Electronic Colloguium on Computational Complexity, Report No. 27 (2000)

A SEPARATION OF DETERMINISM, LAS VEGAS
AND NONDETERMINISM FOR PICTURE
RECOGNITION*

Pavol Duris f Juraj Hromkovié f Katsushi Inoue *

Abstract

The investigation of the computational power of randomized computations is
one of the central tasks of current complexity and algorithm theory. In this paper
for the first time a “strong” separation between the power of determinism, Las
Vegas randomization, and nondeterminism for a computing model is proved. The
computing model considered here are finite automata with two-dimensional input
tapes (i.e., finite automata recognizing picture languages). Moreover, a hierarchy
on the degree of nondeterminism of two-dimensional finite automata is proved.

1 Introduction

The comparative study of the computational power of deterministic, randomized and
nondeterministic computations is one of the central tasks of complexity and algorithm
theory. This is not surprising because the current view on the specification of the class
of tractable (practically solvable) problems is that a computing problem is tractable if
there exists a randomized polynomial-time algorithm for it. In this paper we focus on
the power of Las Vegas algorithms that are very practical because they never err. It is
not surprising that the central questions like P versus ZPP (polynomial-time Las Vegas
computations) and ZPP versus NP are unresolved, because P C ZPP C NP.

The recent research has focussed on the comparison of Las Vegas with determinism
and nondeterminism for restricted models in order to better understand the nature and
the power of Las Vegas randomization. We have only few results comparing Las Vegas
and determinism, and in most cases determinism and Las Vegas are polynomially re-
lated (combinational complexity of Boolean circuit, communication complexity [MS82],
the size of finite automata [DHRS97], and the size of OBDDs [DHRS97]). For the

*The work on this paper has been supported by DFG-Project HR 14/3-2.

tDept. of Computer Science I (Algorithms and Complexity) University of Technology, Aachen
Ahornstrafie 55, 52056 Aachen, Germany, E-Mail: jh@il.informatik.rwth-aachen.de

{Department of Computer Science and Systems Engineering, Faculty of Engineering, YamSghdH3-8092
University, Ube, 755-8611 Japan, E-mail: inoue@esse.yamaguchi-u.ac.jp.

time complexity of CREW PRAMs [DKR94] and one-way communication complexity
[DHRS97] there is even a linear relation between Las Vegas and determinism. On the
other hand (may be a little bit surprising) there is an exponential gap between Las Ve-
gas and determinism for the size of one-time-only branching programs [Sa99] and there
is an at least superpolynomial gap for the size of k-OBDDs [HSa99]. An exponential
gap between nondeterminism and Las Vegas seems to be typical for all known results
(one-way finite automata [DHRS97], two-way and one-way communication complexity
[AHYS83, Hr97, KN97, PS84, Ya79, DHRS97], and OBDDs [Sa97]). One conjectures
that there is an exponential gap between Las Vegas and nondeterminism for the size of
two-way finite automata too, but up till now only a quadratic gap was proved [HS99].

Here, we for the first time prove a strong separation between nondeterminism, Las
Vegas, and determinism, for a computing model. A “strong separation” means that Las
Vegas can do something what the determinism cannot do and that nondeterminism can
do something what Las Vegas cannot do. Obviously, such a separation can be proved for
restricted uniform models only, because for non-uniform models to compute a solution of
a given problem is a question of complexity, but not the question of computability. The
computing model considered here are finite automata with a two-dimensional squared
input, i.e. automata recognizing some picture languages. In contrast to standard finite
automata whose nondeterministic, Las Vegas, and deterministic versions recognize the
same class of regular languages (and so one can compare the sizes of them only), our
results shows that this is not true for finite automata with two-dimensional inputs.

More precisely, we prove that there is a language recognized by two-dimensional Las
Vegas finite automata, but not by deterministic ones, for the general model of two-
dimensional finite automata (called also four-way model) as well as for the three-way
model, where the movement upwards on the two-dimensional input tape is forbidden.
The separation between nondeterminism and Las Vegas is proved for the three-way
model only. In fact we even prove a stronger result, that there is a language accepted
by a three-way two-dimensional nondeterministic finite automaton, but by no three-way
two-dimensional o(n/log, n) space-bounded Las Vegas Turing machine.

The second research problem considered in this paper is the investigation of the compu-
tational power of nondeterministic computing devices with restricted nondeterminism.
There are only few results [DT90, HS96, GKW90, KW80| measuring the computational
power of restricted nondeterminism. There are two possibilities to measure the amount
of nondeterminism in computation. One possibility is to count the number of advice
bits (nondeterministic guesses) in particular nondeterministic computations, and the
second possibility is to count the number of different nondeterministic computations
on any input. Here, we consider the later one. For three-way two-dimensional finite
automata we prove a strong hierarchy - one additional nondeterministic computation
can help to recognize a language that cannot be recognized without this small increase
of the degree of nondeterminism. This contrasts to one-way finite automata, where one
additional nondeterministic guess can be always simulated with a small (polynomial)
increase of the number of states.! For the general two-dimensional finite automata we

!'Remember that deterministic finite automata and nondeterministic finite automata recognize the
same class of regular languages, and so the simulation cost of an increase of nondeterminism is measured

are not able to prove such a strong hierarchy. We only show that » nondeterministic
computations cannot be simulated by o(n/logn) computations on inputs of size n x n.

This paper is organized as follows. In Section 2 the basic definitions and notations
are given. In Section 3 the results are presented and discussed. Because the proof
methods essentially change from theorem to theorem, we are not able to present all
technical proofs in this extended abstract. To illustrate the proof techniques we give
two short sketches of proofs directly in Section 3. Some detailed proof of the separation
between Las Vegas and determinism and the proofs of the hierarchies on the degree of
nondeterminism are moved to Appendix.

2 Definitions

In what follows we consider two-dimensional finite automata as defined in [IITT82,
HITS89]. Informally, a two-dimensional deterministic finite automaton, 2-dfa, consists
of a finite control, a read-only head, and a squared two-dimensional input tape bounded
by a special boundary symbol ¢. The set of states of a 2-dfa is divided into three disjoint
sets of working, accepting and rejecting states. No action is possible from any rejecting
or accepting state. The read-only head can move in all four directions (to the left, to
the right, upwards, downwards) from any square, but boundary square containing the
special symbol ¢, of the two-dimensional input tape. If one forbids to move upwards,
then we speak about three-way 2-dfa, tr2-dfa, that are an analogue to one-way finite
automata in the one-dimensional case. Let, for every kind of device A, L(A) denote the
language accepted by A. The nondeterministic versions of two-dimensional automata
are denoted 2-nfa and tr2-nfa.

