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Lower Bounds for Matrix Product, in Bounded Depth
Circuits with Arbitrary Gates

Ran Raz * Amir Shpilka

Abstract

We prove super-linear lower bounds for the number of edges in constant depth circuits
with n inputs and up to n outputs. Our lower bounds are proved for all types of
constant depth circuits, e.g., constant depth arithmetic circuits and constant depth
Boolean circuits with arbitrary gates. The bounds apply for several explicit functions,
and, most importantly, for matrix product. In particular, we obtain the following results:

1. We show that the number of edges in any constant depth arithmetic circuit for
matrix product (over any field) is super-linear in m? (where m x m is the size
of each matrix). That is, the lower bound is super-linear in the number of input
variables. Moreover, if the circuit is bilinear the result applies also for the case
where the circuit gets for free any product of two linear functions.

2. We show that the number of edges in any constant depth arithmetic circuit for the
trace of the product of 3 matrices (over fields with characteristic 0) is super-linear
in m?. (Note that the trace is a single-output function).

3. We give explicit examples for n Boolean functions fi, ..., fn, such that any constant
depth Boolean circuit with arbitrary gates for fi,..., f, has a super-linear
number of edges. The lower bound is proved also for circuits with arbitrary
gates over any finite field. The bound applies for matrix product over finite
fields as well as for several other explicit functions.

1 Introduction

Exponential lower bounds are well known for constant depth Boolean circuits over the base
{AND, OR,NOT} [Ajt83, FSS81, Yao85, Has86]. However, for many other types of constant
depth circuits almost nothing is known. In this work, we prove super-linear lower bounds for
the number of edges in constant depth circuits with n inputs and up to n outputs. Our lower
bounds are proved for all models of Boolean and arithmetic circuits and, in particular, for
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Boolean circuits with arbitrary gates. The bounds apply for several explicit functions and, in
particular, for matrix product.

In general, our lower bound for circuits of depth d > 2 is Q(n - Ay(n)), where A\y(n) is a
slowly growing function. A description of the functions A\4(n) is given below in Subsection 1.5.
Our main method is a graph theoretic argument that analyzes certain superconcentration
properties of the circuit as a graph. Hence, the same lower bounds are obtained for all types
of circuits. Our results and proof methods are related to the works of [DDPW83, Pud94],
where lower bounds of (n - A\y(n)) were proved for the size of superconcentrators. Pudlak
used similar methods to prove lower bounds of Q(n-A4(n)) for the number of edges in constant
depth arithmetic circuits with n inputs and up to n outputs over fields with characteristic
0 [Pud94]. Pudlak’s results hold for the parallel prefix problem as well as for other explicit
functions.

In all that comes below, the size of a circuit means the number of edges in it.

1.1 Matrix Product

Matrix product is among the most studied computational problems. Surprising upper bounds
of O(m?*¢) (where € < 1, and m X m is the size of each matrix) were obtained by Strassen
in [Str69], and improved in many other works (see [Gat88] for a survey). The only known lower
bound, however, is a lower bound of 2.5-m? for the number of products needed [Bsh89, Bla99].
In particular, the following problem is still open: Can matrix product be computed by circuits
of size O(m?) ? Non-trivial size-depth tradeoffs for matrix product are also not known. In
particular, the following problem is still open: Can matrix product be computed by circuits
of size O(m?) and logarithmic depth ? In this work we prove that matrix product cannot be
computed by circuits of size O(m?) and constant depth.

The standard computational model for matrix product is by arithmetic circuits over some
field F'. Usually, it is assumed that the circuits are bilinear, that is, product gates are applied
only on two linear functions, where the first function is linear in the variables of the first matrix
and the second function is linear in the variables of the second matrix. Such an assumption
can be made w.l.o.g. if the field F' is of characteristic 0. For fields of characteristic different
than 0, the non-bilinear case is also interesting. Note, however, that all known upper bounds
for matrix product (over any field) are by bilinear circuits.

In the bilinear case, our lower bound proof works also if the circuit gets for free any product
of two linear functions. That is, the lower bound is proven for the number of edges above
the product gates. We prove that if the circuit is of depth 1 above these products (i.e., total
depth 3) it is of size Q(m?). For d > 2, we prove that if the circuit is of depth d above the
products (i.e., total depth d + 2) it is of size Q(m? - \y(m)). In the general (non-bilinear) case
for fields of characteristic different than 0, our lower bound is Q(m3) for circuits of depth 1
and Q(m?- A\g(m)) for circuits of depth d > 2. The last lower bound is a special case of a more
general lower bound for circuits with arbitrary gates over finite fields. That lower bound is
discussed in Subsection 1.2.



1.2 Circuits with Arbitrary Gates

In a Boolean circuit with arbitrary gates, we allow each gate (of fanin k) to compute an
arbitrary function g : {0,1}* — {0,1}. In this work, we give explicit examples for (up to)
n Boolean functions f1, ..., f,, such that any constant depth Boolean circuit with arbitrary
gates for f1, ..., f, is of super-linear size (as before, the bound for depth d > 2 is Q(n- Ag(n))).
The bound holds for matrix product over GF[2] (where the dimension of each matrix is

m = 4/n/2), as well as for matrix product over other finite fields (where, say, each field

element is represented by its bits). The bound also holds for the parallel prefix problem and
for other problems from [Pud94].

One important special case of this model is constant depth threshold circuits. Note,

however, that for constant depth threshold circuits super-linear lower bounds are already
known [IPS97].

The above results for Boolean circuits with arbitrary gates can be generalized to circuits
over larger domains. Let F' be some fixed finite set (e.g., some fixed finite field), and assume
that the input variables range over F' (or over a subset of F'). A circuit with arbitrary gates
over F allows each gate (of fanin k) to compute an arbitrary function g : F* — F. By a
reduction to the Boolean case, we get explicit examples for (up to) n functions fi, ..., f,, such
that any constant depth circuit with arbitrary gates over F for fi, ..., f, is of super-linear size
(as before, the bound for depth d > 2 is Q(n - A¢y(n))). In particular, this gives lower bounds
for circuits with arbitrary gates over any finite field F'. The bound holds for matrix product
over I’ as well as for many other functions.

