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Abstract

The very first Kolmogorov’s paper on algorithmic infor-
mation theory [1] was entitled “Three approaches to the
definition of the quantity of information”. These three ap-
proaches were called combinatorial, probabilistic and al-
gorithmic. Trying to establish formal connections between
combinatorial and algorithmic approaches, we prove that
every linear inequality including Kolmogorov complexities
could be translated into an equivalent combinatorial state-
ment.

Entropy (complexity) proofs of combinatorial inequali-
ties given in [5] and [2] can be considered as a special
cases (and a natural starting points) for this translation.

1. Introduction and examples

Kolmogorov complexity
�������

of a binary string
�

is
defined as the length of shortest program that produces

�
.

Complexity depends on the programming system, and we
assume that programming system is optimal (complexity is
minimal up to � �	�
� additive term). Conditional complex-
ity
������� ��

is defined as the length of shortest program that
produces

�
given input


.

This approach was called “algorithmic” in [1]. Combina-
torial approach was explained in the same paper as follows:

Consider a variable
�

whose range is a finite set �
of cardinality � . One can say that the “entropy”
of variable

�
is equal to � ��������������� � . When a

specific value
��� �

is fixed, we “eliminate” this
entropy by providing ! �"�#�$��� � bits of “infor-
mation”. For % independent variables

�'&)(+*+*,*-(.��/
whose range have cardinalities � &0(+*,*+*+( � / we
have � ����&)(.� � (,*+*,*-(.��/)��� � ����&-�21 � ��� � �31*+*,*41 � ����/�� .

And later:

Let
�

and


be variables (with ranges � and 5 )
that are dependent in the following sense: not all

pairs
�6(.

from �8795 are allowed as values. Let:
be the set of all allowed pairs. For any

�<; �
we consider the set 5�= of all


such that

�>��(.��2;
:

. Now the conditional entropy can be naturally
defined as follows: � ��'� �?�@�A����� � � � 5 = � where
� � 5 = � stands for the cardinality of 5 = .

There are some evident connections between combinato-
rial and algorithmic approaches. First, the set of all strings
having complexity less than B contains at most C$D elements
(since different strings correspond to different programs and
the number of programs does not exceed

�?1 C 1E*,*+*�1 C�D?F
&
).

On the other hand, as Kolmogorov says, if a finite set G
with large cardinality � can be defined by a program of
a negligible length

�
compared to

����� � � � , then almost all
elements of G have complexity close to

�����?� � [1].
Therefore the statement

�H�����JI B can be informally
translated into combinatorial language as

�
belongs to a

naturally defined set of cardinality about C$D .
In this section we give several examples showing a sim-

ilarity between combinatorial and algorithmic approaches.
In the next section we formulate three theorems that provide
combinatorial translations for linear inequalities involving
Kolmogorov complexities. All logarithms are binary:

�����LK
stands for

�#�$�$�'K
.

Our first example is the inequality
�H���M(.��ONP�H�����M1H�H����'1 � �������Q���������M1R������.�S� (1)

Here
�

and


are binary strings;
�H���M(.��

denotes the com-
plexity of pair

���6(.��
defined as complexity of the stringT �6(.�U

for a computable encoding
�M(. VW T �6(.�U

(different
encodings give different complexities, but the difference is
� �	�
� ).

The combinatorial counterpart of this inequality is the
following statement: Let X be a subset of the product � 7O5
of two finite sets � and 5 . Then

Y X N Y[Z]\ � X �_^ Y[Z�` � X � (2)

where
Y

stands for cardinality,
Z�\

and
Z�`

are projections
(e.g.,

Z�\ � X �a� b4�<; X ��c?2d��M(.�e@; Xgf ).
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The similarity is straightforward: take logarithms and re-
call that “combinatorial entropy” is the logarithm of car-
dinality of range. If a pair of variables

�6(.
ranges over

X�� � 7<5 , then
�

ranges over
Z \ � X � and


ranges overZ ` � X � .