To define two-dimensional Las Vegas automata, we use the same way as to define the
Las Vegas mode for ordinary finite automata [DHRS97, HS99]. A two-dimensional
Las Vegas finite automaton A, 2-lvfa, can be viewed as a 2-nfa with a probability
distribution for every nondeterministic branch, and four classes of states: working,
accepting, rejecting, a neutral (“I do not know”) states. There is no possible move
from accepting, rejecting and neutral states. A is not allowed to make mistakes: If
there is a computation of A on an (two-dimensional) input z finishing in an accepting
[rejecting] state, then x must be in L(A) [z may not be in L(A)]. One requires, for every
y € L(A) [y ¢ L(A)], that A reaches an accepting [rejecting] state with probability of
at least 1/2 (i.e., the probability to reach a neutral state is at most 1/2 for every input).

We denote by tr2-lvfa the three-way version of 2-lvfa. In what follows 2-DFA [TR2-
DFA, 2-NFA, TR2-NFA, 2-LVFA, TR2-LVFA resp.] is the family of two-dimensional
squared languages accepted by 2-dfa’s [tr2-dfa’s, 2-nfa’s, tr2-nfa’s, 2-lvfa’s, and tr2-
lvfa’s respectively].

To be able to conveniently work with the inputs, we give the following definition.

Definition 2.1 Let X be a finite set of symbols. A two-dimensional tape over ¥ is a

in the number of states only.

two-dimensional array of elements of 3. The set of all the two-dimensional tapes over X
is denoted by (). Given a tape z € X we let I () be the number of rows and l5(z) be
the number of columns. For each m,n > 1, let 2™ = {z € @ |l;(z) = mAly(z) = n}.
If 1 <ig <l(z) for k = 1,2, we let x(i1,42) denote the symbol in z with coordinates
(41,1). Furthermore, we define z[(i1,142), (¢],45)], only when 1 < ¢; < 4] < [;(z) and
1 <y <14 <ly(x), as the two-dimensional tape z satisfying the following (i) and (ii):

(i) Li(z) =4 —d1+ 1 and Iy(2) = 0, — iz + 1;

(if) for each 4,5(1 < i <h(2),1 <j <la(2)) 2(4,5) = 2(ir + 4 — 1,42 + 5 — 1).

Definition 2.1 [

3 Results

3.1 Las Vegas versus Determinism

Here we separate determinism and Las Vegas for the general 2-fa as well as for the
three-way 2-fa. Note, that this is the first result showing that a Las Vegas computation
device can do something that cannot be done by the corresponding deterministic device.

Let Mid = {z € {0,1}? |l1(z) = ly(x) = 2n+1 for some n € IN, and z(n+1,n+1) =
1}2
Theorem 3.1 Mid € 2-LVFA — 2-DFA. Theorem 3.1 []

Idea of the proof. To prove Mid € 2-LVFA one has to use a version of the known
technique of probabilistic simulation of nondeterministic decisions [Gi77, MS97, HS99].
The fact that Mid ¢ 2-DFA was proved in [IITT82].

Theorem 3.1 W
To make the separation for the three-way case, consider the language
L= { ye{0,1,2}?|3n,j,l: Lhy) =h(y) =n>21<j<n-1,
0<!<n-—23, therow j of y is 10'20" "2,

every row above the j-th row is 10”21, and
(n—j—1<iny(nn)=1)V(n-j-1<n—-I1-3Ay(nn)=0)}

Note that the inequality n — j — 1 < [the inequality n — j — 1 < n — [— 2] means that
the symbol 2 in the j-th row of y is on or below the secondary [the main| diagonal of y.

2i.e., the symbol 1 is in the middle of the picture.

Theorem 3.2 L € TR2-LVFA — TR2-DFA. Theorem 3.2 [

The full proof of Theorem 3.2 is given in Appendix A.

3.2 Las Vegas versus Nondeterminism

We are able to separate nondeterminism and Las Vegas in the three-way case only.
Whether 2-LVFA C 2-NFA remains open.

Let

Non-Eq= {z € {0,1}® | the first row and the second row of z are different}

Theorem 3.3 Non-Eq € TR2-NFA — TR2-LVFA. Theorem 3.3 [

Sketch of the proof. The fact Non-Eq € TR2-NFA is obvious. Running in the first
row from the left to the right, a tr2-nfa can nondeterministically guess the position ¢
such that z(1,4) # x(2,¢) and check this guess by moving downwards from the position
(1,4) to the position (2,7).

To proof Non-Eq ¢ TR2-LVFA one can apply the ideas of communication complex-
ity theory. Cut the picture z horizontally between the first row and the second row.
Obviously, any tr2-lvfa working on x crosses at most once this cut because it cannot
move upwards. This crossing can be viewed as a communication message (informa-
tion transfer) from the upper part of the input to the lower part of the input. This
communication message contains a description of the current state and the crossing
position 7, 1 < 72 < n. So, for inputs of size n X n, the communication complexity
measured as the binary length of the message is in O(logyn). So, if Non-Eq € TR-
LVFA, then there is a Las Vegas one-way communication protocol recognizing Non-Eq
within the communication complexity O(log, n). But this is impossible, because every
deterministic protocol recognizing the non-equality of two binary strings of length n
requires the communication complexity n (see, for instance, [Hr97, KN97]) and every
one-way Las Vegas protocol has its communication complexity at least one half of the
communication complexity of the best deterministic protocol for this task [DHRS97].

Theorem 3.3 W

3.3 A Hierarchy on the Amount of Nondeterminism

These are two distinct, natural possibilities how to measure the amount of nonde-
terminism of nondeterministic computations. The first possibility is to consider the
number of different computations on a fixed input® and the second one is to count the
number of guesses in particular computations. Here we consider the first possibility

3i.e., to count the number of leaves of nondeterministic computation trees.

and two-dimensional Turing machines (2-tm). A 2-tm is a natural extention of a 2-
fa by one linear working tape.* We use the notations 2-ntm for a two-dimensional
nondeterministic Turing machine, and tr2-ntm for the three-way version of 2-ntm.

