Electronic Colloquium on Computational Complexity, Report No. 25 (2000) e TaTs

Super-linear time-space tradeoff lower bounds for randomized

computation
Paul Beame* Michael Saks'
Computer Science and Engineering Dept. of Mathematics
University of Washington Rutgers University
Seattle, WA 98195-2350 New Brunswick, NJ
beame@cs.washington.edu saks@math.rutgers.edu
Xiaodong Sunf Erik Vee
Dept. of Mathematics Computer Science and Engineering
Rutgers University University of Washington
New Brunswick, NJ Seattle, WA 98195-2350
sunxd@math.rutgers.edu env@cs.washington.edu
May 19, 2000
Abstract

We prove the first time-space lower bound tradeoffs for randomized computation of decision
problems. The bounds hold even in the case that the computation is allowed to have arbitrary
probability of error on a small fraction of inputs. Our techniques are an extension of those used
by Ajtai [Ajt99a, Ajt99b] in his time-space tradeoffs for deterministic RAM algorithms comput-
ing element distinctness and for Boolean branching programs computing a natural quadratic
form.

Ajtai’s bounds were of the following form: if the machine uses at most kn time for some
constant k it requires space at least exn for some constant €. In this paper we provide
an explicit relationship between €, and k that also achieves larger lower bounds than those
of [Ajt99a, Ajt99b]. In particular, we obtain time-space tradeoff lower bounds of the form
T = Q(n+/log /loglog(n/S)), which implies that if the space is n'~¢ then the time used is

Q(n+/log [loglog(n)).

1 Introduction

The study of time-space tradeoffs for computational problems is fundamental to complexity theory.
These tradeoffs were considered early in the history of complexity [Cob66], and have continued
to be an important area of research [Bor93]. An important motivation for these investigations
was the observation that for some natural problems such as sorting, algorithms were known that
were extremely space efficient, and other algorithms were known that were very time efficient, but

* Research supported by NSF grant CCR-9800124.
tResearch supported by NSF grant CCR-9700239 and by DIMACS

ISSN 1433-8092

no known algorithm could simultaneously achieve the optimal time and space efficiency. Another
motivation comes from the general study of lower bounds where time-space tradeoff lower bounds
can be viewed as milestones towards proving nontrivial (superlogarithmic) space lower bounds for
problems in P (or even NP).

As with most lower bound problems in complexity theory, work on the problem divides into
“uniform” and “nonuniform” models. In the uniform setting, a series of recent papers have es-
tablished limitations on Turing machines computing SAT. The first work along these lines was
by Fortnow [For97], which was followed by [LV99] and [FvMO00]. The latter gives the best cur-
rent result: any algorithm for SAT that runs in space n°() requires time at least Q(n® €) where
¢ = (V5 —1)/2 and € is any positive constant. Although some of these lower bounds apply even
to co-nondeterministic computation, none of them give any results for randomized algorithms.

In the nonuniform setting, the standard model is the branching program. In this model, a
program for computing a function f(xi1,...,x,) (where the variables take values in some finite
domain D) is represented as a DAG with a unique start node. Each non-sink node is labeled by a
variable and the arcs out of a node correspond to the possible values of the variable. The sink nodes
are labeled by outputs 0 or 1. Executing the program on a given input corresponds to following
a path from the start node using the values of the input variables to determine the arcs to follow.
The maximum length of a path corresponds to time and the logarithm of the number of nodes
corresponds to space. This model is often called the D-way branching program model; in the case
that the domain D is {0,1} is referred to as Boolean branching program model.

In this model (or more precisely an extension which permits outputs during the course of compu-
tation), there was considerable success in proving time-space tradeoff lower bounds for multi-output
functions such as sorting, pattern matching, matrix-vector product and hashing [BC82, Bea9l,
Abr90, Abr91, MNT93]. However, these techniques fundamentally break down when considering
decision problems. In the comparison branching program model (where the inputs are numbers
and the tests at nodes are pairwise comparisons of inputs) there were strong results obtained for
element distinctness [BFMadH'87, Yao88]. In the Boolean model, there is an extensive literature
on various restricted read-k models ([BRS93]) which have strict limitations on the number of times
that any one variable may appear on any path in the branching program.

Recently, the first results have been obtained for decision problems on unrestricted branching
programs using time more than n. In the D-way model, [BST98] exhibited a problem in P,
where the domain D grows with the number of variables n, for which any subexponential size
nondeterministic branching program has depth Q(nloglogn). In the boolean case, they obtained
the first (barely) nontrivial bound by exhibiting a problem in P and a constant € > 0 for which
any subexponential size branching program requires depth at least (1 + €)n. Extending techniques
of [BRS93] for bilinear forms, the lower bounds in [BST98] were shown for functions based on
quadratic forms over finite fields.

In a remarkable breakthrough, Ajtai [Ajt99b] exhibited a P-time computable Boolean function
(also based on quadratic forms) for which any subexponential size deterministic branching program
requires superlinear depth. Much of the technical argument for this result was actually contained
in Ajtai’s earlier paper [Ajt99a, Ajt98] which developed the main tools for analyzing the branching
programs. The earlier paper gave similar lower bounds for two non-boolean problems whose input
is a list of n binary strings, each of length b = O(logn) bits long:(1) determine whether the list
contains a pair of strings within hamming distance b for some fixed ¢, and (2) determine whether
the strings are all distinct.

The basic approach of all of these papers was to show that for any function computed by a
“small” branching program, there must be a “large” embedded rectangle of inputs accepted by
the function, and then to demonstrate that some particular functions don’t have large embedded
rectangles. (We will define embedded rectangle in section 2.1; for now it suffices for the reader to
know that it is a highly structured subset of D™.) This was done for syntactic read-k branching
programs in [BRS93| and for general branching programs in [BST98]. The hamming distance
result of [Ajt99a] can be deduced from the techniques of [BST98]. The lower bounds on embedded
rectangle size proved in [BST98] are not strong enough to obtain the element distinctness and
boolean function lower bounds. Ajtai obtained these bounds by proving an amazing combinatorial
lemma that gave much stronger lower bound on embedded rectangle size. This directly gave his
tradeoff results for element distinctness and was the basis for the subsequent Boolean branching
program lower bound.

1.1 Our results

In this paper, we extend Ajtai’s approach for deterministic branching programs in order to obtain
the first time-space tradeoff results for (two-sided error) randomized branching programs, and
also for deterministic branching programs that are allowed to err on a small fraction of inputs.
Previously, there were no known time-space tradeoffs even in the uniform setting for these modes
of computation. Qur results apply to randomized RAM algorithms as well.

We also obtain substantial quantitative improvement over the previous results. More specifically,

we show that, for the functions considered by Ajtai, any branching program of subexponential size

logn
loglogn

must have depth at least Q(n). Ajtai does not explicitly give the functional form of his

depth bounds, but analyzing his argument gives at most an Q(nlog’lg;%) bound.

Finally, while our argument is heavily based on Ajtai’s, our version is considerably simpler.

One of the key aspects of both our extension and our simplification is to apply the basic approach
developed in [BST98] of breaking up branching programs into collections of decision trees called
decision forests and then analyzing the resulting decision forests. This has the effect of applying the
space restriction only once, early in the argument, rather than delaying the application of the space
restriction until the end of the argument which complicates the analysis without fundamentally
changing its ideas.

Our extension of Ajtai’s lemma shows that for a small deterministic branching program not
only is there a large embedded rectangle of accepted inputs, but there is a set of large embedded
rectangles of accepted inputs that cover almost all such inputs without covering any one input too
many times. From this we show that if the given branching program agrees with a given target
function f on all but a small fraction of inputs then there is a large embedded rectangle almost all
of whose inputs are ones of f. We obtain our lower bounds for random algorithms by strengthening
Ajtai’s arguments about element distinctness and the quadratic forms to show that, not only do
the functions not accept any relatively large embedded rectangle, they reject a large fraction of
inputs in any such rectangle.

2 Notation

2.1 Boolean functions

Throughout, X is a set of variable indices (usually X = {1,... ,n}). An input z is a point in DX,
the set of mappings from X to D, and we identify this set, in the usual way, with D". If A C X,
a point o € D4 is a partial input to X. Given partial inputs o and 7 defined on disjoint subsets
A, A" of X, we write o for the partial inputs defined on AU A’ whose restriction on A, A’ is o and
7 respectively.

Given z € DX and A C X define z4 € D? to be the partial input that is the projection of z
on A. We also find it convenient to define the modification of an input z € DX by a partial input
p € DA. Let z” be the input which agrees with z on X — A and with p on A, i.e., if ' = z* then
gy =pand zy_, = Tx_a.

A Boolean function f over X is a function mapping D" to {0,1}. Given a partial input p € D4,
the restriction of f by p, f[, is the function on X’ = X \ A such that for o € DX’ flo(o) = f(op).

Recall that a subset R of a set U x V is a (combinatorial) rectangle if and only if it is of the
form § x T with § C U and T C V and that a function f is a rectangle if and only if it is the
characteristic function of some rectangle R. We can extend this notion by saying that a subset R
of DX is a A-rectangle if and only if there is a set A such that R is a rectangle in D4 x DX~4,
This notion of rectangle has been used, for example, in the study of communication complexity in
the “best-partition” model and in the study of read-once branching programs.

For disjoint sets Aj, Ay in X we say that a subset R of DX is an embedded (A1, As)-rectangle
(we usually omit the word “embedded” throughout this paper for simplicity) if and only if there
exist and sets Y] € DAt and Y3 C D42 and a partial input p on X — A; — Ay such that R = {z €
D™ : zx_4a,—4, =p,TA; €Y1,24, €Ye}. We call the partial input p the stem of R. Further, we
say that R is an (m, a)-rectangle if |A1|, |As| > m and |Y;| > o|D41| and |Ys| > a|D42|. If sets
A; and As have size precisely m then we call R an ezact (m, a)-rectangle.