Now consider a stronger inequality

�����M(S��ON
NP�H�����M1H�H��'� ���M1 � �����������������M1R������.�S� (3)

(Let us note that all inequalities for complexities are consid-
ered up to � ���#�$���<� -term where

�
is the sum of complex-

ities of all strings involved; we omit � ��������� � -terms (and
� �	�4� -terms) in the sequel.)

The inequality (3) is stronger than (1) since
����'� ��� N

�H����
.

Recalling Kolmogorov’s explanation of the combinato-
rial meaning of conditional entropy, we come to the follow-
ing inequality:

Y X N Y Z�\ � X ��^ T ���	�
	� \ Y X 
 U ( (4)

where X 
 stands for the set
b49�]d��6(.�e@; Xgf . Note that the

inequality (4) is stronger than (2) since
Y X 
 N Y[Z `2� X �

for any
�<; X .

The next example involves three variables and is consid-
ered in detail in [2]. The inequality

C �����6(.�(�?�aN��H���M(S �61R�����M(����'1H�H���(�?� (5)

is true (up to logarithmic terms) for any three strings
�6(.�(�

.
Its combinatorial counterpart says that

� Y X �
� N Y[Z]\ ` � X ��^ Y[Z]\�� � X ��^ Y[Z�`�� � X � (6)

for any subset X of the Cartesian product �A7@5J7�� of three
finite sets � , 5 and � . (Here

Z \ `
stands for the projection

of �87 5 7�� onto � 7 5 etc.)
This inequality also can be strengthened by replacing un-

conditional complexity by conditional one:

C �����6(.�(�?�aN��H���M(S �61R�����M(����'1H�H���(��� ��� (7)

The combinatorial counterpart is

� Y X �
� N Y[Z \@`2� X �_^ Y[Z \��O� X ��^ T �����
	� \ Y X 
 U (8)

where X 
 � b?d��(�?e@� d��6(.�(�?eO; X f .
All four examples given above follow the same pattern

and are covered by theorem 1 below; it says that combi-
natorial statement is true if and only if the corresponding
inequality holds.

More subtle example is provided by an inequality

�H�����'1H�H��Q� ��� N��H���M(S �
(9)

where, as usual, logarithmic terms are omitted. (This in-
equality is a reversed form of (3), so in fact inequality (3)
is an equality.) What is the corresponding combinatorial
statement? One could try

Y[Z]\ � X ��^ T �����
�� \ Y X 
 UMN Y X
but this statement is false for evident reasons (consider X
that has large X 
 for some

�
and small X 
 for many other�

’s). However, one can find a true statement which looks
parallel to (9). Here it is:

Let � and 5 be two finite sets and let X be a subset
of � 7 5 . Let

K
and � be two integers such thatK ��� Y X . Then X can be partitioned into X �:����

with
Y[Z]\ � :g�ON�K

and
�����

�� \ Y � 
 N � .

(10)

To prove (10) consider the set � of all
�R; � such thatY X 
�� � . This set contains at most

K
elements (otherwiseY X � K � ). Now let

:
be the set of all

d��M(.�e ; X such
that
� ; � and let

�
be the remaining part of X . ThenZ]\ � :g� � � and

Y[Z�\ � :g�2N�K
; on the other hand,

Y � 
 is
zero for

� ; � and does not exceed � for
�! ; � , therefore,�����


�� \ Y � 
 N � .

In fact, the statement (10) can be used as an intermediate
step in the proof of (9).

Our last example is the so-called “basic inequality” from
[4], i.e., the inequality

�H�����M1H�H���M(S�(����aN �H���M(.��'1H�H���M(�?�
(11)

This inequality follows from the inequality
�H���(���� ���HN

�H��Q� ���61H���"��� ���
(which is a “conditional version” of (1))

using the equalities
�����6(.��L� ����'� ��� 1 �H�����

,
�����6(�?�L�

�H�#��� ���_1 �������
and
�����M(S�(�?� � �H���(��� ��� 1��H�����

; all
three equalities mentioned follow from (3) and (9).