Definition 3.1 Let f(n) : IN — IN be a function. A 2-ntm (tr2-ntm) M is f(n)

space bounded if for any n > 1 and for any square input tape x of side-length n, any

computation path of M on x does not use more than f(n) cells of the storage tape.
Definition 3.1 [

Definition 3.2 Let g(n) : IN — IN be a function. A 2-ntm (tr2-ntm, 2-nfa, tr2-nfa) M
is g(n) path-bounded if for any n > 1 and for any square input tape z of side-length

n, there are at most g(n) computation paths of M on n. Definition 3.2 [
Notation:
e 2-NTM(f(n),g(n)) ... the class of sets (of square tapes) accepted by f(n) space-

9(
bounded and g(n) path bounded 2-ntm’s.
);

e TR2-NTM(f(n),g(n)) ... the class of sets (of square tapes) accepted by f(n)
space-bounded and g(n) path-bounded tr2-ntm’s.

e 2-NFA(g(n)) ... the class of sets (of square tapes) accepted by g(n) path-bounded
2-nfa’s.

e TR2-NFA(g(n)) ... the class of sets (of square tapes) accepted by g(n) path-
bounded tr2-nfa’s.

First, we consider the three-way case. The following theorem shows that some restric-
tions on the number of paths (leaves) of nondeterministic computation trees cannot be
compensated by an increase of the space complexity.

Theorem 3.4 For any function f(n) = o(logn), and any function
g(n) € {(loglogn)* | k is a positive integer} U {r'°818™ |y is a positive integer},
TR2-NTM(loglogn, g(n)) — TR2-NTM(f(n),0(g(n))) # @.

Theorem 3.4 [

For finite automata one can obtain the following strong hierarchy. This strongly con-
trasts to one-way finite automata, where any constant increase of the number of nonde-
terministic computations can be compensated by a polynomial increase of the number
of states.

“for formal definitions see, for instance, [IITT82, HIT89].

Theorem 3.5 For every positive integer k,
TR2-NFA(k) C TR2-NFA(k + 1).

Theorem 3.5 1

For the general case we were not able to prove such a strong hierarchy.

Theorem 3.6
2-NFA(n) — 2NFA(o(n/log, n)) # @.

Theorem 3.6 [

References

[AHY83] Aho, A.V., Hopcroft, J.E., Yannakakis, M.: On notions of information trans-
fer in VLSI circuits. In: Proc. 15th Annual ACM STOCS, ACM 1983, pp. 133-139.

[DHRS97] Duris, P., Hromkovié, J., Rolim, J.D.P., Schnitger, G.: Las Vegas versus de-
terminism for one-way communication complexity, finite automata and polynomial-
time computations. In: Proc. STACS ‘97, Lecture Notes in Computer Science 1200,
Springer 1997, pp. 117-128 (extended version submitted to Information and Compu-
tation).

[DKR94| Dietzelfelbinger, M., Kutylowski, M., Reischuk, R.: Exact lower bounds for
computing Boolean functions on CREW PRAMs. J. Computer System Sciences 48
(1994), pp. 231-254.

[DT90] Diaz, J., Toran, J.: Classes of bounded nondeterminism. Mathematical Systems
Theory 23 (1990), 21-32.

[Gi77] Gill, J.: Computational complexity of probabilistic Turing machines. SIAM J.
Comput. 6 (1977), pp. 675-695.

[GKW90| Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondetermin-
ism in regular languages. Information and Computation 86 (1990), 179-194.

[HIT89] Hromkovi¢, J., Inoue, K., Takanami, I.: Lower bounds for language recognition
on two-dimensional alternating multihead machines. ICSS 38 (1989), 431-451.

[Hr97] Hromkovi¢, J.: Communication Complezxity and Parallel Computing. Springer-
Verlag 1997.

[HSa99] Hromkovic, J., Sauerhoff, M.: Communication with restricted nondeterminism
and applications to branching program complexity. Unpublished manuscript, RWTH
Aachen 1999.

[HS96] Hromkovic¢, J., Schnitger, G.: Nondeterministic communication with a limited
number of advice bits. In: Proc. STOC’96, ACM 1996, 551-560.

7

[HS99] Hromkovi¢, J., Schnitger, G.: On the power of Las Vegas II, Two-way finite
automata. In: Proc. ICALP’99, Lecture Notes in Computer Science 1644, Springer
1999, 433-443.

[IITT82] Ito, A., Inoue, K., Takanami, 1., Taniguchi, H.: Two-dimensional alternating
Turing machines with only universal states. Inform. & Control 55 (1982), 193-221.

[KN97] Kushilevitz, E., Nisan, N.: Communication Complezity, Cambridge University
Press 1997.

[KW80] Kintala, C.M.R., Wotschke, D.: Amount of nondeterminism in finite automata.
Acta Informatica 13 (1980), 199-204.

[MS82] Mehlhorn, K., Schmidt, E.: Las Vegas is better than determinism in VLSI and
distributed computing. In: Proc. 14th ACM STOC‘82, ACM 1982, pp. 330-337.

[MS97] Macarie, I.I., Seiferas, J.I.: Strong equivalence of nondeterministic and ran-
domized space-bounded computations. Manuscript.

[PS84] Papadimitrou, Ch., Sipser, M.: Communication complexity. J. Computer Sys-
tem Sciences 28, pp. 260—269

[Sa97] Sauerhoff, M.: On nondeterminism versus randomness for read-once branching
programs. FElectronic Colloquium on Computational Complexity, TR 97 - 030.

[Sa99] Sauerhoff, M.: On the size of randomized OBDDs and read-once branching
programs for k-stable functions. In: Proc. STACS ‘99, Lecture Notes in Computer
Science, to appear.

[Ya79] Yao, A.C.: Some complexity questions related to distributed computing. In:
Proc. 11th ACM STOC, ACM 1979, pp. 209-213.

A The Proof of Theorem 3.2

Let

L= { ye{0,1,2}? |3, 4l : Lhy) =l(y)=n>21<j<n-1,
0<1<n—3, the row j of y is 10'20™ 2,
every row above the j-th row is 10”21, and
[(n—j—1<IAynn)=1)V(in—j—1<n—-1-3Ay(nn)=0)]}

Note that the inequality n — j — 1 < [the inequality n — j — 1 < n — [— 2] means that
the symbol 2 in the j-th row of y is on or below the secondary [the main| diagonal of y.

We divide the proof of Theorem 3.2 into two parts: Theorem A.1 and Theorem A.2.
Especially the proof of the lower bound in Theorem A.2 is of interest, because it provides
a very careful analysis of the behaviour of tr2-dfa’s.

