
Time-Space Tradeoffs for Nondeterministic Computation

Lance Fortnow
NEC Research Institute

4 Independence Way
Princeton, NJ 08540, USA

fortnow@research.nj.nec.com

Dieter van Melkebeek
DIMACS

96 Frelinghuysen Road
Piscataway, NJ 08854-8018, USA
dieter@dimacs.rutgers.edu.

April 16, 2000

Abstract

We show new tradeoffs for satisfiability and nondeterministic linear time. Satisfiability can-
not be solved on general purpose random-access Turing machines in time n1.618 and space no(1).
This improves recent results of Fortnow and of Lipton and Viglas.

In general, for any constant a less than the golden ratio, we prove that satisfiability cannot be
solved in time na and space nb for some positive constant b. Our techniques allow us to establish
this result for b < 1

2(a+2
a2 − a). We can do better for a close to the golden ratio, for example,

satisfiability cannot be solved by a random-access Turing machine using n1.46 time and n.11

space. We also show the first nontrivial lower bounds for nondeterministic linear time machines
using sublinear space. For example, there exists a language computable in nondeterministic
linear time and n.619 space that cannot be computed in deterministic n1.618 time and no(1)

space.
Higher up the polynomial-time hierarchy we can get better bounds. We show that linear-

time Σ`-computations require essentially n` time if we only allow no(1) space. We also show new
lower bounds on conondeterministic versus nondeterministic computation.

Electronic Colloquium on Computational Complexity, Report No. 28 (2000)

ISSN 1433-8092

1 Introduction

Proving lower bounds remains the most difficult of tasks in computational complexity theory.
While we expect problems like satisfiability to take time 2Ω(n), we do not know how to prove that
no linear-time algorithms exist on random-access Turing machines. In recent years we have seen
a new approach to show that problems like satisfiability require a nonminimal amount of time or
space. This technique assumes that satisfiability can be solved in a small amount of both time and
space and uses careful simulations to allow a contradiction by diagonalization.

Fortnow [4] used this approach to give the first nontrivial time-space tradeoffs for satisfiability
on random-access Turing machines. He showed that there is no algorithm solving satisfiability
using n1+o(1) time and n1−ε space for any fixed ε > 0 on general purpose random-access machines.

Lipton and Viglas [10] showed how to use the nondeterministic time-hierarchy to show that
satisfiability has no algorithm using na time and no(1) space for a <

√
2. Their paper also claimed

to improve to result to a < 2 by using a recursive variation of their proof but the authors have since
withdrawn this claim [9]. We show that no proof of that form can improve upon their

√
2 result.

We use a slightly different technique to indeed improve the Lipton-Viglas result and show that
satisfiability has no algorithm using na time and no(1) space for a less than the golden ratio,
about 1.618. Our trick consists of reversing the order of alternation in the recursive Lipton-Viglas
argument. An easier diagonalization argument than the nondeterministic time hierarchy theorem
suffices for the arguments, namely the fact that nondeterministic time t cannot be solved in time
o(t) on conondeterministic machines.

We also obtain direct tradeoffs between time and space. We show that satisfiability cannot be
solved in time na and space nb if b < 1

2(a+2
a2 − a). For certain values of a up to the golden ratio, we

obtain stronger results. For example, satisfiability cannot be solved by any random-access Turing
machine using n1.46 time and n.11 space. In general, for any constant a less than the golden ratio,
a machine solving satisfiability in time na requires space nb for some positive constant b depending
on a. These tradeoffs generalize both the work of Fortnow [4] and Lipton-Viglas [10].

Satisfiability is complete for nondeterministic quasilinear time under reductions that use quasi-
linear time and logarithmic space [3]. Up to polylogarithmic factors we can consider results about
satisfiability as results about nondeterministic linear time and vice-versa. We can get lower bounds
for nondeterministic linear time even if we restrict the amount of space we use. We show that for
every a less than the golden ratio there exists a language computable in linear time and n1/a space
that is not computable in na time and no(1) space. We can also get tradeoffs between the various
time and space parameters. These are the first nontrivial time-space tradeoffs for nondeterministic
linear-time machines with sublinear space.

We also show lower bounds for conondeterministic time, though the bounds are slightly weaker.
We prove that conondeterministic linear time cannot be simulated on a nondeterministic machine
using na time and no(1) space for a <

√
2.

We establish new bounds for languages higher in the polynomial-time hierarchy as well. We
show that Σ`T IME[n] cannot be solved in deterministic time na and space no(1) for a < `.

1.1 Technical Summary

We now give an informal description of the techniques that we apply in this paper. First we describe
the basic idea of the recent work of Lipton and Viglas [10]. We use the weaker diagonalization
argument mentioned above rather than the nondeterministic time hierarchy theorem used by Lipton
and Viglas. The latter does not yield stronger results.

1

Consider the tableau of a Turing machine, i.e., a representation of the entire computation of
the Turing machine which consists of a description of the configuration of the machine at each
time step. A configuration consists of the work tapes, state and head positions of the machine.
We exclude the read-only input tape and the write-only output tape. Each configuration has size
O(s(n)) and we have O(t(n)) configurations for a machine that uses time t(n) and space s(n).

Note that this machine accepts if there are configurations C0, . . . , C√t(n)
such that C0 is the

initial configuration, C√
t(n)

is an accepting configuration and for each i, Ci−1 can get to Ci in
√
t(n) steps. This observation goes back to Nepomnjaščĭı [11] and played an important role in

works of Kannan [8] and Fortnow [4].
Suppose that we have that nondeterministic linear time is computable deterministically in

O(na) time and say O(logn) space. By padding and complementation we have conondeterministic
quadratic time is in O(n2a) time and O(logn) space deterministically. Suppose we are given a
potential list of configurations C0, . . . , C√n2a of the deterministic machine as described above. We
can verify that list is incorrect in nondeterministic time O(na) by guessing an i such that Ci−1 does
not generate Ci in

√
n2a steps.

By assumption this verification can be done deterministically in time O((n logn)a
2
). The whole

simulation can now be done nondeterministically in time O((n logn)a
2
) by guessing the Ci’s and

verifying that this list is not incorrect. If a <
√

2 we have simulated conondeterministic quadratic
time in nondeterministic subquadratic time, a contradiction.

Lipton and Viglas try to increase a by recursively splitting the computation but their calcula-
tions are flawed. We show that simply using recursion will not help increase a. We also show that
some recursion with changing the quantifier order can help to increase a and we improve the result
to where a(a− 1) < 1, i.e., a is less than the golden ratio, about 1.618.