Note that every (A, Ag)-rectangle is also an A-rectangle for any set A O A; with AN Ay =0
(or dually). Also, note that Ra,ua, = {Za,u4, : = € R} is an Aj-rectangle in DA1Y42 that we
can identify with Y7 x Y.

Lemma 1. If R is an (m,)-rectangle with associated sets A1, As,Y1,Ys and partial assignment p
then there is an R' C R with defining sets A\, ALY/, Y] and partial assignment p' such that R' is
also an (m,a)-rectangle and |A}| = |Ay| = m; i.e. R' is an ezact (m, a)-rectangle.

Proof. Let A!, Al consist of an arbitrary set of m elements of A, Ay, respectively. Among the
partial assignments 7; to A; — A/, choose the one which maximizes the size of (Y;)}, = {¢ € D% :
or; € Y;} and set Y/ = (Y;)f;, for i = 1,2. Clearly, by averaging, |Y;/| > « and setting p' = pri1o we
can see that the rectangle R’ defined by A}, A},Y/, Y] and p is an exact (m, a)-rectangle. O

2.2 Branching programs, decision trees, and decision forests

Since we are only interested in the computation of Boolean (single output) functions here, we
present our definitions of branching programs only for this case. A branching program B on a
D-valued variable set X is an acyclic directed graph with the following properties:

There is a unique source node, denoted startp.

Every sink node v has a label output(v), which is 0 or 1.

Each non-sink node v is labeled by a variable index i(v) € X

There are exactly |D| arcs out of each non-sink node, each with a different element value(a)
of D.

Intuitively, a branching program is executed on input x by starting at startp, reading the variable
Ti(startp) and following the unique arc labeled by ;(s44s¢)- This process is continued until a sink
is reached and the output of the computation is the output value of the sink.

We say that B accepts the input z if the sink reached on input z is labeled 1. We view B as a
boolean function from D" by defining B(x) = 1 if and only if B accepts z.

Two measures associated with B are size which equals the number of nodes, and length which
is the length of the longest path.

A branching program of length d is leveled if the nodes can be partitioned into d sets Vy, V1,... , Vy
where Vj is the source, Vj is the set of sink nodes and every arc out of V; goes to V41, for 0 <17 < d.
It is well known[Pip79] that every branching program P of size s and length d, can be converted
into a leveled branching program P’ of length d that has at most s nodes in each of its levels and
computes the same function as P (and is deterministic if P is).

A decision tree is a branching program B whose underlying graph is a tree rooted at startp. In
particular, a decision tree is leveled. Every function on n variables is computable by a deterministic
decision tree of length n. Following common practice, the length of a decision tree is referred to as
its height.

A decision program or decision forest is an) of decision trees. More precisely, an (r, €)-decision
forest P over D is a collection T4, ... ,T; of decision trees on D" such that each tree has height at
most [en]. The function computed by P is Al_,T;.

3 Main Decomposition Theorems

The main approach taken in [BST98, Ajt99a, Ajt99b] for proving time-space tradeoff lower bounds
is to show that if f can be computed by a branching program then f must evaluate to 1 on some
(m, a)-rectangle where m and « are large as functions of the time 7' and space S used by the
branching program. Roughly speaking, large m means that m = gn where (3 is a function of T'/n,
and large o means « > |D|~®(™) where w(m) is small enough compared to m.

The first step in showing the existence of these large (m, a)-rectangles is to view the branching
program as divided into a certain number, 7, of layers, each of which is of length a small fraction
of n, and only enforce the space limitation on the boundaries between these layers. This is similar
to the approach that has been used in all of the time-space tradeoffs for multi-output problems,
starting with [BFK*81, BC82]. In the multi-output arguments it was possible to argue that on
each input there must be a single layer that produces a 1/r fraction of the outputs and argue about
the computation in the layer beginning at each boundary node separately. In the case of decision
problems, we must maintain the connection between the different layers. We express this by our
decomposition of any branching program into a disjunction of decision forests (Lemma 2).

Paper g T A(B) Program type 7“20{ 1;|1 © Applicability
[BSTI8| 9=k 0(k*2%) | 4(k+1)B8 | non-determ. 0 loglog |D| = Q(k),k = O(log’ign)
[Ajt99a] 2—k9(k) 2k6(k) /HIH/(SOk) determ. 0 all D, L — O(Fﬁgﬁ’ﬁ—n)
This paper B0k | po(k) ﬁ1+1/(8k2) determ. 0 all D, k = O(\/log)ﬁ)gn)
This paper | k=0 | g0k | gl+1/(8k%) random O(kZ%e) all D, k = O(\/loglgt;)gn
2-sided err. €

Figure 1: (m = (n,a)-rectangle R for branching programs with time 7" = kn and space S that
accept a § fraction of D". Here o = §2-MBn=57

There are two main differences between our results and previous results. First of all, we obtain
substantially better values for m and « as functions of the time and space of the branching program.
Secondly, we show that not only is there one large (m, a)-rectangle in f~1(1) but there is a small
number of partial partitions of f~!(1) into large (m, a)-rectangles that together cover almost all the
inputs on which f outputs 1. This latter aspect permits us to prove lower bounds for randomized
and distributional as well as deterministic branching program complexity.

We summarize the relationships between the different results in Figure 1. In each case, we
assume that we begin with a D-way branching program that accepts a ¢ fraction of all inputs in
D™. Each result shows that a branching program for some function f running in time 7" = kn
and space S admits a large (8n,a)-rectangle, for some 8 = B(k) and o = 2-AMB)=57 where X
is a nonnegative function of 8 and r is a function of k. In the first three lines of the table, the
guaranteed rectangle consists entirely of points in f!(1). In the last case, where the branching
program is randomized with 2-sided error €, the guaranteed rectangle may contain a small fraction
of 0’s. The last column gives the size of D and range of k£ for which the rectangle bounds can be
used to get linear space bounds for explicit functions. The restriction on D in the first line comes
from the fact that to get a nontrivial tradeoffs we need that 22" is “sufficiently small” compared
to DP". The upper bound on k in each row is because the lower bound on space is roughly gn

In the section 3.1 we describe the decomposition into decision forests and in section 3.2 we show
how to find the appropriate partitions into (m, a)-rectangles within each decision forest. We derive
the key theorems concerning branching programs in section 3.3.

3.1 Decomposition into Decision Forests

The following lemma is proved in [BST98]. We include its proof here for completeness.

Lemma 2. Let k € R and n,s € N. Let f be a boolean function on D™ for some finite set D. If f
can be computed by a deterministic branching program of length kn and size s then for any integer
r >k, f can be expressed as:

where u < s"71, each P is a (r, %)—decision forest, and the sets P[l(l) are pairwise disjoint sets of
nputs.

Proof. Let B be any branching program of size s computing f of length d < kn. Let B’ be an
equivalent leveled program of length d with at most s nodes per level. For distinct nodes v and
w of the branching program, let f,,, denote the function on D™ which is 1 on input o if, starting
from v, there is a path consistent with ¢ that leads to w. It is easy to see that if v is at level 4 and
w is level j > 4, then f,, can be computed by a decision tree of height j —¢. For 1 <7 <7 —1,
define I; = [“]. Note that I; < --- < l,_1 < d divides the interval [0,d] into r intervals each
of size at most [g] < [’“T—"'| An input is accepted by P if and only there is a sequence of nodes
V0, V1, V2, - ,Ur_1,Vr, Where vy is the start node, v, is the accepting node and for i € [r — 1], v; is
at level [;, such that f,, , ,(c) =1 for each ¢ € [r]. Therefore

r—1
f = \/ /\ .f’Ui,’Ui+1'

V1,.--Vp—1 =0

There are at most s"~! terms in the \/, and each term is a (7, %) decision forest.

Finally, each input follows a unique path, and so is accepted by at most one of the decision
forests.

O

3.2 Finding (m, «a)-rectangles in decision forests

Let P = (T4,...,T;) be a D-way (r, k/r)-decision program over X. For z € DX and i € X, let
treesp(i,z) = {j € [1,...,7] : iisread inT; oninput 2} and accp(z,£) = {i : |[treesp(i,z)| = £}.
If T is a decision tree, let read(z,T) to be the set of elements i read in T on input z. If F' is a set
of decision trees, let read(z, F') = Jycp read(z, T).

For a subset FF C P = (T,...,T,), let corep(z, F) be the set of elements of X that are read
only in trees in F' on input z. Let stemp(z, F') be the partial assignment that is the restriction of
to X — corep(z, F). If Fy, Fy C P are disjoint then let stemp(z, Fy, Fy) be the partial assignment
that is the restriction of z to X — corep(z, F1) — corep(z, Fy).

Call z € DX P-visible if and only if for all i € X, treesp(i,z) # 0. Note that if is P-visible,
corep(z, F) = X — read(z, P — F). Call a decision forest P over DX inquisitive if every x € DX
is P-visible. Note that any (r, k/7)-decision forest may be made inquisitive by adding at most r/k
decision trees, each of which has all inputs follow the same path with leaf label 1, corresponding
to queries that read the inputs but ignore them. All results of this section pertain to inquisitive
decision forest. This assumption yields the nice characterization of corep(z, F') above, but it is
purely a matter of convenience and could be avoided.

The goal of the argument is to find partitions of inputs into large (m, a)-rectangles on which
the decision forest accepts. Each (m, a)-rectangle will be an (Aj, Ag)-rectangle where A; and A,
consist of variables that are read exclusively by one of two small sets of decision trees in the decision
forest.