Theorem A.1 L can be recognized by a three-way Las Vegas finite automaton.
Theorem A.1 []

Proof of Theorem A.1: There is a three-way Las Vegas finite automaton B recog-
nizing L as follows. Let y be any input from {0, 1,2}? with {,(y) = lo(y) = n. B first
traverses y by row-by-row manner checking the structure of the scanned rows and look-
ing for the first row containing the symbol 2. (B rejects y if it detects any error during
that first phase.) Then B chooses (with probability 1/2) which of the two inequalities
n—j—1<lorn—j—1<n—[-3toverify. B is able to verify any of these inequalities,
since the distance from the symbol 2 of the row j to the fist column of ¥, to the last
column of y, to the last row of y is [, n — [— 3 and n — j — 1, respectively. Finally,
B is able to accept or reject y when B verifies the first (the second) inequality men-
tioned above and y(n,n) =1 (y(n,n) = 0). Note that B rejects y also if y(n,n) = 2.
Theorem A.1 H

Theorem A.2 L cannot be accepted by any three-way deterministic finite automaton.
Theorem A.2 []

Proof of Theorem A.2: Suppose to the contrary that there is such automaton A
with k states recognizing L. W.l.o.g. we may assume that A visits each row of each
recognized input. Let y be any input from {0,1,2}®). A cell (4,7) of y is the entry
of y in the row 7 and in the column j of y. A configuration of A is a triple (g, 1, j),
where ¢ is the state of A, and ¢ and j are nonnegative integers. We will say that A is
in a configuration (g, 4, j) on an input, if A is in the state ¢ and its head scans the i-th
row and the j-th column of the input. Let n = k!(2k?(k + 2)) + 2k(k + 2). Let x be
an input with 2n + 3 rows and 2n + 3 columns such that the row n + 2 is 10"20™1 and
every other row is 10***11. Clearly, z € L.

First we present an idea of the proof based on the following observation. If A recognizes
the input = of very simple structure and z is large enough (with respect to the number

9

of states of A), then A works in cycles very often. This will enable us to fool A by
relocating the symbol 2 to a suitable cell so that A is not able to recognize this relocation,
since A is not able to count the number of performed cycles. More particularly, our aim
is to construct an other input z (from z) by relocating the symbol 2 to a suitable cell
so that both inputs x and z are either accepted or rejected by A. If our construction
yields z ¢ L, then we have done, since z € L, and hence, A is not able to recognize L
correctly. If z € L, then our construction will still guarantee an existence of two inputs
z' € L and 2’ ¢ L that are both either accepted or rejected by A, and hence, A is not
able to recognize L correctly. To prove that both inputs z and z are either accepted or
rejected by A, we will proceed as follows. Assume that during the computation of A on
x, A enters the row of with the symbol 2 in a column j, being in a state py and then it
enters a cycle (at a configuration c¢,) after leaving this row. (Such behaviour of A on z
is discussed in Case 2 below and it is more interesting than an other possible behaviour
of A on z discussed in Case 1 below.) We will see that during the computation of A
on z, A enters the row of z with the symbol 2 in the same column j; being in the
same state po, then it enters the same cycle (as A does on z) after leaving this row
and then it reaches the same configuration ¢, after performing the cycle as many times
as necessary. We will also see that the rest of the computation of A on z and on z

(starting by ¢,) is the same. Hence, both inputs x and z are either accepted or rejected
by A.

The structure of the proof is as follows. First we prove two lemmas and a corollary
needed for analyzing the computation of A on x. Then we construct the input z
mentioned above and complete the proof.

Lemma A.3 Let a,b and 5 be any integers with 1 < a,b,7 < 2n+3 and b —a = k.
Let y be any input with 2n + 3 rows and 2n + 3 columns such that all cells (j,4) of y
with @ < ¢ < b contain the symbol 0. Assume that there are two steps t < t’ of the
computation of A on y such that A scans only the cells (j,¢) with a < i < b during the
computation of A on y from ¢ to t', A scans the cell (j,a) at ¢, and A scans the cell (4, b)
at t’. Then there is an integer h, 0 < h < k, and two steps 7, 7/ with ¢t < 7 < 7’ < #' such
that A is in the same state and its head is relocated h cells to the right (without leaving
the row j) just after performing every 7/ — 7 steps (starting at 7) of the computation
of A on y (i.e. A enters a cycle at the step 7 and then A works in this cycle) until A
enters a cell (of the row j) containing a symbol different from 0 occurred to the right
from the cell (4,b). Lemma A.3 [J

Remark A.1 A similar lemma holds also for a — b = k. In such case, the text “to the
right” of Lemma A.3 is replaced by “to the left” and, of course, “a <1 < b” is replaced
by “b <i<a”.

Proof of Lemma A.3: Let 7, be the earliest step after ¢ at which A scans the cell
(j,a + k) and for i = 0,1,2,...,k — 1, let 7; be the latest step before 7, at which
A scans the cell (j,a +i). Since A has k states, there are two steps 7, < 7, with
0 < r < s < k such that A is in the same state at 7, and also at 7,. One can observe
that 7, and 7, are our desired steps 7 and 7', since A scans only the cells with the symbol
0 during the steps from 7, to 7, and A is a deterministic automaton that cannot change

10

its behaviour while it scans the cells with the same symbol. Note that h = s — 7.
Lemma A.3 W

Corollary A.4 Fori=1,2,3,...,n+1, let (i,m;) be the cell scanned by A during the
computation on z just before leaving the row ¢. Then m; < k+1lor2n+3—m; < k+1
fort=1,2,3,...,n+ 1. Corollary A.4 []

Proof of Corollary A.4: Suppose to the contrary that m; > k+2 and 2n+3 —m; >
k 4 2 for some 7. Clearly, A has to accept x € L. Hence, A has to visit both cells
(¢,1) and (i,2n + 3) of x containing 1, since otherwise A would accept also an input
not belonging to L obtained from z by replacing the symbol 1 in the non-visited cell
(,1) or (%,2n + 3) by the symbol 0, a contradiction. Let ¢; be the latest step at which
A scans the cell (4,1) or (i,2n + 3). We present here a proof only for the case when A
scans the cell (,1) at t1, i.e. A cannot visit the cell (i,2n + 3) after ¢;. (The proof for
the second case is similar.) Thus, A has to visit (sometimes after ¢;) every cell (i, j)
with 2 < j < m; containing 0. Let 5o be the earliest step after ¢; at which A scans the
cell (i, k+2), and let ¢5 be the latest step before ¢;5 at which A scans the cell (i,2). By
Lemma A.3 (applied to the steps 5 and t;12), A enters a cycle (sometimes between the
steps ty and tx,2) and it works in the cycle until it enters the cell (i, 2n+3) containing 1.
But it contradicts the assumption above that A cannot visit the cell (4, 2n+ 3) after ¢;.
Corollary A.4

Let o be the computation of A on z. Let ¢y be a step of ¢ at which A enters the row
n+2 (containing 2). Fori =0,1,2,..., let t;;1 be the earliest step of o after ¢; (if there
exists) at which A scans the cell (n + 2,n + 2) with the symbol 2 [at which A scans
either the cell (n+2,1) or (n+ 2,2n + 3) with the symbol 1] if 4 is even [odd]. Since A
has to leave the row n + 2 sometimes, there are only finitely many ¢;’s. Let to,¢1,...,%4
be all such ¢;’s. For i =0,1,2,...,d, let (p;,n+ 2, j;) be the configuration of A on x at
the step t;.