The Lipton-Viglas argument requires small space for the deterministic machine because one
needs to guess the Ci’s and if these are large then it takes a lot of time to guess them. We show
one can have a nontrivial tradeoff here.

An analysis of our proofs shows that they do not need the full power of nondeterministic linear
time. We argue that the lower bounds apply to problems nondeterministically computable in linear
time with only na−1 space for a the golden ratio. We show various tradeoffs with this parameter
as well.

Fortnow’s paper [4] exhibits lower bounds for nondeterministic versus conondeterministic com-
putation. Lipton-Viglas appears to work only for nondeterministic versus deterministic computa-
tion. We show how to extend their approach and obtain nondeterministic versus conondeterministic
bounds, though weaker than the deterministic ones. Here recursion does help.

We establish our results for general random-access machines. If one only cares about multitape
Turing machines, in which each tape head can move over only one tape cell during each computa-
tion step, one can obtain stronger time-space tradeoffs for satisfiability using simpler proofs [15].
These results follow immediately from the known time-space tradeoffs for languages like the set
of palindromes. They do not rely on the inherent difficulty of nondeterministic computation but
rather exploit an artefact of the multitape Turing machine model — that the machine may have
to waste a lot of time in moving its tape head between both ends of the input tape.

1.2 Organization

Section 2 contains some preliminaries, including a description of the machine model and the state-
ments of the diagonalization theorems we will be using.

2

In Section 3, we analyze the Lipton-Viglas approach for lower bounds for nondeterministic linear
time (Sections 3.1–3.3), obtain time-space tradeoffs and show the limitations of their approach
(Section 3.3). We extend their technique in various ways in Section 3.4. We establish time-space
tradeoffs for languages in simultaneous nondeterministic linear time and sublinear space (Section
3.4.2) and for conondeterministic versus nondeterministic computation (Sections 3.4.1 and 3.4.3).

Section 4 contains our improvements to these results based on a new idea. We describe our
trick (Section 4.1), analyze it (Section 4.2) and derive the improved time-space tradeoffs (Section
4.3).

We describe our results for linear-time Σ`-computations in Section 5.
We do not explicitly state the corollaries about time-space tradeoffs for satisfiability. They easily

follow from the stated results on nondeterministic linear time using Theorem 2.4 or Corollary 2.5.
See Section 2.4.

2 Preliminaries

In this section, we only describe some specific preliminaries for this paper. We refer the reader to
the textbooks by Balcázar, Dı́az and Gabarró [1], and by Papadimitriou [12] for general background
on computational complexity and for notation.

2.1 Machine model

We use random-access Turing machines with any number of tapes. There are two types of tapes:
non-index tapes and index tapes. Every non-index tape T except the output tape has an associated
index tape I . The machine can move the head on T in one step to the position indexed by the
contents of I .

The input tape is read-only and has an associated index tape; the output tape is write-only,
has no index-tape, and is one-directional. The input and output tapes do not count towards the
space usage of the machine. Non-index tapes contribute the largest position ever read (indexed) to
the space usage.

2.2 Diagonalization results

Fix a positive integer `. Paul, Prauß, and Reischuk [13] showed that every Σ`-machine running in
time t with an arbitrary number of tapes can be simulated in time O(t) by a Σ`-machine with a
fixed number of tapes. The next result follows by straightforward diagonalization.

Theorem 2.1 Let ` be a positive integer and t(n) a time constructible function. Then

Σ`T IME[t] 6⊆ Π`T IME[o(t)].

Except in Section 5, we will apply Theorem 2.1 with ` = 1, i.e., we will use the fact that
NT IME [t] 6⊆ coNT IME[o(t)].
DT ISP [t, s] denotes the class of languages that can be accepted by a deterministic machine

running in time O(t) and space O(s). NT ISP[t, s] symbols the corresponding nondeterministic
class. Fortnow and Lund [5] argued that the result of Paul, Prauß, and Reischuk also holds in the
time-space bounded setting. Theorem 2.1 also carries over. We will only use the instance for ` = 1:

Theorem 2.2 Let t(n) and s(n) be functions that are (t, s) time-space constructible. Then

NT ISP[t, s] 6⊆ coNT ISP [o(t), o(s)].

3

2.3 Constructibility Issues

Let f(n), t(n), and s(n) be functions. We say that f is (t, s) time-space constructible if there exists
a machine that outputs 1f(|x|) on input x and runs in time O(t) and space O(s).

Constructibility conditions are needed when we do time and/or space bounded simulations, as
in the diagonalization results above or in padding results like the following.

Theorem 2.3 Let f(n), t(n), s(n), s′(n), and σ(n) be functions such that f(n) > n + 1 and is
(f, s′) time-space constructible and s′ ∈ O(σ(f)). Then

NT ISP[n, σ] ⊆ coNT ISP[t, s]

implies
NT ISP[f, σ(f)] ⊆ coNT ISP [t(f) + f, s(f) + s′].

We will not explicitly state the constructibility conditions in the rest of this paper. We will
tacitly assume that the bounds in the general formulations of our results satisfy these requirements.
We will also assume that they are at least logarithmic, nondecreasing and do not grow too fast in
the sense that f(O(n)) ⊆ O(f(n)). The bounds we use in our concrete results will be polynomials,
which are sufficiently smooth to meet all these conditions.

2.4 Satisfiability

Cook [3], building on work of Pippenger and Fischer [14] and Hennie and Stearns [7], showed that
satisfiability is complete for nondeterministic quasilinear time on multitape Turing machines under
reductions that use deterministic quasilinear time and logarithmic space. Gurevich and Shelah [6],
using a result of Schnorr [16], constructed efficient simulations of nondeterministic random-access
Turing machines on nondeterministic multitape Turing machines. Combining the ideas of these
papers, we can show the following result. We defer the proof to the Appendix.

Theorem 2.4 There exists a constant c such that the following holds: If

SAT ∈ DT ISP[t, s],

then
NT IME [n] ⊆ DT ISP[t(n logc n) · logc n, s(n logc n) + logn].

Theorem 2.4 allows us to translate our lower bounds on nondeterministic linear time into essentially
the same lower bounds for satisfiability. In particular, for polynomial bounds we obtain:

Corollary 2.5 Let a and b be constants such that

NT IME [n] 6⊆ DT ISP[na, nb].