Let F; and F» be disjoint sets of decision trees in decision forest P. Let P~1(1) C DX be the
set of inputs accepted by P. We say that inputs z,y € P~1(1) are (Fy, Fy)-equivalent if and only if

e corep(z, Fy) = corep(y, F1),

e corep(z, Fy) = corep(y, Fy), and

e stemp(z, F1, Fy) = stemp(y, F1, Fy).

Let Rp(F1, F») be the set of (Fy, Fy)-equivalence classes. Clearly, these partition P~1(1).

Lemma 3. Let P be an inquisitive decision forest and let Fy, Fy C P be disjoint sets of decision
trees in P. Let R be an (Fy, Fy)-equivalence class in Rp(Fy,Fy) and let ¢ € R. Then R is a
(corep(z, F1),corep(x, Fy))-rectangle with stem stemp(z, Fy, Fy).

Proof. Let A; = corep(z, F1) and Ay = corep(z, F»). By definition, A; and A are disjoint. Let
Ag=X — A — Ay and p = stemp(z, F1, Fy). Let Y1 = {y4, : y € R} and Yo = {y4, : y € R}.
Consider the (A1, Ay)-rectangle @ defined by A1, As,Y1,Ys and p. Clearly, R C @, so it suffices to
show that @ C R.

Let z € Q. By definition of), there must exist some ' € R such that z4, = y}41 and y? € Rsuch
that z4, = 91242' Furthermore z4, = yho = yio = p. Since the trees of P — F5 do not depend on the
variables in Ay = X — Ay— A1, every tree T' € P—F;, behaves the same on input z as it does on input
y'. Therefore read(z, P — Fy) = read(y', P — F»), and thus corep(z, F) = corep(y', Fy) = Ay
since P is inquisitive, and every tree in P — Fy accepts z since R C P~!(1). Similarly, every tree
T € P— F; behaves the same on input z as it does on input 4?2, corep(z, F1) = corep(y?, F1) = Aj,
and every tree in P — Fy accepts z. Thus z € P™!(1), corep(z, F1) = A1, corep(z, Fy) = A,, and
stemp(z, F1, Fy) = p and thus z € R as required. O

Let Ry(F1,F;) be the equivalence class in Rp(Fi, Fy) containing z. and Yj(z,Fi,Fy) =
{ycorep(xﬁpj) : y € Ry(F1,Fy)} for j = 1,2. By Lemma 3, Ry(F,Fy) is an embedded rectan-
gle defined by sets (corep(z, F1), corep(x, Fy),Y1(z, F1, Fy),Ys(z, F1, Fy)) and partial assignment
stemp(x, F1, Fy). Defining

mg(F1,Fy) = min(|corep(z, F1)|,|corep(z, Fy)|) and
az(F1,F) = min(|Yy(z, Fi, F)/| D@ Yy (x, Fi, F)|/|Deerer(®))),

we see that R, (F1, Fy) is an (mg(F1, Fy), az(F1, Fy))-rectangle.

However we have no guarantee that either my(F1, Fy) or agz(Fi, Fy) is large. In fact, we will
not be able to show that any one fixed pair (Fy, Fy) will guarantee that my(F1, Fy) and oy (F1, Fy)
are large. Instead, we will show that almost all accepted inputs x can be associated with one of a
very small number of pairs (Fy, Fy) for which both of these are large.

Given an accepted input z, to make m,(F1, Fy) and o, (Fy, Fy) large, we would like to find
a pair (F1, Fy) so that both corep(z, F1) and corep(z, Fy) are large and both Yi(z, F}, Fy) and
Ya(z, Fy, Fy) are large.

Let us first take a closer look at the Yj(z, F1, Fy) using the property that R,(Fi,F3) is an
embedded rectangle. Clearly

Yj(iL‘,Fl,FQ) = {0’ S Dcorep(:c,Fj) :x% € Rw(Fl,FQ)}
= {o e Drr@®F) . corep(z?, Fy) = corep(z, Fy),

corep(z°, Fy) = corep(x, Fy), and z° € P~1(1)}

The following lemma shows that we can simplify this definition still further by removing the con-
dition corep(z?, F}j) = corep(z, F}).

Lemma 4. Let P be a decision forest and let F C P. If z,y € DX are P-visible inputs such
that x and y agree on all elements in X — corep(z,F) then corep(z,F) = corep(y,F) and
stemp(z, F') = stemp(y, F).

Proof. Since z and y agree on all elements of X — corep(z, F'), the computations of all trees of P
outside of F' are the same on z and y. Thus, in particular, read(z, P — F) = read(y, P — F') and
so corep(y,F) = X —read(y,P — F) = X —read(z,P — F) = corep(z, F'). It then follows that
stemp(z, F') = stemp(y, F) since they agree on X — corep(z, F) = X — corep(y, F). O

Thus Yi(z, Fi, Fy) = {0 € D®™r@®M) . corep(z?,Fy) = corep(r, Fy) and 27 € P~(1)}
and Yy(z, F1, Fy) = {0 € DreP(®F) . corep(z?,F)) = corep(z, Fi) and z° € P~ 1(1)}. In
particular, having a large Y7 (z, F1, F3) requires that there are many ways of varying the values of
variables in corep(z, F1) to get a new assignment y with corep(y, F3) = corep(z, Fy), and having
a large Ys(z, F1, F>) requires its dual. (Having large Yj(z, P, F1, Fy) requires more than this; it
also requires that each modified input ¥ is also accepted by P but we will see that this will follow
frequently enough if there are sufficiently many accepted inputs overall.)

Thus for an input z we would like to find (F;, Fy) such that

(i) each corep(z, Fj) is large for j = 1,2, and

(ii) many ways of varying z on corep(z,F;) generate inputs y that have corep(y,F3_;) =
corep(z, F3_;) for j =1,2.

We will see that if the pair (F}, Fy) is chosen randomly of roughly the right size based on some
simple characteristics of z, then it is very likely that it will have both property (i) and something
close to property (ii). More precisely, we will show that almost all changes to = on corep(z, F;) will
not affect corep(-, F3_;) too much. This will allow us to group the inputs y that differ from z only
on corep(z, Fj) based on their value of corep(-, F3_;) and, since the variation from corep(z, F3_;)
is small, there aren’t too many groups. These inputs y will all have the same value of corep(-, F3_;).
Applying this grouping for both 7 = 1 and 2 will give the large sets of inputs y with the desired
properties.

More precisely, we choose (F1, Fy) by independently assigning each decision tree T' € P according
the following probability distribution F(g) for some g € (0, 3]:

" with probability ¢
TeF with probability ¢
P — F; — Fy with probability 1 — 2q.

The probability that an element ¢ € X is in corep(z, F;) depends only on ¢ and the number of
different decision trees in which ¢ is read on input z. If 7 is read in precisely ¢ decision trees on
input z, the probability that ¢ € corep(z, Fj) is precisely ¢%. Therefore, because P is not too large,
accp(z,?) will be large for a relatively small £, and thus the expected size of corep(z, F;) will be
reasonably large, at least ¢‘|accp(x,£)|. The following lemma makes this more precise and shows
that the sizes of the cores do not vary too much from their expected values.

Lemma 5. Let P be an inquisitive (r,k/r)-decision forest and € = k/r. Let x be any input and
Jj €{1,2}. Let (Fy, Fy) be chosen according to probability distribution F(q). Then for j =1,2:

d
(a) Eflcorep(z, F})| < o > ¢bn.
(b) Var(|corep(z, Fy)|) < enkpg

(c) Pr[llcorep(z, Fj)| — pa| > 5p0] < dek/q"

Proof. It suffices to fix j = 1.

Let ¢(i) = |trees(i)| be the number of trees in which variable i is accessed. We have
E[|corep(z, F1)|] = D icx ¢"). Since P makes a total of at most kn accesses to variables on input
T, £ 3. x t(4) < k. By the arithmetic-geometric mean inequality, E[|corep(z, F1)|] = 3, ¢/ >

Let M (i) be the event that i € corep(z, F1). For 1 < i,i' < n, we say i ~ i’ if z; and z; are
both accessed on some decision tree. Now

Var(|corep(z, F1)|) = Z(Pr [M (i) A M(i")] — Pr[M(3)] - Pr [M(")]).
il
If =(~ 4') then the events M (i) and M (i) are independent and the corresponding term in the sum
is 0. If ¢ ~ i’ then we upper bound Pr[M (i) A M(i')] — Pr [M(3)] - Pr[M (i")] crudely by Pr [M(7)].
Since on input z, each tree reads at most en variables, for each 7 the number of 7' such that i ~ i’
is at most t(7)en. Thus,

n

Var(|corep(z, F1)|) < enZt(z’)qt(i) < eZt(z’) Z ¢ < enkE[|corep(z, F1)|] = enkiy.
=1

i=1 i=1

For the last part of the Lemma we use Chebyshev’s inequality: for any random variable Z,
Pr[|Z — E[Z]| > A] < Var[Z]/\2.

1
Pr |lcorep(e. F)l = ualll > jua| < 4Varlcorep(a,)/
< denk/pg
< dek/qk.

O

In order to show that changing the assignment to the variables in corep(z, F;) does not change
the core on F3_; too much, we need to bound the symmetric difference of corep(z, F5_;) and
corep(y, F3_;) for inputs z,y such that stemp(z, F}) = stemp(y, Fj). To do this, it will be useful
to consider following subsets of X. For j € {1,2}, let

Bj(z,f) = corep(z,F;)—accp(z,¥),
Bi(x,£) = {i€X : oninputx,iis read in exactly £ trees in Fj,

in at least one tree in F3_j,

and in no trees in P — F; — Fy. }.