1.3 Arithmetic Circuits

In arithmetic circuits the allowed gates are product and addition over a field F'. Constants
in the field are also allowed. Arithmetic circuits compute polynomials in the ring Fz1, ..., 2]
(where x1,...,z, are the input variables for the circuit), and we would like to give explicit
examples for polynomials that are hard to compute. Note that for finite fields the represen-
tation of a function f : F™ — F as a polynomial is not unique (since for every ¢ we have the
equation z¥ = x;, where p # 0 is the characteristic of the field). Usually, it is only required
that the circuit compute the given polynomials as functions, that is, the circuit may compute
other polynomials that represent the same functions.

Lower bounds for the size of arithmetic circuits for explicit polynomials are known only if
we allow polynomials with large degree or large coefficients (e.g., [Str73, BS82]). However, if
we limit the degree and the coefficients to be of size O(1) then no non-trivial lower bound is
known. For constant depth arithmetic circuits, exponential lower bounds are known for fields
F with characteristic p = 2 [Razb87, Smo87]. For other finite characteristics, exponential
lower bounds are known only for depth 3 [GK98, GR98| (and for depth larger than 3 no
non-trivial lower bound was known). For characteristic 0, the best lower bounds for depth 3
are the almost quadratic bounds of Q(n?~€) [SW99].



In this work, we get (for any field F') explicit examples for (up to) n polynomials fi, ..., f,
such that any constant depth arithmetic circuit (over F') for fi,..., f, is of super-linear size.
One such example is matrix product (over F'). For finite fields (and hence also for any field
with characteristic different than 0), this follows by the general lower bound for circuits with
arbitrary gates over I, as discussed in Subsection 1.2. For fields with characteristic 0, this
follows from the bilinear lower bound for matrix product, as discussed in Subsection 1.1.
Similar bounds for fields with characteristic 0 were previously proved by Pudlak [Pud94].
Pudlak gives explicit examples for n linear functions fi, ..., f,, such that any constant depth
arithmetic circuit with linear gates (i.e., products are not allowed) for fi,..., f,, is of super-
linear size. (Over fields with characteristic 0, the assumption that all the gates in the circuit
are linear can be made w.l.0.g.)

For fields with characteristic 0, our results (as well as Pudlak’s results) also give explicit
examples for one polynomial h = f;-y;+- - -+ f,, -y, (in the input variables x1, ..., Zn, Y1, -y Yn)
such that any constant depth arithmetic circuit for A is of super-linear size. This follows easily
by the result of [BS82] and was noted to us by Toni Pitassi and Avi Wigderson.

1.4 Methods and Related Work

Our main lemma gives an analysis of the structure of a constant depth circuit as a graph. Let
G be a directed acyclic graph. Denote by Vg the set of all nodes of G. Denote by I the set
of all nodes of indegree 0 (inputs), and by O¢ the set of all nodes of outdegree 0 (outputs).
The depth of G is the length of the longest directed path in G. Roughly speaking, the main
lemma shows that if G is of depth d and has less than n - Ay(n) edges then one can remove
from G a set of € - n inputs and € - n outputs (for some small constant €) and a small number
of intermediate nodes, such that in the new graph the total number of directed paths from I5
to Og is small.

Lemma 1.1 For any 0 < € < 1/400 and any directed acyclic graph G of depth d, with more
than n vertices and less than € - n - A\g(n) edges, the following is satisfied:

For some k, s.t., \/n < k = o(n), there ezist subsets I C Iz, O C Og and V C Vg, s.t.,
II|,|0] < 5e-d-n, and |V| =k, and such that the total number of directed paths from I\ I
to Og \ O, that do not pass through nodes in V', is at most € - n*/k.

Lemma 1.1 is restated (in a slightly more general form) as Corollary 3.12.

The main lemma is used to transform any circuit of depth d and size less than en\y(n)
into a new circuit of depth 1 (and relatively small size). This is done by removing from the
original circuit Sedn inputs, S5edn outputs, and a small number of intermediate nodes. The
lower bounds then follow by a rigidity argument, in the spirit of Valiant’s approach [Val77].

As mentioned before, similar methods were previously used to prove lower bounds for
superconcentrators [DDPW83, Pud94| and for constant depth arithmetic circuits over fields
with characteristic 0 [Pud94]. In particular, methods similar to our main lemma are implicit
in [Pud94] (although the presentation there is different). Versions of these methods appeared
already in [DDPW83]. One can think of Lemma 1.1 also as a generalization of the lower
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bounds for superconcentrators given in [DDPW83, Pud94]. In fact, all these lower bounds
follow easily by a reduction to Lemma 1.1. Our proof for Lemma 1.1 heavily relies on [Pud94].

1.5 The Functions \;(n)

We will now give a description of the functions \;(n). The exact definition is given below in
Section 2. Let §(n) be any function on the natural numbers, such that for any £ > 0, 6(k) < k.
We denote by 6*(n) the following function: *(n) = min{s | #®(n) < 1}, that is, the smallest
integer ¢ such that i-times iteration of # gives a value smaller than 1. The functions A\;(n) will
satisfy:

1. Az(n) = O(logn),
2. A3(n) = O(loglogn),

3. for any even d > 2, A\g11(n), Ag(n) = O(A;_5(n))
(e.g., As(n), As(n) = ©(log*(n))).

1.6 Organization of the Paper

In Section 2 we give the definition of the functions A\4(n) and prove some simple properties
of these functions. In Section 3 we give the proof of Lemma 1.1. In Section 4 we prove our
results for matrix product by bilinear arithmetic circuits. In Section 5 we prove our results
for Boolean circuits with arbitrary gates and for circuits with arbitrary gates over finite fields.

2 Slowly Growing Functions
In this section, we define the functions A\y(n) and we prove some easy properties of them. We

start with a definition of the “star” operator.

Definition 2.1 For a function f, define f@ to be the composition of f with itself i times,

je., fO=fofo..of itimes, fO = f.
For a function f : N — N such that f(n) <n for n >0, define:

f*(n) =min{i| s.t., fOn)<1} .

We will need the following properties of f* (taken from [Pud94]).
Claim 2.2 [Pud94] Suppose f(n) < |\/n|. For every n > 0 we have:

1. f{;('ii‘)l(;(lzz) > f@H(n), for every i > 0, (provided that the denominator is not 0).

2. fO(n) > %("), for every i < f*Q(").



The proof is taken from [Pud94] as well.