Then for any constants a′ < a and b′ < b,

SAT 6∈ DT ISP [na
′
, nb

′
].

The same results hold if we replace DT ISP by NT ISP or by coNT ISP in both the hypothesis
and the conclusion.

4

3 Analysis of Lipton-Viglas

In this section we analyze the Lipton-Viglas approach for proving lower bounds for nondeterministic
linear time. We will derive time-space tradeoffs, show the limitations of this approach, and extend
the technique in various ways.

3.1 Outline

The main construction yields results of the form

NT IME [n] 6⊆ coNT IME [na] ∩ DT ISP[t, s]

for certain values of the constant a > 1 and interesting functions t(n) and s(n).
The proof is by contradiction and consists of two parts. The first part uses the hypothesis that

NT IME[n] ⊆ coNT IME[na] (1)

and goes as follows. Consider a deterministic Turing machine M that runs in time T (n) and space
S(n) on inputs x of length n. The following property of configurations holds for any positive integer
b and time bound τ that is a multiple of b.

C `τM,x C
′ ⇔ (∃C1, C2, . . . , Cb−1)(∀ 1 6 i 6 b) [Ci−1 `τ/bM,x Ci], (2)

where C0 = C and Cb = C ′.
Using (2) recursively k times for b = b1(n), b2(n), . . . , bk(n), we can construct a Σ2k-machine M ′

that is equivalent to M and runs in time O(
∑k

`=1(b` ·S+ log b`) + (T/(b1 · b2 · . . . · bk))). Under the
hypothesis (1), we can transform M ′ into an equivalent nondeterministic machine M ′′. For certain
settings of a > 1, T and S, M ′′ will run considerably faster than M .

The second part uses the hypothesis

coNT IME[n] ⊆ DT ISP[t, s] (3)

and combines it with the first part to derive a contradiction with Theorem 2.1.

3.2 Analysis of the first part

Fix a positive integer k. For ` = k, k − 1, . . . , 1, we will inductively define b` as a function of
b1, b2, . . . , b`−1. We will pick b` so as to minimize the running time of the nondeterministic machine
of the form M ′′ accepting

A`−1
.
=
{
〈x, C, C ′〉 |C `T/(b1·b2·...·b`−1)

M,x C ′
}
.

Say that we can decide A` for 0 6 ` 6 k on a nondeterministic Turing machine in time O of

Tl
.
=

(
T

b1 · b2 · . . . · b`

)c`
· Sd` .

We will determine the constants c` and d` inductively for ` = k, k− 1, . . . , 0. At the same time, we
will determine the functions b`.

For the base case, we can take ck = 1 and dk = 0. We will also treat ` = k− 1 as a special case,
but we will first deal with the inductive step `→ `− 1 for 1 6 ` 6 k − 1.

5

By (2), we know that

〈x, C, C ′〉 ∈ A`−1 ⇔ (∃C1, C2, . . . , Cb`−1) (∀ 1 6 i 6 b`) [〈x, Ci−1, Ci〉 ∈ A`]︸ ︷︷ ︸
(α)︸ ︷︷ ︸

(β)︸ ︷︷ ︸
(γ)

(α) is a nondeterministic computation with the following parameters:

input size: n+ 2S
running time: O(T`).

Provided
T` ∈ Ω(n+ S), (4)

(α) can be transformed using (1) and padding into a conondeterministic computation taking time
O(T a`).

(β) then becomes a conondeterministic computation with the following parameters:

input size: n + b` · S
running time: O(log b` + S + T a`).

Provided that
T a` ∈ Ω(n+ b` · S), (5)

(β) can be transformed using (1) (and padding) into a nondeterministic computation taking time
O(T a

2

`). This turns (γ) into a nondeterministic computation taking time O(b` ·S+T a
2

`) = O(T a
2

`).

We will now compute a value for b` that minimizes this time up to a constant factor. Note T a
2

`

decreases when b` increases. Condition (5) implies, up to constant factors, that

b` · S 6 T a` =

(
T

b1 · b2 · . . . · b`

)ac`
· Sad`, (6)

which yields an upper bound for b`. Setting b` equal to this upper bound, i.e.,

b` =

(
T

b1 · b2 · . . . · b`−1

) ac`
1+ac` · S

ad`−1

1+ac` ,

is optimal provided conditions (4) and (5) are met. Because of the equality in (6), the latter two
conditions reduce to merely condition (4).

The time needed for the nondeterministic evaluation of (γ) now becomes O(T`−1) where

T`−1 = T a
2

` = (b` · S)a =

(
T

b1 · b2 · . . . · b`−1

) a2c`
1+ac` · S

a2(c`+d`)

1+ac` .

Thus, we can set {
c`−1 = a2c`

1+ac`

d`−1 = a2(c`+d`)
1+ac`

.
(7)

This finishes the inductive step.

6

Since T`−1 = T a
2

` , 1 6 ` 6 k − 1, it follows that

T` = (T0)1/a2`
= (T c0 · Sd0)1/a2`

, 0 6 ` 6 k − 1.

Therefore, since b` · S = T a` ,

b` = T
c0

a2`−1 · S
d0

a2`−1 −1
, 1 6 ` 6 k − 1. (8)

All of the conditions (4) for 1 6 ` 6 k − 1 are met provided

T c0 · Sd0 ∈ Ω
(

(n+ S)a
2(k−1)

)
.

As for the remaining case `→ `−1 for ` = k, we can skip in the above inductive step the trans-
formation of (α) into a conondeterministic computation, since (α) already is a conondeterministic
computation because it is in fact deterministic. This leads to the optimal values ck−1 = dk−1 = a/2
with

Tk = bk · S = T
1/a
k−1 = (T c0 · Sd0)1/a2k−1

(9)

and bk as given by (8) for ` = k, under the condition that Tk ∈ Ω(n).
We can solve the recurrences (7). First we observe that d` = (k − `) · c` for 0 6 ` 6 k. An

explicit expression for c` for 0 6 ` 6 k − 1 is

c` =

{
(a− 1

a) · 1

1+ a2−2

a2(k−`)
if a > 1

1/(k − `+ 1) if a = 1.
(10)

Because of the fact that the b`’s have to be positive integers, the above analysis becomes
inaccurate for small b`’s. Therefore, we require that b` ∈ ω(1) for 1 6 ` 6 k, which is equivalent to
the condition Tk ∈ ω(S).

Summarizing, we have established the following lemma.