The following lemma gives a combinatorial description of the variables in the symmetric difference
of cores.

10

Lemma 6. Let P be an inquisitive decision forest. Let £ be some positive integer. For j € {1,2}
and inputs z,y € DX such that stemp(z, F3_;) = stemp(y, F3_;) we have

corep(z, Fj)Acorep(y, F;) C Bj(z,£) U B;(y,£) U B;-(a;,l) U B}(y,ﬁ)

Proof. Without loss of generality, let j = 1.

Let i € corep(z, F1) — corep(y, F1). If i ¢ accp(x,£), then i € By(z,£). If i € accp(z,£), then
since z and y agree outside of F5 and 4 is in corep(z, F1) but not in corep(y, F1), on input y, 4

must be read by exactly £ trees in F} and by at least one tree in F» and by no trees elsewhere, i.e.,
i is in B/ (y,£). Therefore i € Bi(z,£) U B} (y,£).

By symmetry of x and y, we have

corep(z, F1)Acorep(y, F1) C Bi(z,£) U Bi(y,£) U Bi(z,£) U B{(y,).
U

The following lemma shows that we can choose £, ¢ from a small number of possible values such
that the expectations of the sizes of Bj(z,£) and Bj(z,£) (j = 1,2) are substantially smaller than
the expectation of the size of the core. The major improvement of our bounds over those implicit
in [Ajt99a, Ajt99b] is due to our more precise description of these quantities and our sharper
calculation of the expected sizes of these four sets. Roughly speaking, in each case, the structure of
the analysis in [Ajt99a] only makes use of the randomness of one of the forests in the pair (F1, Fy)
while holding the other fixed. We restructure the analysis so that we can take advantage of the
fact that both forests are random.

Lemma 7. Let P = (T1,...,T;) be an inquisitive (r,k/r)-decision forest. Let ¢1 < 1/(4k). For
every P-visible x € DX there is a pair (Lp(z),qp(z)) = (£, q) with 1 < £ < 2k and q¢ = q5 = ¢
for some integer b, 1 < b < 4k, such that for (F1, Fy) chosen according to distribution F(q) and
Jj€{1,2},

(a) E[Bj(z,?)] < 4q¢:1 - E[|corep(z, F})|].
(b) E[B}(z,£)] < 4kq1 - E[|corep(z, Fj)|].

Proof. Let vy, = |accp(z,h)| for h=1,... ,r. It is easy to see that
,
E[|corep(z, F1)|| = E||corep(z, F3)|] = Z v
h=1

We will choose an £ and a ¢ such that the term v,q* dominates all the other terms in the sum.

Let go = ¢qf. For each 1 < a < 4k + 1, there is an h(a) such that the largest term in the sum

comes from inputs accessed precisely (a) times, i.e., Vh(a)qg (@) _ maxy, vpq". We have the following
claims.

(1) k(1) < 2k.

(2) h(a) is decreasing with respect to a.

11

(3) h(a) > 1.
By definition of k, P makes at most kn queries on input xz. Therefore at least n/2 elements of X
are queried in fewer than 2k trees on input z. Therefore, there is some £; < 2k such that more
than n/(4k) elements of X are queried in precisely /; trees on input z. This means vy, > n/(4k)
for some ¢; < 2k. Thus for h > 2k,

h h l1+1 y2
vhgl < ngl < ng*tt < vg g

since g1 < 1/(4k). Therefore, the first claim is true. The second claim is true simply due to the fact
that if b < h' then vpg" > vp¢? implies vpg? ; > vpgl, ;. The third claim follows immediately
from the definition.

Thus by the pigeonhole principle, there must exist some 2 < b < 4k such that h(b—1) = h(b) =
h(b+1). Now we choose £ = h(b) and ¢ = g, = ¢}. We have for h # £,

th(’fgugqﬁ fora=b—1,b,b+ 1.

This implies that for h # £,
h < l . \h—£|
VhQpy > VeQp - q1 -

Let ¢ = ¢5. By definition,

E[Bj(z,0)] = Y wg"

h#t

t—h
< quf-q'l |
h#t

o
200" > of
p=1
gt
4q1 - E[|corep(z, F})|].

IN

IAIA

Now any i € Bj(z,£) must be in accp(x, h) for some h > £+ 1. If we fix such an i € accp(z,h)
there are precisely (’é) ways to allocate £ of these trees to F;. Furthermore, the probability that a

12

fixed set of £ trees are in F; and a disjoint fixed set of h — £ trees are in F3_; is precisely q".

w0 = 3w (})

h=t+1
: h L+ (E+2) (E+h—20)
= Z I/hq . 1 2 ... (h — E)
h=(+1
T
< Y wmd" e+t
h=t+1
T
<) w2
h=t+1
T
< > wgt Rt
h=t+1
o0
< vegt Y (2kqi)?
p=1
S 4kq1 . E[|corep(w, FJ)H
since ¢1 < 1/(4k). O

We classify the inputs by two parameters £ and ¢ in Lemma 7. Since there are fewer than 2k
different ¢ and 4k different g, there are fewer than 8k? classes. Lemma 6 and Lemma 7 show that
the expectation of |corep(z, Fj)Acorep(y, Fj)| (j € {1,2}) is substantially smaller than that of
|corep(z, Fj)|. In the following lemma, we use Markov’s inequality to prove that this is actually
the case with high probability.

Lemma 8. Let k > 2 be an integer, g1 < 1/(4k), and v € (0, 1) be given. Let r > 4k2 /(yg***). Let
P =(T1,...,T,) be an inquisitive (r, k/r)-decision forest withe = k/r. Let 1 < { < 2k, 1 < b < 4k,
q=q’ and I C DX be a set of inputs z such that £p(z) = £, and qp(z) = q. There exists a pair of
subforests (F1,Fy) and a subset I' of T such that |I'| > (1 — 6v)|I| and for j € {1,2}, anyz € I'
satisfies

1
|corep(z, Fj)| > Eqkn and |corep(z, F})| < 3|corep(z, F3_;)|,
and any z,y € I' such that stemp(z, F5_;) = stemp(y, F3_;) satisfy

|corep(z, Fj)Acorep(y, Fj)| < 40kq; - min(|corep(z, F)|, |corep(z, Fy)|)/7-

Proof. Observe that for this value of 7 and € = k/r, we have 4¢k/q* < ~. For any fixed z € T
and j € {1,2}, Lemma 5, Lemma 7 and Markov’s inequality imply that the each of the following
statements fails with probability at most ~.

(i) ||corep(z, Fj)| — El|corep(z, F)|]| < yE[|corep(z, Fj)l],
(i) [Bj(2,4)| < 4q1 - E[|corep(z, Fi)[l/7-

(iii) [Bj(2,£)| < 4kq: - E[|corep(z, F;)[]/-

13

Therefore there is some fixed pair of disjoint subforests Fy, Fy such that all of (i), (ii) and (iii)
hold for at least a 1 — 6+ fraction of I for both j = 1 and 2. Fix this F} and F; and let I' C T be
the set of those z for which these conditions hold.

Fix j = 1. Due to (i) and the simple lower bound E[|corep(z, F1)|] > ¢*n from Lemma 5,
|corep(z, F1)| > 1¢¥n. Since E[corep(z, F1)|] = E[/corep(z, F»)|], (i) implies |corep(z, F1)| <
3|corep(z, Fy)|.

Without loss of generality, we consider z,y € I' such that stemp(z, Fy) = stemp(y, Fy). By
Lemma 6 we have
|Bi(z,0)| +|Bi(y,)| + |Bi(=,)| + [Bi(y, £)|
5kqy - (E[|corep(z, F1)|] + E[[corep(y, F1)|]) /7-

|corep(z, F1)Acorep(y, F1)| <
<

Since E[|corep(z, F1)|] = E[|corep(z, Fy)|| and E[|corep(y, F1)|] = E[|corep(y, F2)|] and using
the fact that |corep(z, F})| > JE[|corep(z, F})|] for z € I',

E[[corep(z, F1)| + E[|corep(y, F1)|]

< 2[min(|corep(x, F1)|, |corep(x, F3)|) + min(|corep(y, F1)|, |corep(y, F2))|]
2min(|corep(z, F1)|, |corep(z, F3))| + 2|corep(z, F2)| since corep(z, Fy) = corep(y, Fy)
)

<
<

min(4|corep(z, Fy)|, 8|corep(z, F1)|) since |corep(x, Fy)| < 3|corep(z, F1)|.

Plugging this in, we obtain, as required,
|corep(z, F1)Acorep(y, F1)| < 40kq; - min(|corep(z, F1)|, |corep(z, F3)|)/7.

O

We now are fairly close to getting our desired rectangles. Let S(n,d) be the number of subsets
of X of size at most d. Note that S(n,d) < 272(4/")" where H, is the binary entropy function.

Lemma 9. Let k > 2 be an integer, v € (0, 5) be given and ¢1 < v/(120k). Let r > 4k2 (g **).
Let P = (Ty,...,T;) be an inquisitive (r,k/r)-decision forest. Let I C DX be a set of inputs
accepted by P. There is an I' C I with |I'| > (1 — 8y)|I| that is covered by fewer than 8k? families
Rup for 1 <€ <2k, 1 < b <4k of disjoint (m, a)-rectangles, where each (m,c)-rectangle satisfies
m > ¢*n/2 and o > 4|I||D|"/(8k2S(n, 120kq m/v)).

Proof. Let oy, (m) =4|I||D|~"/(8k*S(n,120kq1m/7)).