Inequality (11) corresponds to the following combinato-
rial statement:

Let � , 5 and � be three finite sets and let X be a
subset of � 7<5 7$� . Let % and � be two integers
such that %"�&� Y Z \ `2� X �$^ Y[Z \��O� X � . Then X can
be partitioned into X � :!��� with

Y[Z \ � :g�@N %
and
Y � N � .

(12)

This statement can be proved as follows. For each
�P; �

consider the set

X 
 � b�d��(���e@� d��M(.�(���eO; Xgf
The set � can be linearly ordered in such a way that

Y X 

decreases as

�
increases. Consider % first elements of �

in this ordering. Corresponding triples form the set
:

; the
remaining part of X goes to

�
. (It is easy to see that this



choice is optimal; we want to make
Y �

smaller, so we in-
clude large X 
 into

:
.) The construction guarantees thatY Z \ � :g�@N % . It remains to prove that

Y � N � .
Let � & and � � be the cardinalities of

Z�\ ` � X � andZ \���� X � . Let us prove first that all X 
 outside
:

have
cardinalities at most � & � �  % � . Let � ����� and � ����� be the
cardinalities of projections of X 
 onto 5 and � . Then� 
 � ����� � � & and

� 
 � ����� � � � . Therefore, the average
value of � ����� for % first values of

�
(corresponding to the set:

) does not exceed � &  % ; the average value of � ����� for % first
values of

�
does not exceed � �  % . Using Cauchy inequal-

ity, we conclude that the geometric mean of % first values of� ����� [of � ����� ] does not exceed � &  % [resp. � �  % ]. There-
fore, the geometric mean of the product � ����� � ����� does not
exceed � & � �  % � , and the minimal value of � ����� � ����� does
not exceed � & � �  % � . Since

Y X 
 N � ����� � ����� , the minimal
value of

Y X 
 in
:

(and all the values outside
:

) does not
exceed � & � �  % � .

Now we know that
Y � 
 N � & � �  % � for all

�
(here

� 
 ��
for % first values of

�
and

� 
 � X 
 for remaining
�

). It
remains to apply the inequality (8) to get the desired result:

Y � N�� � & ^ � � ^ � & � �% � � � & � �
%
N � *

The statement (12) is proved.

2. Linear inequalities

We hope that the examples above make clear the corre-
spondence between complexity inequalities and combina-
torial statements. However, let us give the exact definitions
for the general case.

We consider linear inequalities involving strings� & (,*+*,*+(.���
. (The number 	 of strings is a constant.) For any

set ! � b���(,*+*+*+( 	�f containing elements 
 & (+*,*+*-( 
�� we de-
note by

��
the tuple

d������)(+*,*+*Q(S����� e
. Its complexity (defined

in a natural way using encodings) is denoted by
�H���  �

. For
example, the basic inequality (11) can be written in this no-
tation as

������� &�� �M1R������� &�� � � ��� �@N�������� &�� � � �'1H�H����� &�� ��� �
The general form of the linear inequality involving com-
plexities of strings

� & (+*,*+*,(.���
and their combinations is� ��  �����  � �! *

The general form of an inequality involving conditional
complexities is ��"$#&%(')�  � # �����  � � # � �* * (13)

We assume that !�+-, � �
since

�H���  � � # ��� ����� �.�# � � # �
.

Now we need to introduce the notation for combinato-
rial statements. Let � & (,*+*+*M( � � be sets. For each ! �b$�$(+*+*,* ( 	�f we consider a projection function

Z 
that maps

� & 7 *+*,* 7 � � onto / � �  � � . For any X ��� & 7 ^,^+^ 7 � �
by
Z $� X � we denote the image of X under this projection;

B $� X �J� Y[Z �� X � is its cardinality. (According to Kol-
mogorov,

����� B  � X � can be considered as “combinatorial
entropy” of projection

� 
if
�

ranges over X .)
Conditional combinatorial entropy can be defined in a

similar way. Let ! and , be disjoint subsets of the index
set
b$�$(+*+*,*�( 	�f . For any

��; X consider a section of X go-
ing through

�
and having all , -coordinates fixed; consider

! -projection of this section. Cardinality of this projection
depends on

�
; let B 10 # � X � be the maximal cardinality. Re-

formulation: fix , -coordinates of a variable
� ; X and con-

sider the set of all possible values of ! -coordinates. (This
set depends on the values of , -coordinates.) Maximal car-
dinality of this set is denoted by B 10 # � X � .