Lemma 3.1 Suppose that NT IME [n] ⊆ coNT IME[na] for some constant a > 1. Then for any
integer k > 1 and functions T (n) and S(n),

DT ISP [T, S]⊆ NT IME [(T · Sk)ek]

provided that

(T · Sk)ek ∈ ω(Sa
2k−1

) ∩ Ω(na
2k−1

), (11)

where

ek =

{
(a− 1

a) · 1

1− 2−a2

a2k

if a > 1

1/(k+ 1) if a = 1.
(12)

Note the sequence ek in (12) starts with e1 = a/2, e2 = a3/(2 + a2), . . . , and converges to
a− 1/a.

7

3.3 Analysis of the second part and results

Combining Lemma 3.1 with hypothesis (3) and Theorem 2.1 yields the following result.

Theorem 3.2 For any constant a > 1 and functions t(n) and s(n),

NT IME [n] 6⊆ coNT IME [na] ∩ DT ISP[t, s] (13)

if for some integer k > 1

(t · sk)ek ∈ ω(sa
2k−1

) ∩ o(n), (14)

where ek is given by (12).

Proof Since (13) trivially holds for t 6∈ Ω(n), we can assume for the rest of the proof that t ∈ Ω(n).
Suppose that (13) fails, i.e., assume that both (1) and (3) hold. Fix an integer k for which (14)

holds. Let τ(n) = n(a2k−1/ek), T (n) = t(τ(n)), and S(n) = s(τ(n)). By hypothesis (3) and padding,

coNT IME [τ] ⊆ DT ISP[T, S]. (15)

By the choice of parameters and the fact that t ∈ Ω(n), (T · Sk)ek > na
2k−1

. Combined with the
leftmost part of (14), this shows that condition (11) is met. Therefore, by Lemma 3.1,

DT ISP[T, S]⊆ NT IME[(T · Sk)ek]. (16)

Combining (15) and (16) with the rightmost part of (14), we obtain a contradiction with Theorem
2.1, namely that coNT IME [τ] ⊆ NT IME [o(τ)]. �

In the case of only one application of (2), we obtain:

Corollary 3.3 Let a be any constant. If t ∈ ω(s) and ts ∈ o(n2/a), then (13) holds.

Proof Under the given hypothesis, condition (14) is satisfied for k = 1. �

Corollary 3.3 yields the following lower bound on the time-space product for deterministic
simulations of nondeterministic linear time.

Corollary 3.4 Suppose that NT IME [n] ⊆ DT ISP[t, s]. Then ts 6∈ o(n
√

2).

Proof Let a be any positive constant. We consider three cases:

• If s 6∈ o(t) then ts 6∈ o(n2) since t(n) > n.

• If t 6∈ O(na) then ts 6∈ o(na).

• If t ∈ O(na) and t ∈ ω(s) then by Corollary 3.3 ts 6∈ o(n2/a).

The minimum of the three lower bounds is maximized for a =
√

2. Thus we obtain unconditionally
that ts 6∈ o(n

√
2). �

Taking t(n) = na in Theorem 3.2 and Corollary 3.3 gives:

8

Theorem 3.5 For any constant a > 1,

NT IME[n] 6⊆ DT ISP [na, o(nb)],

where

b = max


⋃

k
�

1

{c | a2k−1c 6 (a+ kc)ek 6 1}


 (17)

and ek is defined by (12).

In the special case of one application of (2) we get:

Corollary 3.6 For any constant a,

NT IME[n] 6⊆ DT ISP [na, o(n
2
a
−a)].

Note Corollary 3.6 is only interesting in case 1 6 a <
√

2. In particular, Corollary 3.6 implies:

Corollary 3.7 For any constant a <
√

2,

NT IME [n] 6⊆ DT ISP [na, no(1)]. (18)

One might hope that multiple recursive applications of (2) would allow us to improve Corollary
3.7 and establish (18) for constants a >

√
2. However, this is not the case because of the following

reason. Theorem 3.5 says that k recursive applications allow us to establish (18) provided that
a ·ek < 1. The sequence ek turns out to be monotonically decreasing for a <

√
2 and monotonically

increasing for a >
√

2. Therefore, increasing k cannot help us for a >
√

2, and we can only establish
(18) this way for a <

√
2. In fact, a careful analysis shows that the maximum on the right-hand

side of (17) is achieved for k = 1. Therefore, Corollary 3.6 is as powerful as Theorem 3.5, and
the exponent 2

a − a in the time-space tradeoff of Corollary 3.6 cannot be improved by multiple
applications of (2) for any constant a.

Note the sequence a · ek converges to (a2 − 1), which is less than 1 iff a <
√

2.

3.4 Extensions

3.4.1 Conondeterministic Time-Space Tradeoffs

Equation (2) holds for nondeterministic Turing machines M as well. This allows us to extend
Lemma 3.1 to nondeterministic computations.

Lemma 3.8 Suppose that NT IME [n] ⊆ coNT IME[na] for some constant a > 1. Then for any
integer k > 1, and functions T (n) and S(n),

NT ISP[T, S]⊆ NT IME [(T · Sk)fk]

provided that

(T · Sk)fk ∈ Ω((n+ S)a
2k

) ∩ ω(S),

where

fk =

{
(a− 1

a) · 1

1− 1+a−a2

a2k+1

if a > 1

1/(k+ 1) if a = 1.
(19)

9

Proof Consider the proof of Lemma 3.1 in the case that M is nondeterministic. Everything carries
through except that the induction step `→ `− 1 for ` = k now follows the general pattern and no
longer needs a special treatment. As a result, ck−1 and dk−1 are now given by the recurrence (7),
i.e., ck−1 = dk−1 = a2/(1 + a), and equation (9) reads

Tk = bk · S = T
1/a2

k−1 = (T c0 · Sd0)1/a2k
.

Thus, the condition Tk ∈ Ω(n+S) becomes equivalent to T c0 ·Sd0 ∈ Ω((n+S)a
2k

). Since bkS = T ak ,
this guarantees that bk ∈ ω(1) unless a = 1. In that case, the condition T0 ∈ ω(S) does the job. �

Note the sequence fk defined by (19) satisfies the recurrence fk+1 = a2fk/(1 + afk). It starts
out with f1 = a2/(1 + a) and converges to a− 1/a.

Using the nondeterministic time hierarchy theorem [17, 18] instead of Theorem 2.1, Theorem
3.2 and Corollary 3.3 translate as follows.