By Lemma 8, we can partition I into sets Iy = {z € I : Lp(z) = {,qp(z) = @}, for 1 < £ <2k
and 1 < b < 4k, and for each such pair (4,b) there is a pair of disjoint subforests F; = Ff’b and
Fy = F;’b C P and a subset I, C Ipp with [I7,] > (1 — 67)|I¢| satisfying

(i) Any z € I}, has [corep(z, Fj)| > Tqfn > qj”“2n/2 and |corep(z, Fj)| < 3|corep(z, F3_;)| for
Jj€{1,2}.

(ii)) Any =,y € Ifypy such that stemp(z, F3_;) = stemp(y, F3_;) have
|corep(z, Fj)Acorep(y, Fj)| < 40kq; - min(|corep(z, F1)|, |corep(z, Fy)|)/v for j € {1,2}.

14

Furthermore, for each (£,b) pair, letting F; = Ff’b and Fy = er’b define
Rep = {R € Rp(F1,Fy) : Ris an (m,a)-rectangle with m > q‘szn/Q and a > o)y (m)}-

We want to show that at most an 8y fraction of the inputs in I is not covered by rectangles in Ry
for some (£,b). By the argument above, at most a 6+ fraction of the inputs in I is not contained in
I* = Ue’b I,. It remains to show that at most 2v[I| inputs are in I* but are not covered by any
rectangle in some Rep-

Fix (£,b) with 1 < £ < 2k and 1 < b < 4k and let F; = F{* and F, = F/*. Consider the
following equivalence relations.

For j € {1,2}, for z,y € DX define x ~§’b y if and only if stemp(z, F}) = stemp(y, F;).
For input z € DX, let [z]f’b and [:v]g’b be the respective equivalence classes in D¥ containing

z. Observe that by Lemma 4, for any z € D®, every y € DX such that y agrees with z on
X — corep(z, Fj) has stemp(y, Fj) = stemp(z, F};) and thus y € [:v]ﬁb Since these are the only y

for which stemp(y, F;) = stemp(z, F}), \[x]ﬁ’b| = | Deorer(@.F)))|,

For j € {1,2}, for z,y € P71(1), let N?(%—j) y if and only if stemp(z, Fj) = stemp(y, F;) and
corep(z, F3_;) = corep(y, F5_;). For input z € P~1(1), let [a:]ﬁbm and [z]2<1> be the respective
equivalence classes of inputs in P~!(1) containing z under these equivalence relations. Note that

_ b . 0b
for z,y € P71(1), ~s_jy Y implies that z ~7" y.

Consider z € Ij;. Recall the Yj(z, F1, F3), my(F1, F»), and ay(F1, F») associated with rectangle
R, (F1, Fy). Observe that [3!3]?’(12,)_].> ={z? : o €Yj(z, F1, F>)} and thus |Y)(z, F1, F)| = |[a:]§’<%_j>|.

Now R, (Fy, Fy) is an (mg(F1, Fy), ap(F1, Fy))-rectangle where

mg(F1,Fy) = min(|corep(z, F1)|,|corep(z, F3)|), and
az(Fi, Fy) = nflin(IYl(:v Fy, Fy)|/|DemeP @)Yy (z, Fy, Fy)|/|Deorer (1))

= min([a]gy /117, [2l50 /11]5"))-

By construction, all z € 1, l?“b satisfy my = my(F1, Fy) > qf 2n/ 2 so we only need to count those
T € Ie » such that o, = o, (Fy, F2) < O‘low(mx) Let IK » be those z € Ie p such that o > apy (M2)-
By construction, every element of I 0h is covered by some rectangle in Ry ;. We now bound | I} b —I i bl-

If ap < alow(mw) then either a \[x]“ |/|[m] | < alow(mw) or a [av] \/\[w] | <
)ow(mz)- We consider the two cases separately

Let Be’b ={z e}, : ol < oy (m;)}. Fix some z € I7,- We bound |Bf’b N[z]fb. Since
z Ne(z;) y implies z Nf’ y, we obtain a partition of P~1(1) N [z]{’b into Nﬁ
Let C; be a set of representative elements z for these classes, [z]f’b where we choose each z to be
in I}, if possible. Note that for all z € Cy, [2];” = [z];". Let C4 = {2 € C; : z € I}, and ol <
O‘low(mz)} Note that

’(b2>—equivalence classes.

£,b £,b £,b
Bl n [$]1 g U [z]1<2>.
z2€C)

By Lemma 8, if z € C., |corep(z, Fy)Acorep(z, Fy)| < 40kqimy/vy and therefore |CL| <
S(n,40kqimgy/7v) since all z € C, have distinct values of corep(z,Fy). Also for z € CL,

15

|corep(z, F1)| < 3|corep(z,Fy)| and stemp(z,Fy) = stemp(z,Fy). Therefore corep(z, F1) =
corep(z,F1) and m,; < |corep(z,Fi)| = |corep(z, F1)| < 3m,. It follows that for any z € CL,
|Gzl < S(n, 40kqime/v) < S(n,120kqim. /7).

Let z = z* € C!, maximize o.. Then

£,b £,b £,b
‘B1 N [55]1 < | U [z]1(2)|
2€C,

DRICHA

2€Cy,

= > o

2€C},

= > ol

2€CL

] - abe - |[z]7

S(n,120kqumz- /) - @y (mae) - [[2]2°
Y11 D] =" [2]°] / (8K?).

IA

IA A

IA

Summing over all equivalence classes [a:]ﬁ’b, we obtain that |Bf’b| < 4|I|/(8k?) since these classes
cover DX.

By similar reasoning we obtain the same upper bound of y|I|/(8k%) on the size of the set
Bﬁ’b ={z €1}, : o < a)yy(m2)}. Therefore

* £,b £,b
[I7y — Iyl < |BY’| + |By”| < 29|/ (8K?).

Let I' = U,y - Summing over all 8k? pairs (£,b), we see that |[I* — I'| = Uep 17 s — ol <
29/1|. O

(From this lemma we can obtain the following corollary which is a sharper version of lemmas
proved by Ajtai.

Corollary 10. Let k > 2 be an integer, v € (0,%) be given and ¢1 < 7/(120k). Let r >
4k2)(v¢**). Let P = (Ty,...,T,) be an inquisitive (r,k/r)-decision forest. Let I C DX be
a set of inputs accepted by P. There is an (m,)-rectangle R C DX, with m > q%kzn/Q and
a > 4|I||D|7"/(8k?S(n,120kqim/v)), such that all inputs in R are accepted by P.

Proof. Choose any rectangle in one of the families of rectangles in Lemma 9 since I’ is non-empty.
O

3.3 Branching Program Theorems

Theorem 11. Let k > 2 be an integer, ¢ < 270k=8 r = 40k2/qfk2, and |X| = n > r%. Let
B be a branching program of length at most (k — 1)n and size 25. Let I C DX beQa set of
inputs accepted by B. There is an (m,a)-rectangle on which B outputs 1 where m > Q%k n/2 and

a > 2_Q}/2m—ST|I||D|—n_

16

Proof. We first break up B into at most 25" inquisitive (r, k/r)-decision forests each accepting
disjoint portions of I, using Lemma 2. We can do this either

e by adding n dummy queries at the start of B to make its length kn and then applying
Lemma 2 to the resulting branching program, or

e by first applying Lemma 2 with ' = 7(k — 1)/k and then adding r/k decision trees to each
decision forest, each of which has all inputs follow the same path with leaf label 1, as described
at the beginning of section 3.2.

Thus, there is an inquisitive (, k/r)-decision forest P that accepts at least a 275" fraction of
I. Let v =3/25 < 1/8 and observe that r > 4k2/(fyq‘11k2). Applying Corollary 10 to P, we obtain
an £ and b, with 1 < £ < 2k, 1 < b < 4k, and an (m, a)-rectangle R C DX, with m > q%k2n/2
and o > 3-2797|I||D|~"/(200k%S(n, 1000kq;m)), such that all inputs in R are accepted by P (and
therefore B).

Let 8 = m/n > ¢**’/2 and p = 1000kqy 3. Then S(n,1000kg;m) < 2H2()" where Hy(p) =
plogy(1/p) + (1 — p)logy(1/(1 — p)) is the binary entropy function. Since m < n/2 and ¢; <
1/(1000k), p < 1/2 which implies Hy(p) < 2plogy(1/p). Also p = 1000kg13 > 500kqi* ' implies
logy 1/p < 5k?log, 1/¢q1. Hence Hay(p) < 2plog,(1/p) < ck3q11logy(1/¢1)B, where ¢ = 215, Therefore

/
200k S(n, 1000kqim)/3 < 200k22¢°0 10g>(1/ar)m /3 < 9ar’*m
for ¢ < 1/(c*k®). Thus we obtain the desired lower bound on c. O

Theorem 12. Let k > 2 be an integer, ¢1 < 270k=8 r = 40k2/qfk2, and |X| = n > r%. Let
B be a branching program of length at most (k — 1)n and size 25. Let f : DX — {0,1} and
6§ = |F~1(1)|/|DX|. Suppose that B correctly computes f on all but an € fraction of DX. Then
there is an (m,a)-rectangle R C DX accepted by B with m = q%k2n/2 and a > 9=/ m—Sr (6 —¢)
such that at most an 80k?c/(6 — €) fraction of the elements of x € R have f(z) = 0.

Proof. Follow the same pattern as the beginning of the proof of Theorem 11, producing the 257
inquisitive (r, k/r)-decision forests P which partition the space of inputs that B accepts.