Proof:

1.

f(i) (n) f(i) (n) i) (n (i+1)
FED () > L\/f(T(n)J >\ f@(n) > f .

2. From (1) it follows that if f0+Y(n) > 1 then f®(n) > f@+1)(n). Therefore
f(n) > fAm) > ... > fI 0 () .
Since the values of f are integers, the result follows.
O

Our lower bounds will be expressed in terms of the following set of slowly growing functions.

Definition 2.3 Let
Ai(n) = [vn]
Az(n) = [logn] ,
Aa(n) = Ag_(n)

Some easy to verify properties of these functions are:

Claim 2.4 1. Fach \;(n) is a monotone increasing function tending to infinity with n.
2. fori > 2, Aoj(n) = 0(Agir1(n)).
8. for i > 2 and n large enough, \j(n) < [(/5].

Proof:
1. The fact that )A; is increasing is immediate from the fact that A; and A, are.

2. Notice that As(n) = #(loglogn). Since loglogn = log'? (n), we have Ay(n) = 8(Xs(n)).
Using induction we get the desired result.

3. Clearly \y(n), A3(n) < \/g for n large enough. Assume that \;( f We have

n 2 2 1 2
V3 220 2 0P ) 2 {0ia(n))?

hence

for n large enough.



3 Superconcentration Properties of Graphs

In this section we prove our main lemma on graphs, and several stronger versions of it. The
lemma will be used to analyze the structure of a constant depth circuit as a graph. For
simplicity, we prove here the lemma for leveled graphs. The general case follows easily by a
reduction to the leveled case. Let G = (Vi, E) be a leveled graph of depth d. The number
of levels in GG is hence d + 1 and all edges in the graph are between vertices of adjacent levels.
In all the following we allow all graphs to be multi-graphs.

We will use the following notations: We denote by Ly, ..., Ly the levels of G, that is, L;
is the set of vertices at level i. The set of vertices L, is also denoted by I; (and we call
these vertices inputs). The set of vertices Ly is also denoted by O¢ (and we call these vertices
outputs).

Let U C Vg be a set of vertices. We denote by E(U) the set of edges that touch vertices
in U. We denote by I'(U) the set of neighbors of U. We denote by maxzdeg(U) the maximal
degree of a vertex in U. For subsets I C Ig, O C Og, V C Vi we denote by Pg[I,0, V] the
total number of paths of length d between I and O that do not pass through vertices in V.

3.1 Depth 2

We will first prove the main lemma for graphs of depth 2. We prove first a stronger lemma
(Lemma 3.1). The main lemma (for depth 2) will then follow as Corollary 3.3. These lemmas
are not needed for the proofs for higher depth. Nevertheless, the methods used here give some
hints for the proofs needed for the general case.

Lemma 3.1 Let G be a leveled graph of depth 2 with at most en)y(%) edges, for some 1 <
k = o(n), and some € > 0. Assume that |Li| > k. Then, there exists a set V C L; of size
k < |V|=o(n) such that

100€*n?

P;[Ig,0q,V] < V]

For the proof of Lemma 3.1 we will need the following Lemma 3.2. For the proof of
Lemma 3.2, the reader is referred to [Pud94] (Lemma 4).

Lemma 3.2 [Pud9j] Let ¢; > ¢y > ... > ¢; > 0 be a sequence of real numbers, and let p,q be
two integers such that 1 < p < g <t. If for every p <1 < g,

then

Proof of Lemma 3.1:
Denote m = |Ly|. Let vy, vs,..., v, be the vertices of L, ordered according to their degree,
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from highest to lowest. That is, for every i, deg(v;) > deg(v;y1). For every k < I < V/nk,
denote V; = {v1,...,u}. Then, for every such [,

Pellg,O¢, Vi) < i (deg(v;))?

i=l+1

Let ¢; = deg(“’) Then,

icz- - w%ideg(vi) —|Fq| < [mg (Zﬂ < %log (%) - %log (@)

Therefore, by Lemma 3.2, for some k£ <[ < v/nk = o(n),

m
2
D di <
i=l
Hence,

m Ui 100 100 2n?
Pgllg,Og, V)] < Z(deg(vz )2 = (100€’n Zc L |‘i|n
i=l i=l l

As a corollary, we obtain our main lemma for d = 2.

Corollary 3.3 Let G be a leveled graph of depth 2 with at most enha(n) edges, for some 0 <
€ < 1/400. Assume that |Li| > \/n. Then there exists a set V' C Ly of size \/n < |V| = o(n)

such that 2

Pgllg,Og, V] <
vl

Proof:
Note that

endo(n) < 2eng (%) .

By Lemma 3.1, there is a set V' C Ly, of size /n < |V| = o(n) such that,

100(2¢)*n? _ en?
b S A

Peal|1 < —.
G[ GaOGa V] >~ |V| ~ |V‘

3.2 Reducing the depth by 2

Roughly speaking, the main lemma shows that if G has a small number of edges, then one can
remove from G a small set J of inputs and outputs, and a small set V' of other vertices, such
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that the total number of paths of length d from I \ J to Og \ J, that do not pass through
vertices in V, is small (i.e., Pg[Ig\J, Og\J, V] is small).

The idea of the proof for depth larger than 2 is as follows. We start with a graph G of
depth d and we reduce it’s depth by steps. In each step we will reduce the depth of G from d
to d — 2 by eliminating the levels L, and L;_;. This is done in the following way. We partition
Ly U Ly into 3 sets (A, B,C). We will then eliminate each one of these sets of vertices.
However, we will have a different method to eliminate each one of these sets. The vertices in
A are just removed from the graph. More formally, we just add the vertices of A to the set of
vertices V (that are later on ignored). The set B is eliminated by removing all the inputs and
outputs that are connected to it. More formally, we just add all the inputs and outputs that
are connected to vertices in B to the set J of inputs and outputs (that are later on ignored).
The set C' is eliminated by connecting directly every pair of vertices that are connected by a
path of length 2 through C. More formally, we replace each path of length 2 (v, ¢, w), such
that v € Ig, ¢ € C and w € Lo, by the one edge (v, w) (the same with L; 5 and Og). The
set C can hence be ignored. We continue to reduce the depth of G until we have a graph of
depth 2 or 3 (w.l.o.g. 3). We then finish by proving the main lemma for depth 3.