Theorem 3.9 For any constant a > 1 and functions t(n) and s(n),

NT IME [n] 6⊆ coNT IME [na] ∩NT ISP [t, s] (20)

if for some integer k > 1

(t · sk)fk ∈ Ω(sa
2k

) ∩ ω(s) ∩ o(n),

where fk is given by (19).

Corollary 3.10 Let a be any constant. If t ∈ Ω(sa) ∩ ω(s) and ts ∈ o(n(1+a)/a2
), then (20) holds.

Theorem 3.5 and its corollaries do not carry over in the same way, i.e., we do not obtain time-
space tradeoffs for nondeterministic linear time on nondeterministic machines. However, we can
get time-space tradeoffs for nondeterministic linear time on conondeterministic machines using the
following application of Lemma 3.8 and Theorem 2.1.

Theorem 3.11 For any constant a > 1 and functions t(n) and s(n),

coNT IME [n] 6⊆ NT IME [na] ∩NT ISP [t, s] (21)

if for some integer k > 1

(t · sk)fk ∈ Ω(sa
2k

) ∩ ω(s) ∩ o(n),

where fk is given by (19).

Proof Suppose that (21) fails. Let τ(n) = n(a2k/fk). By the proof of Theorem 3.2, using Lemma
3.8 instead of Lemma 3.1, we have that coNT IME [τ] ⊆ NT IME [o(τ)], a contradiction with
Theorem 2.1. �

In the case of one application of (2), Theorem 3.11 reads:

Corollary 3.12 Let a be any constant. If t ∈ Ω(sa) ∩ ω(s) and ts ∈ o(n(1+a)/a2
), then (21) holds.

Corollary 3.12 gives the following lower bound for the time-space product of nondeterministic linear
time on conondeterministic machines:

10

Corollary 3.13 Suppose that NT IME [n] ⊆ coNT ISP[t, s]. Then ts 6∈ o(na) where a is the
positive solution of a(a2 − 1) = 1, about 1.324.

Proof Let a be an arbitrary positive constant. We consider three cases:

• If s 6∈ o(t1/a) then ts 6∈ o(n1+1/a). This follows from the fact that t(n) > n.

• If t 6∈ O(na) then ts 6∈ o(na).

• If t ∈ O(na) and t ∈ ω(sa) then by Corollary 3.12 ts 6∈ o(n(1+a)/a2
).

The minimum of the lower bounds for the three cases is maximized when 1+a
a2 = a, i.e., when

a(a2 − 1) = 1, which yields the result. �

Multiple applications of (2) allow us to establish larger lower bounds on tsk where k denotes
the number of applications.

By taking t(n) = na in Theorem 3.11 we obtain the following conondeterministic time-space
tradeoffs for nondeterministic linear time analogous to the deterministic ones of Section 3.3.

Theorem 3.14 For any constant a > 1,

NT IME [n] 6⊆ coNT ISP[na, o(nb)],

where

b = max


⋃

k
�

1

{c | a2kc 6 (a+ kc)fk 6 1}




and fk is defined by (19).

In case of one application of (2) we get:

Corollary 3.15 For any constant a,

NT IME [n] 6⊆ coNT ISP [na, o(n
1+a
a2 −a)].

Note Corollary 3.15 is only interesting in case a > 1 and 1+a
a2 − a > 0. The latter condition is

equivalent to a(a2−1) < 1 and implies an upper bound for a of about 1.324. This is the limit value
of a for which one application of (2) allows us to establish that NT IME [n] 6⊆ coNT ISP[na, no(1)].
As opposed to the deterministic case of Section 3.3, multiple recursive applications of (2) do yield
better results. They let us relax the condition a(a2 − 1) < 1 to a2 − 1 < 1, allowing values of a up
to
√

2.

Corollary 3.16 For any constant a <
√

2,

NT IME[n] 6⊆ coNT ISP[na, no(1)]. (22)

Proof According to Theorem 3.14, k recursive applications of (2) allow us to establish (22) for
any constant a satisfying afk < 1, where fk is given by (19). The sequence afk converges to a2− 1,
which is less than 1 iff a <

√
2. �

Note that the sequence in the proof of Corollary 3.16 is monotonically decreasing1. Therefore,
the more applications of (2), the stronger a result of the type (22) we get.

1In fact, the sequence is monotonically decreasing as long as a(a − 1) < 1.

11

3.4.2 Deterministic Time-Space Tradeoffs for NT ISP
By analyzing the space needed for the transformation of the Σ2k-machine into a nondeterministic
machine in Lemma 3.1, we obtain the following strengthening of Lemma 3.1.

Lemma 3.17 Suppose that NT ISP [n, σ] ⊆ coNT ISP [na, r] for some constant a > 1 and func-
tions σ(n) and r(n). Then for any integer k > 1 and functions T (n) and S(n),

DT ISP[T, S]⊆ NT ISP [R,R1/a + r(R1/a)],

where R
.
= (T · Sk)ek and ek is defined by (12), provided that

R ∈ ω(Sa
2k−1

) ∩ Ω(na
2k−1

)

σ(R1/a2k−1
) ∈ Ω(S)

σ(n) ∈ Ω(n1/a + r(n1/a)).

The last condition is not required in case k = 1.

In Section 3.3, we combined Lemma 3.1 with Theorem 2.1 to obtain separations of the form
(13). Similarly, by combining Lemma 3.17 with Theorem 2.2 we can derive separations of the form

NT ISP[n, σ] 6⊆ coNT ISP [na, r] ∩ DT ISP[t, s] (23)

for some constants a > 1 and interesting functions σ(n), r(n), s(n), and t(n). This gives a strength-
ening of Theorem 3.2. Analogous strengthenings of Corollaries 3.3 and 3.4, Theorem 3.5, and
Corollaries 3.6 and 3.7 also follow. Here, we only spell out the time-space tradeoffs that strengthen
Corollaries 3.6 and 3.7.

Theorem 3.18 For any constants a > 1 and c such that a(a+ c) < 2,

NT ISP[n, ω(n
a+c

2)] 6⊆ DT ISP[na, nc]. (24)

Note in Theorem 3.18 the interesting values of a are in the range 1 6 a <
√

2 and of c in 0 < c < 1.
From Theorem 3.18 we get:

Corollary 3.19 For any constant a <
√

2 and constant d > a/2,

NT ISP [n, nd] 6⊆ DT ISP[na, no(1)].