For each of the 257 decision forests, P, apply Lemma 9 with v = 1/10 and Ip equal to the set
of inputs in f (1) correctly accepted by P. Lemma 9 gives 8k? partitions R, p for j =1,... ,8k?
into rectangles for each of these sets Ip. Let I = |JpIp. Throw out all Ip that cover less
than a /25" fraction of 1. This involves throwing out at most a -y fraction of I in total. By
assumption, |I||D|™™ > ¢ — e and these sets Ip are disjoint. Thus we can derive new partitions
R; for j =1,...,8k? where R; = |Jp Rj p which together cover all but a 9y fraction of I since I’
covered all but a 8y fraction of I.

Since the rectangles together cover at least a (1 —9v)(8 —¢) fraction of DX, there is at least one
of the 8k? partitions R; that covers at least a (1 — 9v)(8 — €)/(8k?) fraction of DX. Call an input
z € DX a false positive if B accepts z but f(z) = 0. Since B has at most ¢|D”| false positives, R;
covers at most €| D] false positives. Therefore the fraction of inputs covered by R; that are false
positives is at most 8%%¢/[(1 — 97)(8§ — €)]. Therefore there is some (m, a)-rectangle R in R, that
has a fraction of false positives no worse than 8k%e/[(1 — 97)(6 — €)] < 80k%¢/(6 — €). Choose such
a rectangle R.

Using the same reasoning as in the proof of Theorem 11, we obtain the bounds on m and a. [

17

4 Lower Bounds

4.1 Element Distinctness

The element distinctness problem is the function ED : DX — {0,1} which outputs 1 if and only if
there is no pair 7 # j € X such that z(i) = z(j).

Proposition 13. For N > n? —n, (]X) > N"/e.

Thus if |[D| > n? — n, at least a 1/e fraction of all inputs z € D™ have ED(x) = 1. We first use
Ajtai’s argument to obtain a lower bound for deterministic branching programs computing ED.

Lemma 14. Let ED : D™ — {0,1}. Any (m, a)-rectangle R C D™ such that ED(xz) = 1 for all
€ R has a <27™,

Proof. Suppose that o > 27™. Let A, Ay, Y7, Y5, and p witness the fact that R is an (m, a)-
rectangle. For each ¢ € A1 U Ay let R; be the set of projections of elements of R onto their i-th
coordinate. Clearly, |Y1| < [[;c4, |[Ri| and so there is some i; € A; such that |R; | > o'/™|D| >
|D|/2, since o > 2~™. Similarly, there is an i9 € As such that |R;,| > |D|/2. Therefore R;, N R;, #
0. Let j € R;; N R;,. By the rectangle property of R there is an element z € R such that
z(i1) = j = z(i2) and thus ED(z) = 0 contradicting our assumption. O

Theorem 15. There is a constant ¢ > 0 such that any [1,n%]-way deterministic branching program
computing ED : [1,n%]" — {0,1} in time T and size 2° requires T = Q(n+/log /loglog(n/S)).

Proof. Suppose we have a branching program of length (k — 1)n and size s = 25 for ED. Apply
Theorem 11 with ¢; = 27%%~8. For r = 40k2/¢*” and n > r? we obtain an (m, a)-rectangle on
which B outputs 1 such that m > q‘szn/Q and o > 2*‘1}/2"‘*57/6 > g0 m-sr-2, Using Lemma 14,
this means 241" =572 < 27™ and thus Sr > m(1— qi/z) —2>¢¥®°n/4or S > ¢’ n/(4r). Thus
for some constant ¢ > 0 any algorithm solving ED in time kn requires space at least k= n,
Substituting 7' = (k — 1)n, and re-arranging we obtain the claimed tradeoff. U

Corollary 16. For any € > 0 there is a constant c., such that any RAM algorithm for element

distinctness on inputs in the range [1,n?] taking at most ccn/log /loglog(n) time requires at least
1—¢€

n' ¢ space.

We now consider randomized branching programs for £D. As usual, we prove a lower bound
on the e-error randomized complexity of £D by proving a time-space tradeoff lower bound on the
complexity of any deterministic algorithm that errs on at most an e fraction of the input space DX.
That is we prove a lower bound on the e-error distribution complexity of ED. In this case we use
the uniform distribution on [1,n?]".

Lemma 17. Let ED : [1,n%]" — {0,1}, 0< £ <1, and 0 < e < 1/12. If R C [1,n%]" is an ezact
(kn, a)-rectangle such that at most an € fraction of x € R have ED(z) = 0 then

Hy (4e)

o< max{%(2\/§/3)m,2[(8/9)~2)

18

Proof. Essentially, we reduce this problem to proving a similar result about the set-disjointness
problem on two sets of size m = kn from a universe of size n' = n? — n + 2m.

Let Ay, As, Y1,Y5 and p be the associated defining components of R. If any element 7 of Y7 or
Y5 is such that p7 contains two matching elements then ED(z) = 0 for all elements z that agree
with p7. Assume without loss of generality that this does not occur since it only helps us.

Thus all elements of Y7 and Y3 have values chosen from the set [1,n2]—range(p) and furthermore
we can associate each element of Y7 or Y3 with an m-subset of [1,n2] — range(p). An input z € R
has ED(z) =1 if and only if these associated sets are disjoint. To simplify notation, let F' be the
collection of m-subsets corresponding to Y7 and G be the set of m-subsets corresponding to Ys. We
have |F|, |G| > (™).

We now apply an argument of Babai, Frankl, and Simon [BFS86] showing an e-error commu-
nication complexity lower bound to derive a lower bound for this set-disjointness problem. (Note
that we cannot apply the optimal communication complexity arguments of Kalayanasundaram and
Schnitger [KS87] or Razborov [Raz90] even if we worked with a non-uniform input distribution,
since these require precise linear relationships between the set and universe sizes. Surprisingly, the
weaker lower bound proved in [BFS86] is sufficiently strong.)

Suppose that o > 2?"(2\/5/3)”", otherwise we are done. Let F' be the set of all S € F that
intersect with less than a 2e fraction of T € G. Since at most an € fraction of pairs (S,T) in F' x G
intersect, |F'| > |F|/2.

Claim: We can select p > n'/(3m) sets S1,...,S, € F' such that |S; NU,;; Sil < m/2 for
J=1,...,p;ie. each S; has at least half of its elements not occurring in earlier sets.

We construct the sets S,... , S, inductively. Since p < n'/(3m), for any j, [U;; Si| < n'/3.
The total number of the (:ﬁ;) possible m-subsets that have more than half their elements in a given
such set of size n’/3 is at most (”m’;g) (2:,1’/23) and there are at most p such sets of size at most n’ to
consider. Thus in total, at most

() Cofa) < geiararor(7)
B —

KT m

< %(2@/3)“" (;')

sets in F' cannot be used at some stage of the construction (using Proposition 13 to obtain the
second line from the first). If « is as large as supposed, F' is large enough that there is always a
set S; € F' that can be chosen and the claim follows.

Fix the sets Si,...,Sp according to the claim. Now let G’ be the set of T' € G that intersect
with at most a 4e fraction of the sets S;. Since each S; € F, each intersects with at most an 2¢
fraction of sets in G. Therefore at least half the elements of G intersect with at most twice the
average number of the S;, and thus |G'| > |G|/2.

We now upper bound the number of elements in G’ and thus G. We can identify an element
T of G' by identifying a collection of p — 4ep of the p sets S; that T is not permitted to intersect
and then describing which m of the remaining elements of the domain that comprise 7. By the
claim, any collection of p(1 — 4¢) of the sets has a total of mp(1 — 4¢€)/2 > n/(1 — 4¢)/6 > n'/9

19

elements since € < 1/12. Therefore |G| > 2|G'| > 2(f)(8"’/9) < 2- 2H2(46)P(8/9)m(f,;) < 2-

4dep m
RH2(4n/(36) (3 /9)n (M) = 2. 257 (8/9)%]" () and thus & < 2- [27 3¢ (8/9)%]". O

We’d like to avoid the restriction that we only consider exact (m, a)-rectangles. Unfortunately,
in the randomized case we cannot simply apply Lemma 1 to find an exact (m, a)-rectangle with
small error given an (m, a)-rectangle with small error. Nonetheless we can show:

Lemma 18. Given an (m, a)-rectangle R which has at most an € fraction of its elements labelled
bad, there is an exact (m,a/2)-rectangle R' C R with at most a 4 fraction of its elements labelled
bad.

Proof. Let Ay, As,Y1,Ys and p be the defining components of R. Choose A’ and A}, to be the first
m elements of A; and A, respectively. For each assignment o to A; — A} let Yi(0) be the set of
inputs in Y7 that extend o. Call a o good if at most a 2¢ fraction of the elements (71, 72) € Y1(0) x Y3
have (p, 11, 72) labelled bad. Since the different Y1(o) partition Y7, at least 1/2 of the elements of
Y7 are in classes Yi(o) such that o is good. Since there are at most DAl 144 possible good o
and) good [Yi(0)| > |Y1]/2 > (a/2)D1l) choosing the oy to be the good o that achieves the
maximum size of Y;(c) we obtain |Y1(o1)| > (e/2) D41/ DIAI=141] = (o /2) DI

We now apply a similar argument considering each assignment o to A; — A}, and select Y3(o2) to
be the largest of the sets Y5(o) such that at most a 4e fraction of the elements in Yi(01) X Yy (o) are
labelled bad. Clearly, the resulting set Th(o3) satisfies [Y3(02)| > (@/2)D!42|. Finally, let p' = poyos
and Y] be the set of assignments to A} consisting of the restriction of Y;(o;) to A}. It is clear that
the result is an exact (m, «/2)-rectangle having at most a 4e fraction of elements labelled bad. [

Theorem 19. There is a constant ¢ > 0 such that if ¢ < (T/n)"“T/™* any c-error randomized
[1,n%])-way branching program computing ED : [1,n%]® — {0,1} in time T and size 25 requires
T = Q(n+/log /loglog(n/S)).