To summarize, the proof is by induction on the depth. The proof uses a specific way to
reduce the depth by 2. Given a partition (A, B,C) of L; U Ly_1, we will eliminate L; U Lgq_
by:

1. Removing A.
2. Removing all neighbors of B among Iz U Og.

3. Adding an edge between vertices from I; and L, that are connected through C (and
the same with Ly 5 and Og) and then removing C.

This leads us to the following definition.

Definition 3.4 Let G be a leveled graph of depth d > 3. Let (A, B,C) be a partition of
LiULy 1. The graph G of depth d — 2 is defined in the following way:
The inputs of G are

I =1 \T'(B).

The outputs of G are

O = O0¢ \I'(B).
The d — 1 levels ofé are

I, Lo, ...;L4_2,04

(note that for d = 3 the levels ofC;Y are just 1a,0p). The edges between the levels Lo, ..., Ly_o
are the same as they are in G. The other edges are defined in the following way:

e For d > 3, we have to define the edges between I and Ly and between Ly_y and Opg.
For every v, c,w such that v € I, c € C, w € Lo, and there are edges (v, c), (c,w) in G,



we add the edge (v, w) to G (i.e., we replace every such path of length 2 with an edge).
In the same way, for every v,c,w such that v € Ly, ¢ € C, w € Og, and there are

edges (v,¢), (¢c,w) in G, we add the edge (v, w) to G.

e Ford =3, we have to define the edges between I and Op. This case is slightly different
because we don’t have a level between Li and Lo to absorb the new edges. So instead, for
every path of length 3 (v, c1, o, w), such that, v € 15, w € Op and ¢, ¢, € C, we put an
edge (v,w) in G.

Clearly G isa function of G, A, B,C. For convenience we will use the notation G instead of

G(G, A, B, C).

Obviously, Gis a multi-graph of depth d — 2. In the construction of G we replaced each
path of length 2 through C (or a path of length 3 in the case d = 3) with an edge. Therefore,
we have the following easy corollary. The corollary shows that the number of relevant paths
in the graph G is the same as it is in the graph G after removing the sets A and ['(B). Hence,
in order to count paths in G it is enough to count the corresponding paths in G. This easy
observation makes the use of induction possible.

Proposition 3.5 Let G, A, B, C, G be as in Definition 3.4. Then,
1. Pg[1c\T'(B), Oc\I'(B), A]=Pg[1s, Og, 0].

2. More generally: for any set of vertices V C LyU-+ULg_s, and any set of inputs and
outputs J C 15U Og,

Po[ I\ (JUT(B)), Oc\ (JUT(B)), VUA]=Pg[Ig\J, Og\J V] .

As mentioned above we will prove the main lemma by induction. In each step we reduce
the depth by 2 by removing a set A of intermediate vertices and a set ['(B) of inputs and
outputs. The final set V' will be the union of the sets A from all steps of the induction, and
the final set J will be the union of the sets I'(B) from all these steps.

In each step of the induction, we assume that the graph G has a relatively small number of
edges. We would like to make sure that G also has a small number of edges. The next lemma
shows that given certain bounds for |A|, maxdeg(C), and for | Eg|, one can bound the number
of edges in G. The idea of the proof is that the only edges that we add to G are related
to paths through C. Therefore (roughly speaking) we can bound |Es| by |Eg| - mazdeg(C).
Note that we assume here the bound

|Eg| < en)g (ﬁ>

k
for some k£ > 1. This is more general than the original assumption |Eg| < en)y(n). The
reason that we need a more general assumption is that the graph G may be a graph that was
obtained after several steps of reduction (rather than the original graph). Roughly speaking,
the parameter k corresponds to the number of intermediate vertices that were already removed
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from the original graph (the set V' in the statement of the lemma). Since, we think of the set
A as being removed from the graph as well (and being added to the set V') the bound that

we want for |Eg| is
n
Esfl <endgo | — |-
Fal < en “(/HIAI)

Lemma 3.6 Let G, A, B,C, G be as in Definition 3.4 and assume that for some 1 < k = o(n)
and for some 0 < € < 1/3,

n
Bl < enng ().
|G‘—€"d(k)

Assume that for some integer 1 < i < %%—) — 3 we have:

1. |A] < B,
Adsa(3)

2. mazdeg(C) < )\,(;j;’)(%)

Then,

n
EAl < o |l — 1.
Bl < enha 2(k+|AI>

The proof is by a straight forward calculation using Claim 2.2, and Claim 2.4.

Proof:
Since k = o(n) we have:

i, (2) <00 (3) <fE <o

2en k)\EQQ(%) + 2en 3en n

- = - < - < -
AP (2) AP, () AL AP, )

therefore

b+ Al < k+

We now have two different cases that follow from the construction in Definition 3.4:

1. d > 3: ;From the construction of G we get that the degree of each vertex in Ly U Ly »
has increased by a factor of mazdeg(C) at most. Therefore we have:

Bl < || - masdeg(C) < enra (1) N1 (F) <

(i+3) Q))Q (i+2) (2) 2) n _n
< < <
< 2en ()\d_2 (k < endg_sy v )= Nty o F+ 1A < endg_o k+ A

(where all inequalities are due to Claim 2.2, Claim 2.4 and the bound that we proved
on k + |Al).
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2. d = 3: Since we dropped L; U Lo, the set of inputs and outputs now absorbs both the
edges of C'N Ly and the edges of C'N Ly, so we have:

. 2
|Es| < |Eg| - mazdeg(C)? < en)g (%) ()\((;j;) (%)) <

1 n i+2 n 1 i+1 n 1 n
< g (1) 202 (7)< 3ennd? (7) < jonnee (570

(where, as before, all inequalities are due to Claim 2.2, Claim 2.4 and the bound that
we proved on k + |AJ).

O

So far, we have presented the construction of G from G, given an arbitrary partition
(A, B,C). In order to maintain the bound on the number of edges of G, we need A,C to
satisfy the conditions of Lemma 3.6. Also, we need I'(B) to be not too large, in order to make
sure that the total number of inputs and outputs removed in the process is small. The next
lemma shows how to partition L; U Ly ; into suitable sets (A4, B,C). The way it is done is
by first ordering the vertices in Ly U Ly4_; according to their degrees (from highest to lowest),
and then finding appropriate numbers r; > 79, such that A will be the set of vertices with
degree larger than 7y, B will be the set of vertices with degree larger than ry and at most 7,
and C will be the set of vertices with degree at most r5.