Note Theorem 3.18 and Corollary 3.19 use only one application of (2). In Section 3.3 we mentioned
that multiple applications of (2) do not allow larger values of c in (24) for a given value of a.
Similarly, given a and c, multiple applications of (2) do not yield stronger statements than (24).

3.4.3 Conondeterministic Time-Space Tradeoffs for NT ISP
A space analysis of Lemma 3.8 shows the following stronger result.

Lemma 3.20 Suppose that

NT ISP[n, σ] ⊆ coNT ISP[na, r] (25)

12

for some constant a > 1 and functions σ(n) and r(n). Then for any integer k > 1 and functions
T (n) and S(n),

NT ISP [T, S]⊆ NT ISP[R,R1/a + r(R1/a)], (26)

where R
.
= (T · Sk)fk and fk is defined by (19), provided that

R ∈ Ω((n+ S)a
2k

) ∩ ω(S)

σ(R1/a2k
) ∈ Ω(S)

σ(n) ∈ Ω(r(n1/a))

σ(n) ∈ Ω(n1/a).

The last condition is not required in case k = 1.

The NT ISP hierarchy theorem [2] implies that NT ISP[t, s] 6⊆ NT ISP[o(t), o(s)] provided t(n)
and s(n) are sufficiently nice functions that don’t grow too fast. Note (26) by itself does not
contradict the NT ISP hierarchy theorem for a > 1. For some settings of the parameters in
Lemma 3.20, the time on the right-hand side of (26) is o of the time on the left-hand side, but the
space on the right-hand side always exceeds the space on the left-hand side. Under the hypothesis
(25), Lemma 3.20 lets us simulate nondeterministic time T and space S in less time but somewhat
more space. The hypothesis (25) itself allows us to do the opposite – increase time but reduce
space – at the cost of switching from nondeterministic to conondeterministic computations. By
combining the two we get a contradiction with Theorem 2.2 and thereby refute hypothesis (25).

This is what happens in the strengthenings of Theorem 3.11, Corollaries 3.12 and 3.13, Theorem
3.14, and Corollaries 3.15 and 3.16, based on the use of Lemma 3.20 instead of Lemma 3.8. Here,
we only state the time-space tradeoffs that strengthen Theorem 3.14 and Corollaries 3.15 and 3.16.

Theorem 3.21 For any integer k > 1 and constants a > 1 and c such that a2kc 6 (a+ kc)fk < 1
(where the first inequality has to be strict in case a = 1),

NT ISP [n, nd] 6⊆ coNT ISP[na, nc],

where d = max(1
a ,

a2kc
(a+kc)fk

) and fk is given by (19).

Corollary 3.22 For any constants a and c such that a2(a+ c) < 1 + a,

NT ISP [n, nd] 6⊆ coNT ISP[na, nc],

where d = max(1
a ,

(1+a)c
a+c).

Corollary 3.23 For any constant a <
√

2,

NT ISP[n, n1/a] 6⊆ coNT ISP [na, no(1)].

4 Improvements

In this section, we describe our improvements to the results of Section 3. We first give the idea and
then analyze it. Finally, we state the improved time-space tradeoffs we get from it.

13

4.1 Idea

In case of a deterministic Turing machine M , the following property of configurations holds for any
positive integer b and time bound τ that is a multiple of b.

C `τM,x C
′ ⇔ (∀C1, C2, . . . , Cb−1, Cb 6= C ′)(∃ 1 6 i 6 b) [Ci−1 6`τ/bM,x Ci], (27)

where C0 = C. Equation (27) says that C ′ is reachable from C in τ steps iff any tableau of size τ
that starts with C and ends in a configuration Cb different from C ′ contains a mistake in at least
one of the consecutive subtableaus of size τ/b. Note this only holds for deterministic machines
M . In case M uses little space, (27) gives us another tool besides (2) to speed up space bounded
computations using nondeterminism. By applying (27) k times recursively, we obtain an alternating
machine N ′ equivalent to M , similar to the machine M ′ of Section 3.1. The running time of N ′ is
the same as of M ′ but, for k > 1, N ′ has fewer alternations than M ′: N ′ is a Πk+1-machine, whereas
M ′ is a Σ2k-machine. The number of alternations determines how often the running time of M ′

is raised to the power a when transforming M ′ into an equivalent nondeterministic machine M ′′

using the hypothesis that NT IME[n] ⊆ coNT IME [na]. Therefore, when we similarly transform
N ′ into an equivalent conondeterministic machine N ′′, the running time of N ′′ will be smaller than
of M ′′. This will allow us to obtain stronger separation results.

4.2 Analysis

We first determine how much faster we can make N ′′ run than M .

Lemma 4.1 Suppose that
NT IME[n] ⊆ coNT IME[na] (28)

for some constant a > 1. Then for any integer k > 1 and functions T (n) and S(n),

DT ISP [T, S]⊆ NT IME[(T · Sk)gk] (29)

provided that

(T · Sk)gk ∈ ω(Sa
k
) ∩ Ω(na

2k
),

where

gk =

{
(a− 1) · 1

1− 2−a
ak

if a > 1

1/(k+ 1) if a = 1.
(30)

Proof Let M be a deterministic Turing machine running in time T (n) and space S(n) on inputs
x of length n. Fix a positive integer k. For ` = k, k − 1, . . . , 1, we will inductively define a
function b`(n) in terms of b1, b2, . . . , b`−1. We will pick b` so as to minimize the running time of the
conondeterministic machine of the form N ′′ accepting

A`−1
.
=
{
〈x, C, C ′〉 |C `T/(b1·b2·...·b`−1)

M,x C ′
}
.

Say that we can decide A` for 0 6 ` 6 k on a conondeterministic Turing machine in time O of

Tl
.
=

(
T

b1 · b2 · . . . · b`

)c`
· Sd` .

We will determine the constants c` and d` inductively for ` = k, k− 1, . . . , 0. At the same time, we
will determine the functions b`.

14

For the base case, we take ck = 1 and dk = 0. We now discuss the inductive step `→ `− 1 for
1 6 ` 6 k.

By (27), we know that

〈x, C, C ′〉 ∈ A`−1 ⇔ (∀C1, C2, . . . , Cb`−1, Cb 6= C ′) (∃ 1 6 i 6 b`) [〈x, Ci−1, Ci〉 6∈ A`]︸ ︷︷ ︸
(α)︸ ︷︷ ︸

(β)︸ ︷︷ ︸
(γ)

By the induction hypothesis, (α) is a nondeterministic computation taking time O(T`). Therefore,
(β) is a nondeterministic computation with the following parameters:

input size: n + b` · S
running time: O(log b` + S + T`).