Proof. Let T = (k — 1)n and without loss of generality that k is an integer and at least 3. We
choose ¢; = 27%0%8. Then there is a constant ¢ > 0 such that all positive ¢ < (k — 1)_‘1(’9_1)2
satisfy 4¢/ < 1/2 and Hj(4¢') < 3k3 for all k > q%kz/Z where ¢ = 240k?e. Suppose that € is at most
this value.

Let 7 = 40k?/ qi”“z and n > 2. By Theorem 12, if a deterministic branching program disagrees
with ED on all but at most an e fraction of inputs then there is an (m,a)-rectangle R with
m = rn, k> ¢{* /2 and & > 2_‘1%/27”_‘%(1/6 —€) > 9=a1"*m=57=2 guch that ED is 0 on at most an
¢ = 80k%¢/(1/e — €) < 240k2¢ fraction of R.

Applying Lemma 18 we obtain an exact (kn,«/2)-rectangle R’ with error at most 4¢/. By

Lemma 17,
Hq(4€¢')

of2 < max{ 2 (2v/3/3)"", 2[(8/9)"2 "% T}

and thus
Hy(4€e')

2
oyl k513 max{ = (2V2/3)", 2[(8/9)"2 =

"}

By our condition on ¢, the second quantity in the maximum is at most (8/9)F"2%°7+1 < (9/10)"
provided that k is sufficiently large. Since n > r2, the first quantity is at most (19/20)%". Thus,

qi/ ®km + Sr > ¢'kn, for some constant ¢ > 1/20 independent of k. Therefore St > ¢’kn/2 which

20

implies k¢"'** > n/S for some constant ¢ > 0 independent of k,n and S. The claimed lower bound

follows immediately. O

Corollary 20. There is a constant ¢ > 0 so that for any 6 > 0 there is a constant cs such that any
randomized RAM algorithm for element distinctness on inputs in the range [1,n%] taking at most
csny/logn/loglogn time and having at most clolgol% error requires at least n' % space.

Boolean Branching Programs Computing Quadratic Forms

Following [BST98], Ajtai looks at quadratic forms z7 Mz for certain matrices M. Using ideas of
Borodin, Razborov, Smolensky [BRS93|, Beame, Saks, and Thathachar had shown a relationship
between the approximation of 7 Mz on (m, a)-rectangles and the minimal rank of sub-matrices
(known as the rigidity) of M. The Sylvester matrices considered in [BST98] do not have sufficiently
strong rigidity properties to obtain a non-trivial time-space tradeoff for the specific parameters m
and « for which Ajtai needs them.

Instead, Ajtai looks at Hankel matrices, matrices whose every anti-diagonal is constant. Al-
though an n x n Hankel matrix has n? entries, it only takes 2n — 1 values to specify a Hankel
matrix and therefore one can get explicit functions even by looking at random Hankel matrices.
Ajtai shows the following lemma concerning the rigidity properties of random Hankel matrices over
GF(2).

Lemma 21. Assume that n,s, R,t are positive integers, 1> < s <n, R < Q = |s/t*]. If M is a
random n x n Hankel matriz over GF(q), the probability that there is some s X s sub-matriz of M

of rank less than R is at most
n)* Q g 1@ R+
Qt Q—-—R+1)

We restate this in a more convenient form, making no attempt to optimize constants.

Corollary 22. Let M be a random n x n Hankel matriz over GF(2). Let ¢ satisfy én > 24 and
1/6 > 2% 10g2(1/6). With probability at least 1/2 a random én x én minor of M has rank at least
6n/(256log,(1/6))2.

Proof. Let s = én, t = 128logy(1/6), Q = [s/t?], and R = @Q/2. The failure probability from
Lemma 21 is at most

2
(n) < Q)Q—%(Q—Rﬂ)ﬁ < 9[2Ha(8/t)+(6/1*)n—1L8]n

Qt Q—-R+1
Now
Hy(6/t) = —(6/t)logy(8/t) — (1 —6/t)logy(1 —6/1)
< —2(6/t)logy(6/1)
< —4(8/t) logy(6)
< 6/32

Therefore the failure probability is at most 2[1/16+(1/t*)=1/9]én < 9 2n < 1/2 since én >24. O

21

The following lemma relates the rank of a matrix to the fraction of inputs on which a bilinear
form based on the matrix outputs given values. Note that part (a), which was used by Ajtai, was
already shown in [BRS93] and can be easily proved more directly by a rank argument. We need
the stronger results of either part (b) or (c) to obtain our bounds.

Lemma 23. Let M be an m xm matriz over GF(2) of rank r. Let b € {0,1}. Let U,V C GF(2)™,
a=|U|/2™, and B =|V|/2™. Then

(a) if aff > 27" then ul Mv is not constant for all (u,v) €U x V
(b) if af > m?227" then ul Mv evaluates to b for at least a 1/(16m?) fraction of (u,v) € U x V.

(c) if aB > m?237" then v Mv evaluates to b for at least a 1/32 fraction of (u,v) € U x V.

Proof. We can write M = KL where K is an m x r matrix over GF(2) of rank r and L is an
r X m matrix over GF(2) of rank r. Therefore u” Mv = v KLv = (KTu)T Lv = 2Ty for z = KTu
and y = Lv. Observe that both K7 and L are m x r matrices of rank 7 that map 2™ " points of
GF(2)™ onto each point of GF(2)". Therefore, the sets X = K7U and Y = LV satisfy | X| > o2"
and |Y| > 52". Now, by well-known properties of inner product (see, e.g., [BFS86]), the difference
between the number of 0’s and 1’s of z7y on X x Y is at most /a32%/2. Now for a8 > 277, the
number of points in X x Y is at least 2" > /aB2%/2, and so 2Ty is non-constant on X x Y. Thus
u? M is non-constant on U x V.

Also, for a3 > 2277, the difference between the number of 0’s and 1’s in X x Y is at most 27 +!
but the number of elements in X x Y is at least 2772, Therefore, at least 1/4 of the elements of
X x Y take on value 1 and 1/4 of the elements of X x Y take on value 0. However, we would like
to show that u” Mwv takes on a significant fraction of both 0’s and 1’s on U x V. The complication
is that each value £ € X and y € Y is not the image of the same number of elements of U and V
respectively.

We handle this by grouping elements of U xV based on the approximate sizes of these pre-images.
Fori=0,... ,m—r,let U; be the set of points u € U such that 2° < [{v' € U | KT’ = KTu}| < 21!
and for 5 =0,... ,m — 7, let V; be the set of points v € V such that 2/ < |{v' € V | Lv' = Lv}| <
27t1. Let a; = |Uy]/2™ and B; = |Vj|/2™, X; = K"U; and Y; = LV;. Clearly, |X;| > ;2" and
|Y;| > B;2". Also, observe that any two points in X; x Y; differ by at most a factor of 4 in the
number of pre-images in U x V' (which are all in U; x V}).

Now if we choose the largest U; and Vj, we have a; > o/m and §; > /m and thus, since
af/m? > 2277 at least 1/4 of the elements of X; x Y; take on each value. Therefore, at least 1/16
of the elements of U; x V; take on each value. By choice of U; and Vj, therefore at least 1/(16m?)
of the elements of U x V' take on each value.

We can do better by a subtler argument. There are at most m? sets U; x V; and these partition
U x V. At most 1/2 of the elements in U x V are in sets U; x V; such that |U; x V;| = ;3;2°™ <
af32?™/(2m?). For each of the remaining sets U; x V;, we have |X; x Y;| > a32%" /(2m?) > 2277,
and so at least 1/4 of the elements of X; x Y; take on each value. Therefore, at least 1/16 of the
elements of each these U; x V; take on each value. Since together these U; x V; cover at least 1/2
of U x V, uT Mv on U x V takes on each value at least 1/32 of the time. O

The relationship between the rank of sub-matrices and the approximation of quadratic forms
given in [BST98] works only for GF(q) with char(q) # 2 and needs to be modified to handle GF(2).

22

To handle GF(2), instead of working with the Hankel matrix directly, Ajtai zeroes out the entries
above the diagonal to get a matrix M’ based on the Hankel matrix M, otherwise, except for the
diagonal, all the submatrix products of 27 Mz would appear twice, once above and once below
the diagonal, and therefore cancel each other out modulo 2. We first will want to show that our

(m, a)-rectangle can be chosen whose defining sets A;, Ay correspond to a large block below the
diagonal of M'.

Lemma 24. Let X = {1,... ,n} and consider the space DX. Given an (m,a)-rectangle R which
has at most an e fraction of its elements labelled bad, there is an exact ([m/2],a/2)-rectangle
R’ C R with at most a 4e fraction of its elements labelled bad and with the defining sets A} and A
of R’ having the property that every element of A' is smaller than every element of Aj.

Proof. Let A1, Ay Y1, Ys, and p be the defining components of R. Let a1, as be the median elements
of Ay and Ay, respectively. If a1 < ag, then let A) be the first [m/2] elements of A; and A} be the
last [m/2] elements of As. Otherwise, we can reverse the roles of 4; and Ay so we assume a; < ag
without loss of generality. We now apply the same argument as in the proof of Lemma 18 to obtain
the desired conclusion. Note that in the case there are no inputs labelled bad, we can apply the
argument of Lemma 1 to obtain an exact ([m/2], a)-rectangle. O

Theorem 25. Let F(x,y) be the function of 3n—1 bits that defines x7 M'xz for the modified Hankel
matriz given by y. Any deterministic Boolean branching program computing F(x,y) in time T and
size 25 requires T = Q(n+/log /loglog(n/S)). Furthermore, there is a constant ¢ > 0 such that
any randomized Boolean branching program computing F(z,vy) in time T and size 2° with at most
€ < n?/T? error requires T = Q(n+/log /loglog(n/S)).