Lemma A.5 Let d, t;’s, p;’s and j;’s be as above. Let p be any integer with n—k!|p| >
2k+2 and let y be an input identical to z with the exception that its cell (n+2, n+2+k!p)
contains 2 and its cell (n + 2,7+ 2) contains 0. Then (i) hold for every even ¢ < d and
(ii) holds for every odd i < d.

(i) There is a computation path of A on y from the configuration (p;, n+ 2, j;) to the
configuration (p;y1,m + 2,17+ 2+ klp).

(ii) There is a computation path of A on y from the configuration (p;, n+2, n+2+k!p)
to the configuration (pit1,n + 2, jit1).

Lemma A.5 [J

Proof of Lemma A.5:

Proof of (i) : By the assumption above Lemma A.5, j; = 1 or j; = 2n + 3 for even
1> 0. By Corollary A4, jo < k+2or 2n+3— jy < k+ 2, since A can change its head

11

position at most one cell (vertically and horizontally) during one step when A moves its
head from a row to the next row. Hence j; < k+2 or 2n+ 3 — j; < k+ 2 for every even
i, 0 < i< d—1. Assume that j; < k+2. (The proof for 2n + 3 — j; < k+ 2 is similar.)
By the assumption above Lemma A.5, A has to traverse from the cell (n + 2, j;) to
the cell (n + 2,n + 2) containing 2 (and hence from the cell (n + 2, j; + 1) to the cell
(n+2,7; + k+ 1)) during the steps from #; to ¢;11 of the computation on z. All cells
(n+2,7;+1) with 1 <[<k + 1 contains 0. Let ¢ be the earliest step after ¢; at which
A scans the cell (n +2,5; + k + 1) and let ¢ be the latest step before ¢ at which A
scans the cell (n + 2,7; +1). By Lemma A.3 (applied to the steps ¢’ and t), A enters
a cycle (sometimes between the steps ¢’ and t) and then A works in that cycle until
it reaches the cell (n + 2,n + 2) containing 2. (Note that all cells (n + 2, j; + [) with
1 <1< n+1-yj; contain 0.) Behaviour of A on z and on y is identical during t — ¢;
steps starting by the configuration (p;,n + 2, j;), since A scans only the cells (n + 2,1)
with 1 <1 < j;+k + 1 on x during these steps and both inputs x and y contain the
same string 107** in these cells. Hence, A enters the same cycle on y by the same way
during these steps as A does on z, and clearly, then A works in that cycle on y until it
reaches the cell (n + 2,n + 2 + klp) containing 2. Since the distance between the cells
containing the symbol 2 of x and y is k!p, we get the desired computation path of A on
y mentioned above in (i) by inserting if p > 0 or by deleting if p < 0 k!|p|/h cycles into
a suitable point of the computation path of A on z from the step ¢; to the step ¢;,1,
where h is the value from Lemma A.3 corresponding to the steps ¢’ and ¢.

Proof of (ii) : By the assumption above Lemma A.5, j; = n + 2, and j;11 = 1
or jit1 = 2n + 3 for odd 7. Thus, A has to traverse from the cell (n + 2,n + 2)
containing 2 to the cell (n + 2,1) or (n + 2,2n + 3) containing 1 (and hence from the
cell (n+2,n+2) tothecell (n+2,n—k+1)or (n+2,n+k+3)) during the steps
from t; to t;;; of the computation on x. Let ¢ be the earliest step after ¢; at which
A scans the cell (n+2,n—k+1) or (n+ 2,n+ k + 3). Assume that A scans the
cell (n+2,n —k+1) at ¢. (The proof is similar if A scans the cell (n +2,n+ k + 3)
at t.) Let t' be the latest step before ¢ at which A scans the cell (n + 2,7+ 1). By
Lemma A.3 (formulated for a > b, see Remark A.1, and applied to the steps ¢’ and
t), A enters a cycle (sometimes between the steps ¢’ and t) and then A works in that
cycle until it reaches the cell (n + 2,1) containing 1. (Note that all cells (n + 2,1)
with 2 < [< n + 1 contain 0.) Behaviour of A during ¢ — ¢; steps starting when A
scans the cell containing 2 being in the state p; is the same on x and also on y, since
on z, A scans only the cells (n + 2,1) with n —k+1 < [< n+ k + 2 containing
the string w = 0f™120% during these steps, and y contains the same string w in the
cells (n +2,0) withn —k+1+klp <l <n+k+2+klp. Thus, A enters the same
cycle on y by the same way during these steps as A does on z, and clearly, then A
works in that cycle on y until it reaches the cell (n 4+ 2,1) containing 1. Now one can
observe that this is the desired computation path of A on y mentioned in (ii), since the
distance between the cells containing the symbol 2 of x and of y is k!p, and hence, the
computation path of A on x from t; to ;1 differs from the computation path of A on
y mentioned above only in the number of performed cycles. Note that this difference is
k!p/h cycles, where h is the value from Lemma A.3 corresponding to the step ¢’ and ¢.
Lemma A.5 l

12

Now we are ready to complete the proof of the theorem. Let d, t;’s, p;’s and j;’s be
from Lemma A.5. There are two cases to be considered.