Provided that
T` ∈ Ω(n+ b` · S) (31)

(β) can be transformed using (28) (and padding) into a conondeterministic computation taking time
O(T a`). This turns (γ) into a conondeterministic computation taking time O(b` ·S +T a`) = O(T a`).

We will now compute a value for b` that minimizes this time up to a constant factor. Note T a`
decreases when b` increases. Condition (31) implies, up to constant factors, that

b` · S 6 T` =

(
T

b1 · b2 · . . . · b`

)c`
· Sd`, (32)

which yields an upper bound for b`. Setting b` equal to this upper bound, i.e.,

b` =

(
T

b1 · b2 · . . . · b`−1

) c`
1+c` · S

d`−1

1+c` ,

is optimal provided condition (31) is met. This will be the case if

T` ∈ Ω(n). (33)

The time needed for the conondeterministic evaluation of (γ) now becomes O(T`−1) where

T`−1 = T a` = (b` · S)a =

(
T

b1 · b2 · . . . · b`−1

) ac`
1+c` · S

a(c`+d`)

1+c` .

Thus, we can set {
c`−1 = ac`

1+c`

d`−1 =
a(c`+d`)

1+c`
.

(34)

This finishes the inductive step.
Since T`−1 = T a` , 1 6 ` 6 k, it follows that

T` = (T0)1/a` = (T c0 · Sd0)1/a`, 0 6 ` 6 k.

Therefore, since b` · S = T`,

b` = T
c0

a2`−1 · S
d0

a2`−1 −1
, 1 6 ` 6 k.

15

All of the conditions (33) for 1 6 ` 6 k are met provided

T c0 · Sd0 ∈ Ω(na
k
).

As for the recurrences (34), we observe that d` = (k−`) ·c` for 0 6 ` 6 k. An explicit expression
for c` for 0 6 ` 6 k is

c` =

{
(a− 1) · 1

1− 2−a
ak−`

if a > 1

1/(k− `+ 1) if a = 1.

In order to guarantee that the b`’s are close enough to integers and that the above analysis is
accurate, we require that bk ∈ ω(1), i.e., that Tk ∈ ω(S).

The lemma follows by setting gk = c0. �

Note the sequence gk defined by (30) starts with g1 = a/2, g2 = a2/(2 + a), . . . , satisfies the
recurrence gk+1 = agk/(1 + gk), and converges to a− 1.

Analyzing the space need in Lemma 4.1 as we did for Lemma 3.1 in Section 3.4.2, we obtain
the following strengthening.

Lemma 4.2 Suppose that
NT ISP[n, σ] ⊆ coNT ISP[na, r]

for some constant a > 1 and functions σ(n) and r(n). Then for any integer k > 1 and functions
T (n) and S(n),

DT ISP[T, S]⊆ NT ISP [R,R1/a + r(R1/a)],

where R
.
= (T · Sk)gk and gk is defined by (30), provided that

R ∈ ω(Sa
k
) ∩ Ω(na

2k
)

σ(R1/a2k
) ∈ Ω(S)

σ(n) ∈ Ω(n1/a + r(n1/a)).

The last condition is not required in case k = 1.

4.3 Results

We only state the consequences of Lemma 4.1 and Lemma 4.2 that improve upon the results of
Section 3. In particular, we will not spell out any result for one level of recursion, since for k = 1
Lemma 4.1 and Lemma 4.2 are equivalent to Lemma 3.1 and Lemma 3.17 respectively.

We could state all results in the stronger NT ISP version, using Lemma 4.2 instead of Lemma
4.1. However, as in Section 3.4.2, we will refrain from describing general NT ISP results of the
form (23) because they involve too many parameters. We will state the weaker NT IME versions
instead.

Theorem 4.3 For any constant a > 1 and functions t(n) and s(n),

NT IME [n] 6⊆ coNT IME [na] ∩ DT ISP[t, s]

if for some integer k > 1

(t · sk)gk ∈ ω(sa
k
) ∩ o(n),

where gk is given by (30).

16

Theorem 4.4 For any constant a > 1,

NT IME[n] 6⊆ DT ISP [na, o(nb)],

where

b = max


⋃

k
�

1

{c | akc 6 (a+ kc)gk 6 1}


 (35)

and gk is defined by (30).

Recall that taking k = 1 in Theorem 4.4 gives us Corollary 3.6, or equivalently, Theorem 3.5. We
observe that k = 2 always allows larger values of c on the right-hand side of (35) than k = 1. Thus,
the following corollary of Theorem 4.4 improves Corollary 3.6 and Theorem 3.5.

Corollary 4.5 For any constant a > 1,

NT IME [n] 6⊆ DT ISP[na, o(n
1
2

(a+2
a2 −a))].

Theorem 4.3 allows us to obtain lower bounds on tsk for DT ISP[t, s]-simulations of nondetermin-
istic linear time. For k > 2 these bounds are stronger than the analogs of Corollary 3.4 that follow
from Theorem 3.2. We state the result for k = 2.

Corollary 4.6 Suppose that NT IME [n] ⊆ DT ISP [t, s]. Then ts2 6∈ o(na), where a is the positive
solution of a(a2 − 1) = 2, about 1.521.

Note Corollary 4.5 yields nontrivial statements as long as a+2
a2 − a > 0, i.e., a(a2 − 1) < 2, or

approximately, a 6 1.521. Theorem 4.4 gives interesting results for a up to the golden ratio, as we
will see next.

We get the following improvements over the NT ISP time-space tradeoffs of Section 3.4.2.

Theorem 4.7 For any integer k > 2 and constants a > 1 and c such that akc < (a+ kc)gk < 1,

NT ISP[n, nd] 6⊆ DT ISP [na, nc],

where d = max(1
a ,

akc
(a+kc)gk

) and gk is given by (30).

Note the sequence a · gk converges to a(a − 1), which is less than 1 as long as a is less than the
golden ratio (approximately 1.618). Thus, we obtain:

Corollary 4.8 For any constant a such that a(a− 1) < 1,

NT ISP [n, n1/a] 6⊆ DT ISP[na, no(1)].

5 Results for Other Classes

This section describes our result for linear-time Σ`-computations.

