s,3s/4)-expander] < 1,

for some r > Q(n/s) - n=°/*). Let p, be the probability that any given ¢
rows of the matrix A violate the expansion property. Then, clearly,

P[A is not an (r, s,3s/4)-expander] < Z n*p,. (16)

=1

Fix an arbitrary I of cardinality £ < r. Since every column j € J,.; Ji(A)\
0 A (1) belongs to at least two sets J;(A), we have the bound ‘U ;Ji(A )‘ <
B (D2 (Sos WA — [0 4(1)]) < Mst+18 4 (1)), Hence 84(1) < bt
implies also ‘ el Jyy(A)‘ < %sf, and we have pe < PHUieI JZ-(A)fS —sf]

Uicr Ji(A), however, is equally distributed with {31,32,...,7s¢}, where
all g, are chosen from [r] independently and at random, and we can replace
U,e; Ji(A) with this simpler distribution. The event [{j1,32,...,Jse}| < gsf

is equivalent to the existence of s/ indices p among {1,...,s(} such that
in € {31, .. Ju=1}. Therefore, we can further estimate
<(1) PV € [5/8)4,, € (- dunma})]
max vE s . - .
b= ésf < <pa < Liusess) St i I Iy —1

The events j,, € {jl, oy Jpu—1}, however, form a Markov chain and
P[jul, €{g1,-- -y Ju,—1}] < (sf)/n. Therefore, we finally have the bound

< ( Z) (sl/n) stf8 < (O(sf/n))sz/s < (O(sr/n))sz/s. Substituting this
bound into (16), we obtain

r

. sl/8
P[A is not an (r, s,3s/4)-expander] < n? . (O (;—T>> . (17)
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The sum in the right-hand side is the geometric progression with the base
n? - (O(sr/n))¥?). Hence, if r = (en/s) - n='/*¢ for a sufficiently small ¢ > 0,
the right-hand side of (17) is less than (1/2) which completes the proof of
Theorem 5.1.m

Corollary 5.2 There exists a family of (m X n) matrices AU such that for

everyb = (br,...,b,) € {0,1}", any PCR-refulation ofT(A(m’”), i(A(m’”), b))
,),L2—O(1/loglog n))

m

over an arbiltrary field with char(F) # 2 must have size exp (

Proof. Since for m > n? the bound becomes trivial, we can assume that

m < n?.

Apply Theorem 5.1 with s = 1log,log,n, and cross out in the
resulting matrix all rows but (arbitrarily chosen) m. This will result in an

1-0(1/loglogn)

(r,s,2s)-expander Amm) of size (m x n), where r > n Now we

only have to apply Corollary 3.11 and notice that 22° = 2Vieen < pl/leglogn g

Corollary 5.2 shows that in the functional encoding we can stretch n
2-0(1/loglogn) hits so that this generator will be hard for
(polynomial size) PCR-proofs over an arbitrary field F' with char(F) # 2.

In particular, it is hard for Resolution.

random bits to n

Corollary 5.3 There exists a family of (m x n) matrices AU such that
‘J ( )‘ <log,n for all i € [m] and for every b= (by,...,b,) € {0,1}"™

we have the following bounds.

1. Let Cy,...,C,, be single-outpul Boolean circuits over an arbitrary fized
finite basis, where C; is a circuil of size O(log n) in the variables X;( A(™™)
that computes the function EZ-(A(m’”),bi). Then every PCR-refutation
of T(Almm), C_”) over an arbitrary field with char(F') # 2 must have size

o (0 ()

2. FEvery PCR-refulation OfT@( ") ,b) over an arbitrary field with char(F') #
2 must have size exp (Q < logn ))

Proof. Same as the proof of Corollary 5.2, only this time we let s = log, n.m

Corollary 5.3 allows us to construct generators stretching n bits to m =
o(n?/(log n)*) bits in the circuit encoding, and to m = o(n?/(log n)?) bits in
the linear encoding which are hard for poly-size PCR-proofs in odd charac-
teristic.
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6 Open problems

The open problem which looks absolutely major to us is to break through
the quadratic barrier in the I/O ratio. In other words, construct a generator?
G {0,1}" — {0, 1}”2 that would be hard for poly-size resolution proofs.
This seems to be essential with the techniques we use, and is reminiscent of
the same bottleneck with the weak Pigeon-Hole Principle.

We were mostly concerned in this paper with proving absolute hardness
results for pseudorandom generators. Can some structural theory of such gen-
erators be developed in the framework of proof complexity? To begin with,
can we formulate and prove any reasonable statement that would say, possibly
in a restricted way, that if G4 : {0,1}" — {0,1}™ and G5 : {0,1}™ — {0,1}*
are hard (for a given propositional proof system), then their composition
is also hard? That might provide an alternate approach to the quadratic
barrier problem.

Our results for Polynomial Calculus and PCR are by far less satisfactory
than our results for Resolution. In the latter case we employed quite a
natural (and THE natural in the sense of [RR97]) notion of hardness for base
functions (“f-robustness”), enjoyed by a random function and used many
times in circuit complexity. We simply put it to work in the new context
of propositional proofs. On the contrary, for PC(R) we were able to show
hardness for essentially one base function, and, in addition, only over fields I
with char(F) # 2. Can we find a reasonably general hardness criterium for
the base functions that would enforce the hardness of the resulting generators
w.r.t. PCR? It is more or less equivalent to asking whether the machinery
from [BGIP99, BI99] can in certain cases work with non-binomial ideals as
well?

Can we find explicit constructions of (r, s, ¢)-expanders with parameters
that would be sufficient for (at least, some of) our applications?

Can we git rid of the discouraging 2" factor in our size lower bounds for
the functional framework (Corollaries 3.5 and 3.11)? One way to think of this
would be to look for generalizations of the basic Proposition 2.6 that would
take into account the structure of the variables y; (which can be originally
divided into m large groups).

2For the reasons explained at the end of Section 2.3, we are interested only in non-
primitive encodings. One possible way to formalize this requirement rigorously is to de-
mand that G, is encoded by 3-CNF’s, as opposed to s-CNF’s with s > 3.
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