Case 1. diseven, ie. jg<k+2or 2n+3 — j; < k—+ 2, since if d > 0 then j;, =1 or
ja=2n+3,and if d = 0 then jo < k+2or 2n+3 — jo < k+2 (see the beginning of the
proof of (i) of Lemma A.5). Assume that j; < k+2. (The proof for 2n+3 —j; < k+2
is similar.) One can show (by the same way as in the proof of (i) of Lemma A.5) that
if A visited the cell (n + 2, j; + k + 1) of = after ¢; (i.e. if A traversed from the cell
(n+2, ja+1) to the cell (n+2, ju+k+1) after ¢;), then A would enter a cycle (sometimes
after ¢;) and then A would work in that cycle until it would reach the cell (n+2,n+2)
of x containing 2. But this would contradict the assumption above Lemma A.5, that
tq is the latest selected t;. Hence A cannot visit the cell (n + 2,74 + k + 1) after tg,
i.e. A can scan (among the cells of the row n + 2 of) only the cells (n + 2,1) with
1 <1< jq+k after t5. Let z be an input that is identical to « with the exception that
its cell (n+2,n+2) contains 0, and its cell (n+2,n+ 2 —k!) contains 2. Clearly, z ¢ L.
Let us consider the computation of A on z. A enters the row n + 2 of z by the same
way as A does on z (i.e. in the configuration (po, 7 + 2, jo)), since the first n + 1 rows
of z and z are identical. By the assumption above Lemma A.5 there is a computation
path of A on z from the configuration (py, n + 2, jo) to the configuration (pg, n + 2, jq).
By (i) and (ii) of Lemma A.5, there is such computation path of A on z, too. The rest
of the computation of A (starting by the configuration (pg, n + 2, j4)) is the same on x
and also on z, since on z, A can scan (among the cells of the row n + 2) only the cells
(n+2,0) with 1 <1 < j;+k < 2k+2 after t4 (see above), these cells of z and z contain
the same string 10%**1, and x and z agree on the last n + 1 rows. Therefore A either
accepts or rejects both inputs = € L and z ¢ L, a contradiction.

Case 2. dis odd, i.e. j; = m + 2. Hence A is in the state p; and scans the cell
(n + 2,n + 2) containing 2 at the step t; of the computation on z. To construct our
desired input z, we have to determine three integers r, [, m by analyzing the computation
of A on x.

We determine r as follows. Let m;’s be from Corollary A.4, and for:=1,2,...,n+ 1,
let s; be the state at which is A just before leaving the row ¢ of xz. By Corollary
A.4 and by the fact that A has k states, there are two indices 7,7, 1 < i < j <
2k(k+2)+1 < n+1 with s; = s; and m; = m;. It means that the sequence
a = (8;,m), (Siz1, Mit1), - -+, (Snt1, Mpy1) is a periodic one with a period r < 2k(k+2),
since A is a deterministic automaton and the first n + 1 rows of z contain the same
string 10?711,

Now let us determine [and m. Let R be a rectangle area of x with 4k + 3 columns
and k + 2 rows situated in z so that the symbol 2 of z is in the middle of the first
row of R (see Fig. 1 (a)). Note that all cells of R contain 0 with the exception for
the one cell containing 2. One can show (by the same way as in the proof of (ii) of
Lemma A.5) that if A visited the cell (n +2,n—k+1) or (n+2,n+ k + 3) of z
after t;, then A would enter a cycle (sometimes after ¢;) and then A would work in
that cycle until it would reach the cell (n + 2,1) or (n + 2,2n + 3) containing 1. But
this would contradict the assumption above Lemma A.5 that t; is the latest selected ¢;.
Hence A can visit (among the cells of the row n + 2 of x) only the cells (n + 2, j) with

13

n—k+2<j<n+k+2 after t;. All these cells occur in the first row of R at most
k cells to the left and at most k cells to the right from the cell containing 2. Assume
that A leaves the row n+ 2 of z (containing the first row of R) at a step t,+ 7 for some
7 > 0. Since A can visit at most k& + 1 cells during any k& + 1 steps, all cells visited by
A during the steps from ¢, to t; + 7 + k + 1 of the computation on x belong to R. For
i=0,1,2,...,7+k+1,let ¢; = (e;, gi, h;) be the configuration of A at the step t;+ 7 of
the computation of A on z. Since A has k states, there are two configurations ¢, and
cywitht+1<wu<v<7r+k+1ande, =¢,. Letl=g,—g, and m = h, — h,. (The
values ¢y, ¢,, | and m are illustrated in Fig. 1(a).) Clearly, 0 <! < k and 0 < |m| < k.

Now we are ready to construct the input z. The input z is identical to x with the
exception that the symbol 2 of z is in the cell (n + 2 — k!rl,n + 2 + k!rm) and the cell
(n+2,n + 2) of z contains 0. To complete the proof of Case 2, first we have to show
that (a) and (b) hold.

(a) There is a step t' of the computation of A on z at which A is in the state p; and
scans the symbol 2 of z (i.e. A isin the configuration (pg, n+2—Fk!rl, n+2+klrm)).
(Note that p, is from Lemma A.5.)

(b) There is a step of the computation of A on z at which A is in the configuration
Cuy-

Proof of (a) : By periodicity of the sequence a above, $,i1 g = Spy1 and
Mpt1 kg = Mpi1, 1.6. A leaves the row n + 1 — klrl and n 4+ 1 of x by the same
way. Therefore A enters the rows n+2 — k!rl and n+ 2 of z by the same way, too. But
it means that A is in the configuration (pg,n + 2 — k!rl, jo) just after entering the row
n+ 2 —klrl of z, since by the assumptions above Lemma A.5, A is in the configuration
(po,m + 2, jo) just after entering the row n + 2 of z. Since z and z agree on the first
n+ 1 — klrl rows, A is in the configuration (pg,n + 2 — k!rl, jo) just after entering the
row n + 2 — klrl of z, too. Let y be an input that is identical to x with the exception
that the cell (n+2,n+2+k!rm) of y contains 2 and the cell (n+ 2, n+2) of y contains
0. By (i) and (ii) of Lemma A.5, there is a computation path of A on y from the
configuration (po, n+ 2, jo) to the configuration (pg,n+2,n+ 2+ klrm). (Recall that d
is odd in Case 2.) This yields that there is also a computation path of A on z from the
configuration (pg,n + 2 — klrl, jo) to the configuration (pg,n + 2 — klrl,n + 2 + klrm),
since the row n + 2 of y and the row n + 2 — k!rl of z contain the same string. Now
we have done, since during the computation of A on z, A first enters the configuration
(po,n+2—k!rl, jo) and then A enters the configuration (pg, n+ 2 — klrl,n+ 2+ klrm),
(see above).