The connection between combinatorial entropy and Kol-
mogorov complexity can be informally described as fol-
lows. Let X be a set whose elements are tuples of stringsd��Q&0(,*+*+*+(.� � e

. Assume that Kolmogorov complexity of X
is small. Then the maximal value of

�����  � � # �
over alld��Q&0(,*+*+*+(.� � eg; X is close to

����� B 10 # � X � . Indeed, to spec-
ify
� 

when
� #

is known, we need
����� � bits, where �

is the number of possible values of
� 

when
� #

is known.
This simple observation (refined in an appropriate way) is
the main point of the proofs given below.

Our first theorem considers the case when only one co-
efficient �  � # is negative. In other words, we consider in-
equality of type

����� �2 � � #32 �ON �  � #4�  � # �����  � � # � (14)

where summation ranges over pairs of disjoint sets different
from

� !35 ( ,65 � and all �  � # are non-negative.

Theorem 1 The inequality
�	�87��

is valid for all binary
strings

�Q&
(,*+*+*,(.� � �
up to � �����������H����&,�@1 *+*,* 1 �H��� � �S�.�

term
�

if and only if

B �290 #32 � X �@N;: � #=< B 90 # � X �?>8@9ACB D (15)

for any subset X �P� & 7 *+*,* 7_� �L� � & (,*+*+*,( � � are arbitrary
finite sets

�
.

This theorem can be applied to the examples given
above: it says that (1) is equivalent to (2), that (3) is equiva-
lent to (4), that (5) is equivalent to (6), and that (7) is equiv-
alent to (8). A special case of this theorem (inequalities (5)
and (6)) was considered in [2]. Other special cases of this
theorem and theorem 2 below are considered in [5]; in this



paper Shannon entropy is used instead of Kolmogorov com-
plexity and all � � have two elements (this restriction is not
essential).

Proof. Let us prove (15) � (14) first. Let
� & (+*,*+*+(S���

be
arbitrary strings and % 10 # � �H����?� ��# � . Consider the set X
of all tuples

 � d� & (+*+*,*-(. � e
such that

�H��6��  #�� N % 10 #
for all

� ! ( , ���� � ! 5 ( , 5 � . We want to apply (15) to X .
It is easy to see that

�#�$� B 90 # � X � N % 90 # 1 � �	�4� . In-
deed, if

 #
is fixed, only C ^ C

/ A�� D values of
 

are possi-
ble, since these values are obtained from

 #
by programs

of length at most % 10 # . Applying (15) to X , we conclude
that
����� B  2 0 # 2 � X �9N � �  � # % 10 # 1 � �	�4� . Note also that

the set X can be enumerated effectively provided all % 10 #
are given (we need � ��������������� & �_1 *,*+*$1 �������-�.�S� bits to
specify all % 10 # ). Now we see that ! 5 -coordinates of any el-
ement


of X are determined by , 5 -coordinates of


and its

ordinal number in the enumeration of all X -elements hav-
ing given , 5 -coordinates. This number has

����� B �290 #32 bits,
so we get (14).

Formally speaking, there is an error in this argument: we
cannot apply (15) to X directly, since X can be infinite.
However, we can apply (15) to all finite subsets of X : if
B  280 #32 � X�� �ON�� for all finite X	� � X , then B �290 #32 � X �@N
� .

Now let us prove (14) � (15). This proof is given in [2]
for the special case of inequalities (5) and (6). It uses some
trick: to get rid of logarithmic terms, we consider a se-
quence of elements of X instead of one element.

We may assume that � &
(,*+*,*+( � � are sets of binary
strings. Let G be a natural number. Let � ��

& (+*+*,*+(S�
be

a sequence of arbitrary elements of X . Each
 �

is a sequence
of strings

 �& (,*+*+*M(. ��
, so � can be considered as a matrix

with G rows and 	 columns. For any set ! � b$�$(+*,*+*-( 	)f
we denote the sequence

 & (,*+*+*+(.��
by �  . (To get �  from

� we consider only columns of the matrix whose numbers
belong to ! .)