Lemma 3.7 Let G be a leveled graph of depth d > 3, such that, |Eg| < en)y(r) for large
enough v (more accurately, we need \g(r) > 72). Then, there exists a partition (A, B,C) of
LiULg 1, and 1 < < A\y(1)/2 — 3 with the following properties:

1. |A] < Ze—.
4] < A 5(r)
2. |D(B)| < 9en.

3. mazxdeg(C) < /\((iij;’) (r).

Proof:
Denote,
Wy ={v e LiULy |deg(v) > Aa—a(r)},

and for ¢ > 1, ' .
W; ={v € LiU L1 | A2, (r) > deg(v) > A{1) (r)).

Claim 3.8 For every 1 <i < A\y(r)/2 — 3,

2
\WOUW1U---UVVZ-_1\§#.
Ad_o’ (1)
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Proof: The proof follows from the fact that the degree of each vertex in WoUWiU---UW;4
is at least )\((;22(7“). If the claim wasn’t true we would have had

i 2en i
Eg| > [E(WoUWL U= UW; )M, (r) > A a(r) >
Aaa' (1)
> Zen)\((iif;)(r) > enAqy(r) ,
in contradiction. a

Claim 3.9 For some 0 <1i < \y(r)/2 —4,

|E(VVZ U VVi—I—l U m+2 U Wi+3)| S en.

Proof: The proof follows from the bound on |Eg|. Since |Eg| < enAy(r) we must have

Ag(r)/2—4
4

Z |E(Wy U Wit U Waipo UWaigs)| < endg(r) -

i=0
If each of the sets E(Wy; UWyp1 UWyio UWy,p3) was of size larger than 9en then we would

have had

)\d(T)/Q -4
4
(for large enough r), in contradiction. O

|Eg| > 9en > enAg(r)

Fix 7' to be such that Claim 3.9 is satisfied for 7. The proof of the lemma now follows for
i =1 +1, by taking

1. A=WouWyU---UW;_y.

2. B=Wy UWin UWy o UWygs.

3. C=(L1UL4)\ (AUB).

3.3 Depth 3

The induction that we are about to perform on the depth will end with a graph of depth 2 or
3 (w.l.o.g., 3). We will now give the proof of the main lemma for the special case d = 3. As
mentioned before, we need a more general lemma that assumes a more general bound for the
number of edges in the graph.

The proof for d = 3 already gives the main idea of the proof for the general case. First
we partition L; U Ly into 3 sets (A4, B, C) as described before. The partition (A, B, C) will
satisfy the following: The first set A is small, the second set B is not connected to many
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inputs and outputs, and each vertex in the third set C' has small degree. We then reduce the
depth of the graph to 1, using Definition 3.4. Thus we get a graph, G, with the same number
of input-output paths, between Iz and Op. Since G is a graph of depth 1, the number of such
paths is simply the number of edges. The last step would be to calculate the number of edges
in G, which is done using Lemma 3.6.

Lemma 3.10 Let G be a leveled graph of depth & with at most enA3(}) edges, for some
1 <k =o(n) and for some 0 < € < 1/3. Then, there exists a partition (A, B,C) of L1 U L
such that:

1. |A] = o(n)
2. [T(B)| < 9en,

8. Po[ Ic \T'(B), Oc\T(B), A] < en)i (727)-

Proof:
By Lemma 3.7, we can partition L; U Ly into 3 sets (A, B, (), such that for some 1 < i <
A3(%)/2 — 3, we have:
2en
1. JA] < o) = o(n).

2. |T(B)| < 9en.

3. mazdeg(C) < A§i+3)(%).

Let G be as in Definition 3.4 (with respect to (A, B,(C)). By Proposition 3.5,
Since G is of depth 1, the right hand-side equals |E¢|. By Lemma 3.6,
n
E:l <en\ | —— | .
ol = e <k+|AI)
Hence,

Pol I6\T(B) , 0c\T(B), A] < en, (%‘A‘) |

3.4 Higher depth

We are now ready to state and prove our main lemma. As mentioned above, we actually prove
a stronger lemma that will be needed for the induction. The main lemma will then follow
as an easy corollary. First note that the functions \g(n) satisfy Ag;(n) = 6(Agi41(n)). Hence,
we can assume w.l.o.g. that the depth d is odd, otherwise we can just increase the depth by
1. (We couldn’t prove better results for the even levels because of the constructions given in

[DDPWS83)).

14



Lemma 3.11 Let G be a leveled graph of constant depth d > 3, (and assume that d is odd),
with at most enAq(}) edges, for some 1 < k = o(n) and for some 0 < e < 1/3. Then there
exist a set V' of vertices and a set J of inputs and outputs, such that:

1. |V[=o(n),
2. |J| < bedn
8. Po[Ic\J, Oc\J, V] <enh (78) -

Proof:

The proof is by induction on d. The base case d = 3 was proved in Lemma 3.10. For d>b,
let (A, B, C) be the partition of L; U Ly 1 from Lemma 3.7. Let G be the depth d — 2 graph
defined in Definition 3.4 (with respect to (A, B,C)). Then by Lemma 3.6,

n
EF-l<enh; ol —— | .
Fl < en “(k+|A|>

Since |A| = o(n), we have that k£ + |A| = o(n) and hence the inductive assumption holds for
G. Hence for GG, there exist a set V' of vertices and a set J of inputs and outputs, such that:

L [V|=o(n),
2. |J| < 5e(d —2)n,

3. Pe[ I\ J, O\ J, V] <en) (kHAnW) _

Define V =V U A and J = JUT(B). Then since |V|],|A| = o(n) we have |V| = o(n) (note
that since the original depth is constant, the total number of induction steps is constant).
Since |J| < 5e(d — 2)n and |['(B)| < 9en we have that |J| < 5edn.