Proof of (b) : Let t' be the step from (a). For ¢ = 0,1,2,...,7 + k + 1, let
c; = (e}, g, h) be the configuration of A on z at the step ¢’ + i of the computation
of A on z. Let R’ be an analogy of R for the input z. Since all cells visited by A
during the steps from t4 to t; + 7 + k + 1 of the computation on x belong to R (see
above), and corresponding cells of R and R’ contain the same symbols, and A is in
the state p; and scans the symbol 2 at the step ¢; of the computation on z (see the
assumptions of Case 2 above) and also at the step ' of the computation on z (see (a)

14

above), the behaviour of A on z during the steps from ¢’ to ¢’ + 7 + k + 1 is the same
as the behaviour of A on x during the steps from ¢; to t; + 7+ k + 1 (see Fig. 1(b)),
ie. e =e;, gl =g;i—krl and b} = h; + klrm for i = 0,1,2,...,7 + k + 1. Therefore
A leaves the first row of R' (containing 2) at the step ¢ + 7 of the computation on z,
and A scans only cells of R’ (below the first row of R') containing only 0 during the
steps from t' + 7+ 1 to t' + 7+ k + 1 of the computation on z. Consequently, A scans
only cells (of R') containing 0 during the steps from ' + u to ¢’ + v. The facts above
yield that after performing v — u steps of the computation of A on z (starting by the
step t' + u), A is in the state e, (since e}, = e, = e, = €}, see above) and its head is
relocated [cells down and m cells to the right if m > 0 or —m cells to the left if m < 0
(since g, — g, =l = g, — g, and h, — h, = m = hl — h], see above). But the same
holds also for every next v — u steps of the computation of A on z (i.e. A works in a
cycle with v — u steps) while A scans the cells containing 0, since A is a deterministic
automaton and it cannot change its behaviour while it scans only cells with the same
symbol. Therefore A reaches the configuration ¢, = (ey, gu, hy) on the input z after
performing the cycle k!r times, i.e. at the step ¢’ +u + klr(v —u), (see Fig. 1(b)). This
complete the proof of (b).

Now we complete the proof of Case 2 as follows. By (b), A enters the same configuration
¢, during the computation on x and on z, too. The rest of the computation of A on
z and on z (starting by c¢,) is the same, since z and z agree on the last n + 1 rows
containing the cell scanned by A in the configuration ¢,. Therefore both inputs z and
z are either accepted or rejected by A. But it means that A is not able to recognize L
correctly if m < 0, since in such case, z € L and z ¢ L. Finally, we proceed as follows
for m > 0. Let 2’, 2’ be two inputs identical to z and z, respectively, with an exception
that the cell (2n+3,2n+ 3) of 2’ and 2’ contains 0. A reaches ¢, on z’ by the same way
as it does on x, since x and z' agree on all rows above the last one and the cell scanned
by A at the configuration ¢, is also above the last row (it belongs to R). Clearly, the
same holds for the inputs z and 2’. Moreover, the rest of the computation of A on 2’
and 2z’ (starting by c,) is also the same, since 2’ and 2’ agree on the last n + 1 rows
containing the cell scanned by A in the configuration c,. Therefore, both inputs z’ and
Z' are either accepted or rejected by A. But it means that A is not able to recognize L
correctly, since ' € L , 2/ ¢ L. Theorem A.2 Il

B Nondeterministic Hierarchies

B.1 Three-way case

We first consider a hierarchy based on the non-constant number of computation paths
for three-way machines, and prove Theorem B.1.

Theorem B.1 For any f(n) = o(logn), any g(n) € {(loglogn)*|k is a positive integer }U
{rloslogn |1 ig a positive integer}, and any ¢'(n) = o(g(n)),

TR2-NTM(loglogn, g(n)) — TR2-NTM(f(n),¢'(n)) # 2.

15

RI

(a) Path from ¢y to ¢, on x (b) Path from ¢ to ¢, on z

Figure 1:

Theorem B.1 I

Proof of Theorem B.1: We prove the theorem for g(n) = (loglogn)*.

for the other cases are similar. Let

The proofs

T = {oe {01,103 > () = b(s) = [BO#BR)#. .. £B(n)|
A (the first row of x is B(1)#B(2)#...#B(n))
A (the second and the third rows of = have exactly (loglogn)* '1's)
A

(the second and third rows of = are not the same)|},

where for each i (1 < i < n), B(i) denotes the binary representation (with no leading
zeros) of the integer 1.

T, is accepted by a loglogn space-bounded and (loglogn)* path-bounded tr2-ntm M
which acts as follows. Let x be an input tape to M. M first checks whether the
first row of z is B(1)#B(2)#...#B(n) for some n > 1. This check can be done
deterministically by using loglogn cells of the storage tape. If this check is successful,
then M checks whether the second row of z has exactly (loglogn)* ’1’s. This check can
also be deterministically done by using loglogn cells of the storage tape. If this check
is successful, then each time M meets the symbol "1’ (except the rightmost '1’) on the
second row of z, M nondeterministically chooses one of the following two actions:

1. One action is to go down one cell, and to pick up the symbol under the input
head. If this symbol is not 1, and the third row of z has exactly (loglogn)* "1’s,
then M enters an accepting state. Otherwise, M halts by entering a rejecting
state.

2. The other action is to go to the right until M meets the next '1’.

16

When M meets the rightmost "1’ on the second row of z, M acts just like 1. above.

It will be obvious that M accepts T7.

We below show that 77 ¢ TR2-NTM(f(n),¢'(n)), where f(n) = o(logn) and ¢'(n) =
o((loglogn)k).

Suppose to the contrary that there is an f(n) space-bounded and ¢'(n) path-bounded
tr2-ntm M’ accepting T;. For each n > 1, let

Vin) = {z€{0,1,#}?|h(z) = b(z) = |[B)#B(2)#... #B(n)|
(the first row of z is B(1)#B(2)#...#B(n))

2[(2,1), (2, 12(x))] = (3, 1), (3, 12(x))] € {0,1}1*)

()
(z[(2,1), (2,13())] has exactly (loglogn)* '1’s)
((4,1), (lh(2), l2(x))] € {0}*)}.

A
A
A
A

Note that each z in V(n) is not in 77, and so there doesn’t exist an accepting compu-
tation path on M’ on z.

For each z in V'(n), let conf(z) be the set of possible configurations just after the input
head of M’ reached the third row of (when z is presented to M').

Since, for each z in V(n), there are at most ¢'(r(n)) computation paths of M’ on
x (where r(n) = |B(1)#B(2)#...#B(n)| = O(nlogn)), it follows that |conf(z)| <
g'(r(n)). Letting c(n) be the number of possible configurations just after the input head
of M' reached the third rows of tapes in V(n), we have

for some constant ¢. For each n > 1, let

W(n) = {conf(z)|z € V(n)}.