Proof. Fix the value of y to create a matrix M that satisfies the conditions of Corollary 22. We
obtain our lower bound by considering the distribution of inputs z uniformly chosen from GF(2)"
and show a lower bound on the time and space for a deterministic branching program B computing
f(z) = ¥ M'z with at most € error. Let b € {0,1} be a value of f that at least 1/2 the time.
Without loss of generality we assume that b = 1; if not we swap the sinks of B to obtain a program
computing f with at most € error.

We first show the case when € = 0, i.e., deterministic lower bounds. Let ¢ = 276010,
Applying Theorem 11 to B with I equal to the set of inputs on which B outputs 1 we obtain

that for r = 40k%/¢**” and n > r? there is a (nn,2_‘1}/2’“”_57’_1)—rectangle on which B outputs
1, where xk > q%k2/2. Apply Lemma 24 to get two sets Aj, Az of size precisely [kn/2] with all
elements of A; less than all elements of Ay and an exact ([kn/2], a)-rectangle R based on (A1, A2)

/ .
for o > 2*‘1} 2””*5“1. For any z € R, with 4 € Y1 and v € Y3 equal to the values of z on A; and
Ay respectively,
Mz = (p+ut+o)TM(p+uto)
= p"M'p+u" M)y, 4v+ 0" M), 4 u
T ar! T art T argt T argt T art T argt
+(uT MYy, gu+ p" My +u" M p) + (07 MYy, 40+ p" Mo + 07 Mp),

= p"M'p+u" M}y, 4,0+ fi(u) + fo(v)

where f1(u) = u" M}y, 4 u+ p"Mu+u"M'p and fo(v) = v" M), 4,0+ p" M'v 4+ v" M'p, since

M}, 4, is a O-matrix being entirely above the diagonal. Also, pT M'p is constant. At least 1/2 of
all elements in Y7 have one of the two values of fi(u); fix this more popular value to get Y{. Do

23

the same for Y, to obtain a ([xkn/2],a/2)-rectangle R on which these three terms are constant.
Thus 27 M'y is constant on R’ if and only if u M)y , v = u” Ma, a,v is constant on Y/ x Y. By
Lemma 23(a) and Corollary 22 applied to M, we obtain 1r/(256 logy(2/x))? < q%/2l<,+ (ST +2)/n.
Now q%/Q < 0.5/(2561ogy(2/k))? for k sufficiently large, therefore S > Lrn/(25610gy(2/k))? >
n/ k¥* for some constant ¢ > 0. Using k = T'/n and re-arranging, we obtain the desired result.

We now consider the case that 0 < e < 1/(2%-200k2). Let ¢; = 2 %k 19. Applying Theorem 12
to B we obtain that for 7 = 40k2/¢%” and n > r? there is a (m = kn, o = 2*‘11/2"”*5T*2)—rectangle
R with k > q%k2/2 on which B outputs 1 but for which f is 0 for at most an 80k2?¢/(1/2—¢) < 200k2¢
fraction of R. Apply Lemma 24 to get two sets Ay, Ay of size precisely [kn/2] with all elements
of A less than all elements of Ay and an exact ([kn/2],a/2)-rectangle R’ based on (A1, A2) on
which f is 0 on at most a 22 - 200k2¢ fraction of elements. As above for z € R’ we get

eI M'z = pTM'p + UTM,Iql,Aﬂ + fi(u) + fa(v),

for u € Y7 and v € Y3 where Y7 and Y5 are the sets of assignments to A; and Ay defining R'. At
least 1/2 of all elements in Y; have one of the two values of fi(u); fix this more popular value to
get Y/. Do the same for Y to obtain a ([xn/2], a/4)-rectangle R” on which the terms other than
uT My, a,v are constant. Observe that since R” contains at least 1/4 of the elements of R, the
fraction of elements of R” on which f is 0 is less than 4 times that on R’, or 2* - 200k%e < 1/32 by
the bound on e. However f is 0 on R" if and only if such that uTM1'41,A2U = uT My, 4,0 =V for
some b’ € {0,1}. By Lemma 23(c), this implies that (a/4)? < [kn/2]223 7¢"k(Ma1.45) Therefore
by Corollary 22, we obtain

/

2—2(1} 2kn—2Sr—8 < |'K/n/2'|223—|'nn/2'|/(256log2(2/n))2_

Therefore,

(2Sr +11) > %nn/(256 logy(2/k))? — 2q}/2mn —2logy[kn/2].

Now 2qi/2 < 0.5/(25610og,(2/k))? for k sufficiently large and 2log,[kn/2] < n so Sr >

$kn/(2561ogy(2/k))* for n sufficiently large. Therefore S > n/kc’“2 for some constant ¢ > 0.
Again, the desired result follows immediately.

O

We note that the key rigidity property of the Hankel matrix that we needed for the lower bound
was that any of its kn X kn-minors has rank significantly larger than xn/(log(1/k))?*¢ for any
€ > 0. The Sylvester matrices considered in [BST98] only have a rank guarantee of x2n.

Acknowledgements

Thanks to Jayram Thathachar for many discussions about these branching program problems.

References

[Abr90] Karl R. Abrahamson. A time-space tradeoff for Boolean matrix multiplication. In
Proceedings 81st Annual Symposium on Foundations of Computer Science, pages
412-419, St. Louis, MO, October 1990. IEEE.

24

[Abr91]

[Ajt98]

[Ajt99a]

[Ajt99b]

[BC82]

[Bea91]

[BFK*81]

[BFMadH*87]

[BFSS6]

[Bor93)

[BRS93]

[BST9S]

[Cob66]

[For97]

Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general se-
quential models. Journal of Computer and System Sciences, 43(2):269-289, October
1991.

M. Ajtai. Determinism versus non-determinism for linear time RAMs with memory
restrictions. Technical Report TR98-077, Electronic Colloquium in Computation
Complexity, http://www.eccc.uni-trier.de/eccc/, 1998. Revision 1.

M. Ajtai. Determinism versus non-determinism for linear time RAMs with memory
restrictions. In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, 1999.

M. Ajtai. A non-linear time lower bound for boolean branching programs. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science.
TEEE, 1999.

Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general
sequential model of computation. SIAM Journal on Computing, 11(2):287-297,
May 1982.

Paul W. Beame. A general time-space tradeoff for finding unique elements. STAM
Journal on Computing, 20(2):270-277, 1991.

Allan Borodin, Michael J. Fischer, David G. Kirkpatrick, Nancy A. Lynch, and
Martin Tompa. A time-space tradeoff for sorting on non-oblivious machines. Journal
of Computer and System Sciences, 22(3):351-364, June 1981.

Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli Upfal, and Avi
Wigderson. A time-space tradeoff for element distinctness. SIAM Journal on Com-
puting, 16(1):97-99, February 1987.

Laszl6 Babai, P. Frankl, and Janos Simon. Complexity classes in communication
complexity theory. In 27th Annual Symposium on Foundations of Computer Science,
pages 337-347, Toronto, Ontario, October 1986. IEEE.

Allan Borodin. Time space tradeoffs (getting closer to the barrier?). In 4th Inter-
national Symposium on Algorithms and Computation, pages 209-229, Hong Kong,
December 1993.

Allan Borodin, A. A. Razborov, and Roman Smolensky. On lower bounds for read-k
times branching programs. Computational Complexity, 3:1-18, October 1993.

Paul W. Beame, Michael Saks, and Jayram S. Thathachar. Time-space tradeoffs
for branching programs. In Proceedings 39th Annual Symposium on Foundations of
Computer Science, pages 2564-263, Palo Alto, CA, November 1998. IEEE.

Alan Cobham. The recognition problem for the set of perfect squares. Research
Paper RC-1704, IBM Watson Research Center, 1966.

Lance Fortnow. Nondeterministic polynomial time versus nondeterministic logarith-
mic space: Time-space tradeoffs for satisfiability. In Proceedings, Twelfth Annual
IEEE Conference on Computational Complezity, pages 52-60, Ulm, Germany, 24—
27 June 1997. IEEE Computer Society Press.

25

[FvMO00] L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondeterministic com-
putation. In Proceedings, Fifteenth Annual IEEE Conference on Computational
Complerity. IEEE Computer Society Press, July 2000. To appear.

[KS87] B. Kalyanasundaram and Georg Schnitger. The probabilistic communication com-
plexity of set intersection. In Proceedings, Structure in Complexity Theory, Second
Annual Conference, pages 41-49, Cornell University, Ithaca, NY, June 1987. IEEE.

[LV99] R. Lipton and A. Viglas. Time-space tradeoffs for sat. In Proceedings of the 40th
Annual Symposium on Foundations of Computer Science. IEEE, 1999.

[MNT93] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal
hashing. Theoretical Computer Science, 107:121-133, 1993.

[Pip79] Nicholas J. Pippenger. On simultaneous resource bounds. In 20th Annual Sympo-
sium on Foundations of Computer Science, pages 307-311, San Juan, Puerto Rico,
October 1979. IEEE.

[Raz90] A. A. Razborov. On the distributional complexity of disjointness. In Michael S.
Paterson, editor, Automata, Languages, and Programming: 17th International Col-
loguium, volume 443 of Lecture Notes in Computer Science, pages 249-253, Warwick
University, England, July 1990. Springer-Verlag.

[Yao8§| A. C. Yao. Near-optimal time-space tradeoff for element distinctness. In 29th Annual
Symposium on Foundations of Computer Science, pages 91-97, White Plains, NY,
October 1988. IEEE.

ECCC ISSN 1433-8092
26 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