Theorem 5.1 For any integer ` > 2 and functions t(n) and s(n),

Σ`T IME [n] 6⊆ DT ISP[t, s],

provided ts`−1 ∈ o(n`) and t ∈ ω(s).

17

Proof Suppose t and s satisfy the conditions of the lemma but

Σ`T IME [n] ⊆ DT ISP[t, s]. (36)

Let L ∈ Σ`T IME[n]. By (36), there exists a deterministic Turing machine running in time T = t
and space S = s that accepts L. Consider the machine N ′ described in Section 4.1 for k = ` − 1.
The machine N ′ accepts L, is of type Πk+1 = Π`, and runs in time

O

(
k∑

i=1

(bi · S + log bi) +
T

b1 · b2 · . . . · bk

)
. (37)

Up to a constant factor, (37) is minimized by picking each bi equal to b where b is such that
b · S = T/bk, i.e., b = (T/S)1/(k+1). Note b ∈ ω(1) since T ∈ ω(S).

For this choice of parameters, N ′ runs in time O((T · Sk)1/(k+1)). Thus, we get that

Σ`T IME [n] ⊆ Π`T IME [(TS`−1)1/`] ⊆ Π`T IME [o(n)],

a contradiction with Theorem 2.1. �

Corollary 5.2 For any integer ` > 2 and constants ε > 0 and δ < ε/(`− 1) ,

Σ`T IME [n] 6⊆ DT ISP[n`−ε, nδ].

Acknowledgments

The second author would like to thank Rahul Santhanam and Iannis Tourlakis for discussions
about the topic of this paper and for comments on an earlier draft. He is grateful to Steve Cook
for bringing him into contact with Iannis Tourlakis.

References

[1] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I, volume 11 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1995.

[2] A. Bruss and A. Meyer. On time-space classes and their relation to the theory of real addition.
Theoretical Computer Science, 11:59–69, 1980.

[3] S. Cook. Short propositional formulas represent nondeterministic computations. Information
Processing Letters, 26:269–270, 1988.

[4] L. Fortnow. Nondeterministic polynomial time versus nondeterministic logarithmic space:
Time-space tradeoffs for satisfiability. In Proceedings of the 12th IEEE Conference on Com-
putational Complexity, pages 52–60. IEEE, 1997.

[5] L. Fortnow and C. Lund. Interactive proof systems and alternating time-space complexity.
Theoretical Computer Science, 113:55–73, 1993.

[6] Y. Gurevich and S. Shelah. Nearly-linear time. In Proceedings, Logic at Botik ’89, volume 363
of Lecture Notes in Computer Science, pages 108–118. Springer-Verlag, 1989.

18

[7] F. Hennie and R. Stearns. Two-tape simulation of multitape Turing machines. Journal of the
ACM, 13:533–546, 1966.

[8] R. Kannan. Towards separating nondeterminism from determinism. Mathematical Systems
Theory, 17:29–45, 1986.

[9] R. Lipton and A. Viglas, November 1999. Personal communication.

[10] R. Lipton and A. Viglas. On the complexity of SAT. In Proceedings of the 40th IEEE Sympo-
sium on Foundations of Computer Science, pages 459–464. IEEE, 1999.

[11] V. Nepomnjaščĭı. Rudimentary predicates and Turing calculations. Soviet Mathematics–
Doklady, 11:1462–1465, 1970.

[12] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[13] W. Paul, E. Prauß, and R. Reischuk. On alternation. Acta Informatica, 14:243–255, 1980.

[14] N. Pippenger and M. Fischer. Relations among complexity measures. Journal of the ACM,
26:361–381, 1979.

[15] R. Santhanam, October 1999. Personal communication.

[16] C. Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the ACM, 25:136–145,
1978.

[17] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time complexity classes.
Journal of the ACM, 25:146–167, 1978.

[18] S. Žàk. A Turing machine time hierarchy. Theoretical Computer Science, 26:327–333, 1983.

A Appendix

We now prove Theorem 2.4.
Gurevich and Shelah [6] showed how to simulate nondeterministic random-access machines by

multitape Turing machines. Their proof built on Schnorr’s result [16] that one can sort in quasilinear
time on a nondeterministic multitape Turing machine.

Theorem A.1 (Gurevich-Shelah) There exists a constant c such that every language that is
accepted by a nondeterministic random-access Turing machine using time t is also accepted by a
nondeterministic multitape Turing machine using time O(t logc t).

Because of Theorem A.1 the following theorem finishes the proof of Theorem 2.4.

Theorem A.2 There exists a constant c such that the following holds: If

SAT ∈ DT ISP[t, s],

then every language accepted by a linear-time nondeterministic multitape Turing machine belongs
to

DT ISP [t(n log2 n) · logc n, s(n log2 n) + logn].

19

Proof Let M be a deterministic random-access Turing machine deciding satisfiability in time t
and space s.

Consider an arbitrary language L accepted by a linear-time nondeterministic multitape Turing
machine. Hennie and Stearns [7] showed that there exists an oblivious 2-tape nondeterministic
Turing machine that accepts L in time O(n logn). Cook [3], building on work by Pippenger and
Fischer [14], used this result to construct for a given input x of length n, a Boolean formula φ such
that φ ∈ SAT iff x ∈ L. The formula φ has size m = dn logn for some constant d depending on
L, only depends on n, and uses the bits xi of the input x as well as some some additional Boolean
variables y. More precisely, φ is of the form (∧ni=1xi = yi) ∧ ψ where ψ only uses the variables y.
Given a pointer to a bit of ψ, we can compute that bit in simultaneous time O(logc1 m) = O(logc1 n)
and space O(logm) = O(logn) for some constant c1 independent of L.

The following algorithm decides L in time O(t(n logn) · logc n) and space O(s(n logn) + logn)
on a deterministic random-access Turing machine for some constant c independent of L. We will
simulate running M on input φ without storing φ in memory and without recomputing all of φ each
time we have to access one of its bits. When given φ, running M on φ takes time t(dn logn) and
space s(dn logn). Whenever M needs a bit from ψ, we compute that individual bit from scratch
in time O(logc1 n) and space O(logn), without moving the input tape head above x. During the
periods when M is accessing the part of φ that depends on the input x, the easy structure of that
part allows us to compute the bit of φ we need in time O(logc2 n) and space O(logn) for some
constant c2 independent of L. This operation may require moving the input tape head above x. All
together, we can simulate M on φ with a multiplicative time overhead of O(logc n) and an additive
space overhead of O(logn), where c = max(c1, c2). �

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