It follows that

Clearly,

Y0 ogtogr)

Since lim f(n)/logn = 0 (by assumption), it follows that
n—00

lim f(r(n))/logr(n) = lim f(r(n))/(logn + loglogn) = 0,

n—oo

from which we have

lim f(r(n))/logn =0 (1)
n—r00
Further, since lim ¢'(n)/(loglogn)® = 0 (by assumption), it follows that

n—oo

lim ¢'(r(n))/(loglogr(n))" =0,

n—oo

17

from which we have
lim ¢'(r(n)),(loglog n)" = 0 2)

n—0o0

From formulas 1. and 2. above, we can easily derive that
V(n)| > [W(n)|

for large n. Therefore, it follows that for large n there must be two different tapes x,y
in V(n) such that conf(x) = conf(y).

Let u be the tape such that

u[(1,1), (2, la(w))] = z[(1,1), (2, l2(x))] and u[(3,1), (l(w), l2(w))] = ¢[(3,1), (1 (y), l2(y))]-

From conf(z) = conf(y) and from the fact that there does not exist any accepting
computation path of M’ on = and vy, it follows that there does not exist any accepting
computation path of M’ on wu, and thus u is not accepted by M’, which contradicts
the fact that w is in 7y. This completes the proof of “T7 ¢ TR2-NTM(f(n),g'(n))”.
Theorem B.1 W

We next consider a hierarchy based on the constant number of computation paths for
three-way machines. The following Theorem B.2 directly implies Theorem 3.5.

Theorem B.2 For any integer k > 1 and any f(n) = o(logn),
TR2-NFA(k + 1) — TR2-NTM(f(n), k) # &.

Theorem B.2 []

Idea of the proof. For each integer k > 1, let T(k) = {z € {0, 1} |l,(z) = ls(z) > k
A (both the second and third rows of z have exactly £ '1’s) A (the second and third
rows of x are not the same) }.

Then, by using the same idea as in the proof of Theorem B.1, one can show that
T(k+1) € TR2-NFA(k + 1) — TR2-NTM(f(n), k).

Theorem B.2

B.2 Four-way case

Next, we prove Theorem 3.6. To do it, we need some new notation an a technical
lemma.

For each n > 1, each tape in {0,1}"*" is called an n-chunk. Let M be a 2-ntm whose
input alphabet is {0,1}. The number of the entrance points to an n-chunk z (or the
exit points from z) for M is 4n. We suppose that these entrance points (or exit points)
are numbered 1,2,...,4n in an appropriate way. Let P(n) = {1,2,...,4n} be the set
of these entrance points (or exit points). For each non-negative integer [, let S(I) be
the set of possible storage states of M using at most [cells of the storage tape, where a

18

storage state of M is a combination of the (i) state of the finite control, (ii) contents
of the storage tape, and (iii) position of the storage tape head within the nonblank
portion of the storage tape. For each n-chunk z, and each non-negative integer [, let

M, : P(n) x S(I) — 2PmxsHu{leop}

be a mapping which is defined as follows (where ’loop’ is a new symbol):

L. (4,p) € Mz (i,q) <= when M enters the n-chunk x in storage state ¢ and at
point ¢, it may eventually exit from z in storage state p and at point j.
2. loop € M(y;)(i,q) <= when M enters the n-chunk x in storage state ¢ and at

point ¢, it may not exit from x at all.

Let z,y be any two n-chunks. We say that = and y are (M, l)-equivalent if for any
(¢,q) € P(n) x (1),
M1y (i,q) = My (i, q)-

Clearly, (M, 1)-equivalence is an equivalence relation on n-chunks, and we can easily see
that the following lemma holds.
Lemma B.3 If, for any n-chunk z and any (7,q) € P(n) x S(l),

| M) (4, 9)| < d,
where d is a positive integer, then there are at most

d 4ns(l)
dns(l) + 1
l,d) =

(M, 1)-equivalence classes of n-chunks, where s(I) = |S(l)]. Lemma B.3 [J

We are now ready to prove the following theorem.

Theorem B.4 For any f(n) = o(logn) and any g(n) such that log g(n) = o(logn),
2-NFA(n) — 2-NTM(f(n), g(n)) # @.

Theorem B.4 []

Proof of Theorem B.4: Consider the language Mid = {w € {0,1}?|3n > 0 [I;(w) =
la(w) =2n+1,w(n+1,n+1) =1 (i.e., the center symbol of w is '1’) |}. It is implicitly
in [IITT82] that Mid € 2-NFA(n). Below, we show that Mid ¢ 2-NTM(f(n), g(n)) for
f(n) and g(n) stated in the theorem. Suppose to the contrary that Mid is accepted
by an f(n) space-bounded and g(n) path-bounded 2-ntm M. We assume without loss
of generality that when M accepts an input w in M1d, it halts on the upper left-hand
corner of w. For each n > 0, let V(n) = {0, 1}2+1)x2n+1) We consider the case when

19

M reads inputs in V(n). For each w in V' (n), M can use at most f(2n + 1) cells of the
storage tape, and there are at most ¢g(2n + 1) computation paths of M on w. Thus,
from Lemma B.3 above, it follows that there are at most

4ns(f(2n+1))

9(2n+1)
e(n, f2n+1),9@n+1) =4 Y <4n5(f(2nz-+ 1) + 1)

i=1

(M, f(2n + 1))-equivalence classes of n-chunks, where s(f(2n+1)) = |S(f(2n+1))| =
O(t¥?n+1) for some constant t. We denote these (M, f(2n + 1))-equivalence classes
by Ci,...,Ce(n,f2n+1),g@2n+1))- Clearly, the total number of n-chunks is 2"* . Since
f(n) = o(logn) and log g(n) = o(logn) (by assumption), a simple calculation reveals
that

e(n, f(2n+1),9(2n + 1)) < 2%

for large n. For such n, there must be some C; (1 < i < e(n, f(2n + 1),9(2n + 1)))
such that |C;| > 2. Let z,y be two different n-chunks in C; and suppose without loss
of generality that for some vy, vy (1 < vy,v9 < n), z(vy,v2) = 1 and y(vy, vs) = 0. We
consider two tapes w,w’ € V(n) satisfying the following two conditions:

(i) wln—v1+2,n—v2+2),(2n —v; +1,2n — vy + 1)] = x and
wn—vi+2,n—vs+2),2n—v;+1,2n — vy + 1)] = v;
(ii) w and w' are the same except the segment described in (i).
As easily seen, w is in Mid, and so w is accepted by M. Since z and y are (M, f(2n+1))-

equivalent, it follows that w’ is also accepted by M, which contradicts to the fact that
w' is not in T. This completes the proof of “Ty ¢ 2-NTM(f(n),g(n))”. Theorem B.4 H

A straightforward modification of the calculation in the proof of Theorem B.4 provides
the result of Theorem 3.6.

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

20