Finally, by Proposition 3.5,
Pl Ig\J, Og\J, V=P Iz\J, Os\J, V]<

< en) (#)_m (7)
=kt A+ |V \E+V])

Our main lemma is now stated as the following corollary. Note that the requirement
€ < 1/400 is only needed for the case d = 2 (a weaker requirement is needed for d > 2).

|

Corollary 3.12 Let G be a leveled graph of constant depth d > 2, with more than n vertices
and less than enAy4(n) edges, for some 0 < € < 1/400. Then there exist a set V of vertices and
a set J of inputs and outputs, such that:

1. yn<|V]=o(n),
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2. |J| < bedn

3. Po[Ia\J, O\ J, V] <ehs.

Proof:

First note that (as mentioned above) Lemma 3.11 is correct also for even depth if we just
require € to be slightly smaller (a factor of 2 or 3 is enough). Since here we require € < 1/400
we can apply Lemma 3.11 for any depth larger than 2.

We apply Lemma 3.11 with £ = 1. If |V| > /n we are done. Otherwise, just add arbitrary
vertices to V. Call the resulting set V'. We have

PelIg\J, Og\J, V'|<Pg[Ig\J, Og\J,V]<

< enA (L> <en n =€ n <6n2
SNV TNV e v - VY

This completes the proof for depth higher than 2. For d = 2, the corollary was already stated
as Corollary 3.3. O

3.5 Graphs for matrix product

As mentioned in the introduction, the main function that we concentrate on in this work is
matrix product. A circuit for matrix product has 2m? inputs and m? outputs, where m is the
dimension of each matrix. Therefore, we will assume here that our graph has 2m? inputs and
m? outputs and that the outputs are ordered as a matrix. We will refer to such a graph as a
graph for matrix product. For convenience, we will prove here a lemma that will be specific
for such graphs. The proof will follow easily by Corollary 3.12.

Denote by O; the outputs in the i column of the output matrix. Denote by [m] the set
{1,...,m}. We think of [m] as the set of all output columns. For a subset D C [m], denote by
Op the outputs in all the columns in D. That is, Op = U;cpO;.

Roughly speaking, our lemma will state that after removing from the graph a small set
of inputs and outputs (I and O) and a set V of size k of intermediate nodes, one can find
a set D of 10k/m output columns, such that there are no paths between the inputs and the
outputs in Op. For simplicity, we will not state the lemma for a general constant € and just
fix some constant that will be good enough.

Lemma 3.13 Let G be a leveled graph for matriz product, of constant depth d > 2, with less
than em?\q(m?) edges, for e = 1/(1000 - d). Then there exist sets V C Vg, D C [m], O C Op,
I C Ig, such that:

1. m < |V| = o(m?).

2. |D| > v,
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3. For everyi € D, |0;NO| < m.
4. || < 35m?2.
5. Pg[Ig\I,Op\O,V]=0.
Proof: -
Let V,J be the sets guaranteed by Corollary 3.12 with n = m?2. Define I = J N I and
O =JNO0Og, and let k = |V|. Then
1. m < |V| =k =o(n). (hence, requirement (1) is satisfied).
2. |1],]0] < (1/200) - m?.
3. Pl I\ T, 0g\O, V] <em,
Denote by D the set of all i € [m] such that |O; N O] < (1/100) - m. Then by the bound we

have on |O| we know that )
|D| > (1/2) - m.

For every i € D, let P(i) be the total number of paths between outputs in O; \ O and
inputs in I\ I that do not pass through V. Denote by D the set of [10k/m] indices 7 with the
smallest P(i). (then by the definition of D, requirement (2) is satisfied). Denote O = ONOp.
(then by the fact that D C D, requirement (3) is satisfied). Since

S P(i) < Ps[Ig\I, 0c\O, V]SG%LL,

icD
we have,

%P(i) < %ZP(Z) < 721-6%4 < (1/50) - m?.

Hence, if we denote by I the set of all inputs that are connected by a path (that do not pass
through V') to some output in Op \ O we have

1] < (1/50) - m?.

Denote T = T U I:. (then by the bounds we have on |I|, ||, requirement (4) is satisfied). By
the definition of I, all paths between Op \ O and I \ I pass through V. (hence requirement
(5) is satisfied). O

17



4 Arithmetic Model

In this section we present our results for bilinear arithmetic circuits. An arithmetic circuit
is a directed acyclic graph as follows. Nodes of in-degree 0 are called inputs and are labeled
with input variables. Nodes of out-degree 0 are called outputs. Each edge is labeled with a
constant from the field and each node other than an input is labeled with one of the following
operations { +, - }, (in the first case the node is a plus gate and in the second case a product
gate). The computation is done in the following way. An input just computes the value of
the variable that labels it. Then, if vy, ..., v are the vertices that fan into v then we multiply
the result of each v; with the value of the edge that connects it to v. If v is a plus gate we
sum all the results, otherwise v is a product gate and we multiply all the results. Obviously,
each node in the circuit computes a polynomial in the input variables.

In this section we prove lower bounds on the size of circuits computing the product of two
m X m matrices. The input is of size n = 2m?, and it consists of two m x m matrices X, Y.
The output is the matrix Z = X - Y, i.e., there are m? outputs, and the (4, j)™ output is:

m
Zig = Z Tik " Yk,j -
k=1

Each output z; ; is hence a bilinear form in X and Y.

Since the product of two matrices is a bilinear form, it is natural to consider bilinear arith-
metic circuits for it. A bilinear arithmetic circuit is an arithmetic circuit with the additional
restriction that a product gate is only allowed to compute the product of two linear functions,
one in the variables of X and the other in the variables of Y. Thus, bilinear circuits have the
following structure. First, there are many plus gates computing linear forms in X and linear
forms in Y. Then there is one level of product gates that compute bilinear forms, and finally
there are many plus gates that eventually compute the outputs. We will now define the size
and depth of the circuit.

Definition 4.1 For a bilinear circuit C, we denote by s(C) (the size of C) the number of
edges between the product gates and the outputs. We denote by d(C) (the depth of C) the
length of the longest directed path from a product gate to an output.

Note that these definitions ignore all gates and edges below the product gates (i.e., between
the inputs and the products). That is, we allow the circuit to get for free any number of linear
functions in the variables of X, and any number of linear functions in the variables of Y. We
only count the size and depth above the product gates.