Now we apply the inequality (14) to the columns of
the matrix. For any disjoint sets ! ( , � b$�$(+*,*+*-( 	)f the
complexity

�H� �  � � # � does not exceed G ����� B 90 # � X � 1
� ������� G � where the constant in � -notation depends on X
but not on G . Indeed, to specify �  when � # is known
we need (for each row 
 ) to use

����� B 90 # bits for the ordinal
number of

 �
in the set of all possibilities (for given

 �#
).

Therefore, for any
 & (+*,*+*-(S� ; X we have

��� � �2 � � #32 �ON G � �  � #O�#�$� B 10 # � X �M1 � ������� G �-*
Now we want to get an upper bound for B  290 #32 � X � . Fix
some value of , 5 -coordinates. We want to get an up-
per bound for the number � of possible values of ! 5 -
coordinates compatible with fixed , 5 -coordinates. Con-
sider an arbitrary matrix � where all rows have given , 5 -
coordinates. Since , 5 -coordinates are fixed,

�H� � #32 � �
� ������� G � and

��� �  2 � N G � �  � # ����� B 90 # � X �R1

� ������� G � . On the other hand, there are still � � possi-
ble values of �  2 , and all of them have bounded complexity,
therefore

������� � � �L� G ����� � NN G � �  � # ����� B 10 # � X � 1 � ���#�$� G � *
Since

����� G  G W  as G W �
, we get the required

upper bound for � .
Theorem 1 is proved.
Let us consider a special case of (14) when no condi-

tional complexities are involved:

�H���Q&
(,*+*+*,(.� � �ON � �  �����  � (16)

Here �  are non-negative reals (for all !�� b$��(,*+*,* ( 	�f ).
Theorem 2 The inequality (16) is true for all

� & (+*,*+*,(.���
(up to a logarithmic term) if and only if for any � � ��(+*,*+*-( 	
the sum of coefficients �  for all ! containing � is at least

�
.

Proof. Let
� �

be empty strings for all 
 �� � . Then the
inequality (16) can be rewritten as

�H�����4�EN � � 4�H����4�
where the sum is taken over all ! containing � . Therefore,
if (16) is true for all strings, the sum of coefficients �  is at
least

�
.

On the other hands, if all these sums are at least
�
, we

can prove (16) as follows. Using (3) and (9), we rewrite�H����&
(,*+*,*+(.� � �
as

�����Q&-�M1H�H��� � � ��&,�M1H�H�����$� ��&)(.� � �61 *,*+*
*,*+*41H�H�����)� � & (+*,*+*-(S���

F
& �

and rewrite complexities in the right-hand side in the same
way (using the same order of indices). For example, the
term

�����Q&
(.���4�
in the right-hand side becomes

�H���'&,�@1
�H�����$� ��&,�

. We then add omitted conditions in the right-
hand side (e.g., replace

�������?� �Q&+�
by
�H�����?� �Q&
(S� � �

) and
get a stronger inequality; this stronger inequality is valid
according to our assumption (sum of coefficients for each�H����� � � & (+*,*+*,(.���

F
& �

is at least 1).
Theorem 2 is proved.
This argument shows also that any valid inequality of

type (16) is a positive linear combination of basic inequali-
ties in the sense of [4].

Now we return to the general case and consider inequal-
ities of type

� �  � # �����  � � # � �  where several coeffi-
cients may be negative. It is convenient to separate positive
and negative coefficients and consider inequalities of type�

�  � #�� ��� �  � # ������?� ��#]�ON �
�  � #�� ��� �  � # �H����?� ��# � (17)

where all �  � # and
�  � #

are positive and � (�� are disjoint
sets of pairs of disjoint subsets of

b$�$(+*,*+* ( 	�f .



The following theorem gives a combinatorial statement
that is equivalent to (17). Unfortunately, this condition is
more complicated than one could expect looking at the re-
lations between (9) and (10) or between (11) and (12). It
includes a polynomial factor that corresponds to additive
logarithmic term in the inequality about complexities.