The requirement that the circuit is bilinear seems restrictive. It is easy to show, however,
that over fields of characteristic zero, the bilinearity assumption does not change (up to a
constant factor) the size and the depth of the circuit. More accurately, by paying a constant
factor in the size and in the depth, we can transform any arithmetic circuit computing a
bilinear form into an equivalent bilinear circuit. Roughly speaking, this is done in the following
way: Since the circuit computes polynomials of degree two, it doesn’t really need to keep
track of any monomial of higher degree. Therefore, we only need to keep track of monomials
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of degree one or two, and we can do that by replacing each gate by a constant number of new
gates (at most 5 new gates) that satisfy the bilinearity assumption. Thus we have:

Proposition 4.2 If a set of bilinear forms is computed by an arithmetic circuit of depth d
and size s over a field of characteristic zero, then there is a bilinear circuit of depth 3d and
size bs over the same field computing the same set of bilinear forms.

Over finite fields, the bilinearity assumption may be restrictive. We prove lower bounds
for the general case of arithmetic circuits over finite fields in section 5. It is also worth noting
that all known algorithms for matrix product are by bilinear arithmetic circuits.

Our main tool in proving our lower bounds is Lemma 3.13. Since that lemma is stated for
leveled graphs, we would like our circuit to be leveled. We hence assume that our circuit is a
leveled bilinear arithmetic circuit. Since we consider leveled circuits, the depth of the circuit
is just the number of levels above the product gates. Our main result in this section is the
following lower bound:

Theorem 4.3 Any leveled bilinear arithmetic circuit C of depth d, for the product of two
m X m matrices, is of size:

Q(m?) d=1
s(C) = { Q (%mQ)\d(mQ)) d>1

In order to prove lower bounds for a non-leveled bilinear circuit, we just level it. We can
do that by increasing it’s size by a factor of d. We can then use the lower bounds for leveled
circuits. We hence have the following corollary:

Corollary 4.4 Any bilinear arithmetic circuit C of depth d, for the product of two m x m
matrices, is of size:
Q(m? d=1
S(C) = { (m?)

Q(Hm*Aa(m?)) d>1

In particular, this gives the following size-depth tradeoff: there is no linear size and constant
depth bilinear arithmetic circuit for the product of two matrices. Note that the theorem is
valid for any field. It just needs the bilinearity assumption.

After proving the main theorem, we will use the result of Baur and Strassen [BS82] to
prove a lower bound on the size of bounded depth arithmetic circuits for the trace of the
product of 3 matrices:

m
2 Tij Yjk " Rky s
ijrk=1
which is a function with a single output.

Let us start with bilinear circuits of depth 1. The structure of such circuits is very simple.
First they compute linear forms. Then there is one level of product gates computing bilinear
forms. Finally, there is one level of m? plus gates computing the outputs. For the proof, we
will use the following notation.

Oj:{Zi,j |Z€ {1,...,7’)’7,}},
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i.e., O; denotes the set of outputs of the 5% column of the output matrix.

Theorem 4.5 Any leveled bilinear circuit C' of depth 1, for the product of two mxm matrices,
1S of size:

Proof:

Since the circuit is of depth one, the outputs come right after the product gates. Each output
is computed by a plus gate that adds the results of the product gates that are connected to it.
We will show that there are at least m? edges connected to each output column O;. Hence,
since there are m output columns, the result follows.

Assume for a contradiction that an output column O; is connected to r < m? product
gates. Denote the functions computed by these gates by M, ..., M,. For each M denote by
Ly 1(X), Ly 2(Y) the two linear functions that it multiplies. That is,

My(X,Y) = L1 (X) - Lg2(Y).
Since 7 < m?, we can find a substitution to the matrix X such that:

1. X #0.

2. Forevery 1 <k <r, Ly,1(X)=0.

Hence, for every 1 < k < r,
Mk(X7 Y) = O

Therefore, O; = 0, no matter what Y is. At the other hand, X # 0, and hence we can find a
substitution for the matrix Y such that no column of X - Y is all zero (a contradiction). 0O

The main idea of the proof for depth 1 was the following: if there is a small number
of edges in the circuit then one can find a substitution for the matrix X, such that a large
number of outputs are forced to be 0 (no matter what Y is). The main idea of the proof for
larger depth is the following: First apply Lemma 3.13 to transform the circuit into a circuit of
depth 1. This is done by removing from the circuit a certain number of inputs, outputs and
intermediate gates. Then use the argument for depth 1. However, since we remove from the
circuit a certain number of nodes, we will need a more general argument. Roughly speaking,
we will need to generalize the proof for depth 1 to the case where X and Y are restricted to
certain subspaces of matrices. We will show that even if X and Y are restricted to (not too
small) subspaces, their product can still not be computed by a small circuit of depth 1. We
will use the following notations.

Definition 4.6 For a matriz X, denote by (X); the j™* column of X. For a linear subspace
of matrices A, denote

(A)j={X);[XeA}.
Since A is a linear subspace then so is (A);.

We clearly have:
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Proposition 4.7 For any linear subspace of matrices A,

dim(A) < idim((}l)j) :

We will also need the following lemma. Roughly speaking, the lemma claims that if X
is a matrix of large rank and B is a subspace of matrices of high dimension, then for many
columns j, dim({ (X -Y); | Y € B}) is high.

Lemma 4.8 Let X be an m X m matriz of rank > %m. Let B be a linear subspace of m X m
matrices, such that dim(B) > m? — k. Then for any subset of columns, D, of size |D| > 1%
there exists a column j € D such that

dim({ (X -Y);|Y €B}) >

o[ 3

Proof:
Let D be a subset of columns such that |D| > %. We first show that there is a column 5 € D

such that dim((B);) > skm. If this wasn’t the case then by Proposition 4.7 we would have
had:

m? — k < dim(B) < |D| (%m—1>+(m—|D|)m:m DI~ Dl <m?—k.

Let j € D be such that dim((B);) > &m. Since rank(X) > 2m, we have
dm{ (X -Y); | YeB})=dim({ X -v|ve(B)}) >rank(X) — (m— dim((B);)) >

>2 1 >m
-m——m > — .
-3 10 2
O

In the proof for depth 1, we had X # 0. Since in the proof for higher depth Y will be
restricted to a subspace of matrices, we will need X to satisfy a stronger condition. Namely,
we need X to be of high rank. However, X itself will also be restricted to a subspace of
matrices. Therefore, we want to show that in any subspace (of matrices) of high dimension,
there is a matrix of high rank.

Lemma 4.9 In any subspace of m X m matrices of dimension larger than (2mr — r? + m),
there is a matriz of rank at least r.