Notation: �QD is a set of all binary strings of length B .

Theorem 3 The inequality (17) is valid for given coeffi-
cients �  � # and

�  � #
and for any strings

�Q&)(+*,*+*-(S� �
(up to a

logarithmic term) if and only if the following combinatorial
statement is true:

there exists a constant
�

such that for any B , for
any set X � � �'D �

�
and for any integers

�$ � #
such

that :
�  � #�� ��� T B 90 # � X � U�� A B D N :

�  � #�� ��� ��� A B D � #
the set X can be covered by sets

:  � #
(for
� ! ( , �O;

� ) such that

B 90 # � :  � #��ON �  � #[^ B��
(18)

Before proving this theorem, let us look at the combina-
torial translation for the basic inequality (11): there exists a
constant

�
such that for all B , for any set X ��� 7�5 7 �

(where � � 5 � � � � D ) and for any % and � such thatY Z \ `3� X � Y[Z \��O� X �9N % � there exist
:

and
�

such that
X � : ��� ,

Y Z \ � :g�3N %�B � and
Y � N �$B � . We see that

the only difference between this statement and (12) is the
factor B � . (It seems quite possible that theorem 3 remains
true without this factor. However, this factor is needed in
our proof.)

Proof of theorem 3. Assume that the inequality (17)
is valid up to a logarithmic term � ���#�$���>�H��� & �21 *+*,*Q1�H����� �.�S�

. We want to prove (18). For a given B and given
X there exists some constant

�)� B ( X � that makes the state-
ment (18) true (for all values of

�$ � #
). This is evident; what

we need to prove is that the same constant works for all B
and all X . For a given B consider the “worst-case” set X D
and values of

�  � #
that require maximal constant. The set

X D can be effectively found (try all possibilities; it is a very
long, but finite, process). Therefore, complexity of X D is
� ������� B � . For any

� ; X D and for any disjoint ! ( , �b$��(,*+*,* ( 	�f we have
�H���  � � # � N �#�$� B 10 # � X D �M1 � ������� B �

(to specify
� 

when
� #

is fixed we need to specify X D and
the ordinal number of

� 
). Therefore, if numbers

�  � #
sat-

isfy the inequality:
�  � #�� ��� T B 10 # � X D � U � A B D N :

�  � #�� ��� ��� A B D � #

then �
�  � #�� ��� �  � # �H���� � ��#��@N

N �
�  � #�� ��� �  � #O�#�$� B 10 # � X �M1 � ������� B � N

N �
�  � #�� ��� �  � # �����a�  � # 1 � ������� B �

Combining this inequality with (17), we conclude that�
�  � #�� ��� �  � # �����  � � # � N �

�  � #�� ��� �  � # �����a�  � # 1�� ����� B

for any
��; X D and for some fixed

�
(not depending on B ).

Therefore, if
��; X D , then

�  � # ������?� ��# �ON �  � #O�����a�  � #g1 �
Y �
�#�$� B

for at least one
� ! ( , �O; � . In other terms, sets

:  � # � b,� �)�H���  � � # �@NH�����O�  � # 1 �
�  � # Y � ����� B�f

cover X . And
�#�$� B 90 # � :  � # � N �����a�  � # 1 ���#�$� B for

some constant
�

that does not depend on B . Since X D is
the “worst-case” set by our assumption, we conclude that�)� B ( X D

�
is bounded by a constant not depending on B , and

(18) is true.
To prove the second part of the theorem, assume that the

statement (18) is true. We need to prove
�	�
	)�

for arbitrary
tuple

�J�"d�� & (+*,*+*,(.���+e
. To do that, we “generalize”

�
and

include it in the set X of tuples of strings that have “similar
complexity behavior”. Then we apply the statement (18) to
X .

Formally X is defined as the set of all tuples
 �

d� & (+*,*+*+(S � e
such that

�H�� ?�  # � N �H����?� ��# �
for any

disjoint sets ! ( , � b$�$(+*,*+*-( 	)f . (This set was already
used in the proof of theorem 1.) The set X is not
empty since it contains

�
. Moreover,

����� Y X is close to�H����&
(,*+*,*+(.� � �
. Indeed,

�#�$� Y X cannot be significantly
larger than

�H���Q&0(,*+*+*+(.� � �
because all

 ; X have com-
plexity not exceeding

�����'&
(,*+*+*,(.� � �
. On the other hand,

X can be enumerated by a program that has logarithmic
(in
�H����&+�a1 ^+^+^�1 �H��� � �

) length (we need to specify all
complexity bounds; number of these bounds is exponential
in 	 , but 	 is considered as a constant). Therefore, com-
plexity of any

 ; X (including
�

) does not exceed signifi-
cantly

�#�$� Y X , so
����� Y X cannot be significantly less than�H��� & (,*+*,*+(.���-�

.
The same argument shows that for any

� ! ( , � the num-
ber
�#�$� B 10 # � X  � # � differs from

�����  � � # �
at most by

� ����������������&,�'1�*+*+*01R����� D
�.�.�

.



To apply the statement (18) to X we need to choose some
value of B . Let B be equal to

�H���Q&+�L1 *+*,*�1 �����
D
��1 �

.
Using this value, we cannot apply (18) directly: an element<� d� & (,*+*+*,(. � e[; X can contain very long

 �
. However,

the purely combinatorial nature of (18) allows us to rename
all
6�

. There is at most C�D of them (since all
 �

’s have com-
plexity less than B ), and they can be replaced by strings of
length B .

Now suppose that (in contradiction with (17))�
�  � #�� ��� �  � #��H������ ��#]�OI

I �
�  � #�� ��� �  � # �����  � � # ��� �J����� B (

for some constant
�

(to be fixed later).
Choose numbers

� � � # such that

�����a� � � # � �H���  � � # ��� � ����� B�  � # Y �
Note that

� � � # defined by this formula are not integers. Let�  � #
be
� � � � #�� . Then

�#�$���  � # � �H���  � � # ��� � �#�$� B�  � # Y � 1 � �	�
� *
We have�

�  � #�� ��� �  � # �������� ��#]�OI �
�  � #�� ��� �  � #O�#�$���  � #Q(

i.e., :
�  � #�� ��� �H���  � � # � � A B D N :

�  � #�� ��� T �  � # U � A B D *
Then by (18) the set X can be covered by sets

:  � #
such that

B 10 # � :  � #��ON �  � # ^ B � *
One may assume that

:  � #
have logarithmic complexity,

because some covering can be found by exhaustive search
when X is given and X has logarithmic complexity.

Let
� !�5 ( ,65 � be a pair such that

� ; : �2 � # 2
. Then for

some constant
� &

we have
������ 2 � ��# 2 �ONP����� B �2 0 # 2 � :  2 � # 2 �M1�� & �#�$� B NNP�#�$�]�>�  2 � # 2 ^ B � �M1�� & ����� B N
NP�H��� �2 � � #32 ��� � ����� B� �2 � # 2,Y � 1 ������� B 1 � &������ B 1 � �.�4�

For
�

large enough we get a contradiction. Theorem 3 is
proved.

The underlying reason for the second part of the proof
can be explained as follows. X is uniform: most of its sec-
tions (in a given direction) have approximately the same
size. (The same is true for projections.) Therefore, if

:
is some part of X that has small sections in some direction,Y :

is small compared to
Y X and such

:
’s cannot cover X .

3. Prefix complexity

All inequalities for Kolmogorov complexities were con-
sidered up to � ���#�$� B � term, where B is a sum of com-
plexities of strings involved. Therefore we could safely
ignore the difference between several existing versions of
complexity. We can use plain complexity defined by Kol-
mogorov in [1]), denoted by

� �����
in [6] and �	� ����� in [7],

or prefix complexity, denoted by
�H�����

in [6] and ��
 �����
in [7].

In this section we are interested in equalities valid up
to � �.�4� . Therefore we should be careful and specify
exactly the version of complexity we use. Most useful
here is prefix complexity ��
 ����� . For example, the in-
equality ��
 ���6(.�� N ��
 ����� 1 ��
 ���� 1 � �.�4� is well
known (see [6], example 3.1.2, p. 194). The inequality
C �� ���M(S�(�?� N �� ���M(S���1A�� ���6(�?�L1A�� ���(���� was
proved (using Cauchy–Schwartz inequality) in [2]. These
examples make the following conjecture plausible:

Conjecture. Any linear inequality involving uncondi-
tional complexities that is valid up to logarithmic term is
valid up to � �	�
� for prefix complexity.

A partial result in this direction:

Theorem 4 Basic inequality (11) is valid up to � �.�4� -term
for prefix complexity:

��
 ����� 1 ��
 ���6(.�(�?�ON ��
 ���M(S �61 ��
 ���6(�?� * (19)

Proof. This theorem can be easily derived from
L.A. Levin’s formula for prefix complexity of a pair:
��
 ���M(S��L� ��
 �����'1 ��
 ��'� �6( ��
 �����.� (for the proof see,
e.g., [6], theorem 3.9.1, p. 232). Indeed, this formula allows
us to rewrite (19) as

��
 ���(��� �M( ��
 �����.� NN ��
 ��Q� �M( ��
 �����S�61 ��
 �"��� �6( ��
 �����S� (
and this inequality is a “relativized” version of the inequal-
ity ��
 ���(����aN ��
 ����'1 ��
 �"�?� .

We provide also a direct proof of (19) using a priori prob-
abilities. Recall that ��
 ��������� �#�$���������

, where
�

is
universal enumerable semimeasure (see [6], p. 247). There-
fore, we need to prove that

� ���6(.�(�?� � ����� � � ���M(S � � ���M(����-*
or � ���M(S�(���� �

� ���6(.�� � ���6(�?�
� ����� *

Since
��� � ���M(S�� N � �����

and
��� � ���M(�?� N � �����

, we
conclude that�


 � � � �
� ���6(.�� � ���6(�?�

� ����� N �


� �����@I ��*



(In fact we know only that
� � � ���M(S�� � � � � �����S� and

��
 ������� � �#�$� � �����,1 � �.�4� , but for simplicity we assume
that

��� � ���6(.�� N � �����
and ��
 �����[� �9����� � ����� and

omit some constants in the proof.)
If the fraction

� ���M(S�� � ���6(�?� � �����
were enumerable

from below, the proof would be complete, since
� ���6(.�(�?�

is maximal. However, we have
�

in the denominator, and
the fraction is not enumerable from below. We need to find
an enumerable upper bound for this fraction having finite
sum. For each B by

�
D
���6(.��

we denote the enumerable
function obtained from

� ���M(S �
by adding an additional re-

quirement
� � �

D
���M(S�� N C?F�D . (We eliminate values of�

that can violate this requirement.) Now consider the
function �

D ����� � 
 �
�
D
���M(S�� �

D
���6(�?�

C F�D
This sum is an upped bound for� ���M(S�� � ���6(�?�

� �����
(let B � ��
 ����� ; then C F�D � � ����� and

�
D
� �

). It is an
enumerable upper bound we asked for, since�

 � � � � �
D ����� � 
 �

�
D
���6(.�� �

D
���M(�?�

C F�D
N

N �



�
D ����� � 
 �

� � �
D
���M(.�� � � �

D
���M(����

C F�D
N

N �



�
D ����� � 
 �

C F�D N � 
 C � �����@N C *
Theorem 4 is proved.

Corollary: all inequalities involving unconditional com-
plexities, having one term in the left-hand side and being
true up to logarithmic term, are true up to � �.�4� for prefix
complexity.

(Indeed, theorem 2 guarantees that such an inequality is
a positive linear combination of basic inequalities, so we
can apply theorem 4.)

This corollary can be proved directly using semimea-
sures and the following version of Jensen’s inequality: if� &_1�*+*,*
1 � � � � , � � �! , then� T � &)����� U � � *,*+* T � � ����� U �	��
 ��N

N� � � &0����� 
 ��� � � *,*+*�� � � � ����� 
 ��� �	�
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