Proof:

We have two different proofs. The first is for finite fields and the second is for fields of
characteristic zero. We wish to compare the number of matrices with rank at most r to the
number of matrices in our linear subspace. If we prove that the number of matrices in the
linear subspace is larger, then it must contain a matrix of rank larger than r.
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Assume that F is a finite field. Denote |F'| = g. The number of elements in a subspace
of dimension larger than (2mr — r? + m) is larger than g™+t We will now count
the number of m x m matrices with rank at most r. Note that for every such matrix
there are r rows, such that every row in the matrix is in their linear span. There are
(T) possible ways to choose these r rows. There are ¢™" possible ways to choose the r
vectors for these rows. Every other row is in the linear span of these r rows, so it can be
one of ¢" vectors. Therefore the number of matrices of rank at most r is bounded from
above by:

m mr r\m-—rT mT'—T'2m
<T>q ()" < g

Assume that F'is a field of characteristic zero. Instead of counting, we will consider the
dimension of the variety of matrices with rank at most r. The same argument as above
shows that this variety is included in the union of (T) varieties, each of dimension at most
mr+r(m—r), (as before, mr is for the freedom of choice of the first r vectors, and r(m—r)
is for spanning the other m—r rows). Therefore the dimension is 2mr—r? < 2mr—r2+m.

O

Before giving the formal proof for Theorem 4.3, let us first give a sketch of this proof. Let
C be a leveled bilinear arithmetic circuit of depth d for the product of two m X m matrices.
Let G be the leveled graph of depth d, corresponding to the graph of the circuit between the
product gates and the outputs (i.e., the product gates are the inputs of the graph, the outputs
are the outputs of the graph and the levels of the circuit between the product gates and the
outputs are the levels of the graph). We would like to prove that

S(C) > 0 (ém2)\d(m2)) |

Assume for a contradiction that s(C) < —t—=m?2)\4(m?) , or in other words

1000d

By Lemma 3.13, we can find a set of columns, D, and 3 sets of vertices, V, I, O, in the graph
G, such that:

m < |V| =k = o(m?).

I is a small set of inputs.

D is a set of [1%] output columns.

For every i € D, |0; N O| is small (where O; is the i** output column).

All the paths from Op \ O to the inputs pass through V or reach I.
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We will derive a contradiction in 4 steps:

1. Since I is a small set of product gates, we can find a subspace of matrices, .4, such that
for every matrix X in A all the gates in I output 0. The matrix X will be restricted to
the subspace A.

2. Note that once a matrix X is fixed, the nodes of V' just compute linear functions in the
variables of Y. Therefore, for every matrix X € A, we can find a subspace of matrices
Bx such that for every pair (X € A, Y € Bx) all the gates in V output zero. Since
V' is a small set, the dimension of By is high. The matrix Y will be restricted to the
subspace Bx.

3. The subspace A is of high dimension, and for every X the subspace By is of high
dimension. Therefore, we can find X € A such that dim((X - Bx);) is large for some
j € D (this will follow from Lemma 4.8, and Lemma 4.9).

4. Since we restrict X € A and Y € By, all the gates in V and I output zero. Therefore
X -Y is computed by a circuit with no paths between Op \ O and I \ I. Hence, all the
outputs in Op \ O must give zero. Because of the third step, this is a contradiction.

Let us now give the formal proof.

Proof of Theorem 4.3:

We already gave the proof for d = 1, so assume d > 1. Assume for a contradiction that we
have a leveled bilinear arithmetic circuit C' of depth d for the product of two m x m matrices,
and such that

1 2 2

Let G be the leveled graph of depth d between the product gates and the outputs of C (as
explained above).

As before, denote by O; the 5 output column. As before, for a set D C [m] we denote
Op = UiepO;. By Lemma 3.13 there exist sets V C Vi, D C [m], O C Op, I C Ig, such that:

1. m < |V| = o(m?).
2. |D| > 1
- m
3. For every i € D, |0; N O] < 55m.
1

5. PalIg\1, Op\O, V]=0.

Denote k£ = |V|. Hence, we have a set of outputs Op consisting of at least 17?1—’“ output
columns, such that each of the output columns in Op has a small intersection with O, and
there are no paths between Op \ O and I \ I that do not pass through V.
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In the circuit C, the set I is just a set of product gates. Since

1
Il < —
1] < {gm

we can find a subspace of matrices A of dimension

mmm>m—m>%2

such that for every X € A, all the product gates in I give zero.

Assume that a matrix X is fixed. All the functions computed by the vertices of V' are now
linear functions in the variables of Y. Therefore, for every matrix X, there is a subspace of
matrices, Bx, such that for every Y € By, all the gates in V' give zero, and such that

dim(Bx) >m? —|V|=m?—k.

Since

. 9
>
dim(A) > T
by Lemma 4.9 we can find a matrix X € A, such that rank(X) > 2m. We fix this X. Since
|D| > 1% and dim(Bx) > m? — k, we can apply Lemma 4.8 to get a ’ column j € D, such that
dim((X - Bx);) > .

At the other hand, for X € A and Y € By, all the product gates in I and all the gates
in V output zero. Since all the paths to Op \ O pass through V or I, we get that for every
X € Aand Y € By, all the outputs in Op \ O must give zero. Therefore, for every j € D,

dim((X - Bx);) <0;NO| <

(a contradiction). O

Theorem 4.3 gives a superlinear lower bound for a multi-output function. The following
theorem of [BS82] (it is an immediate corollary of the results presented there) shows that we
can also obtain a superlinear lower bound for a single-output function.

Theorem 4.10 [BS82] Suppose that f(z1,...,x,) is computed by an arithmetic circuit of size

s and depth d over a field of characteristic zero, then there is an arithmetic circuit of size 3s
and depth 2d that computes f, 2L ... 2L,

Ox1’ ") Oz

(note that in this theorem the size and depth of a circuit are just the usual size and depth,
i.e., the size is the number of edges and the depth is the length of the longest directed path).

Consider the following function:

f(X,Y, 72) ZZZxZ,JyJ,kzkz—tmce(X Y-Z),
j=1k=1

=1
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where X, Y, Z are m X m matrices. Notice that

Therefore the partial derivatives of f with respect to the Zj ;’s are the outputs of the product
of two matrices. If we take into account the price that we have to pay when transforming a
circuit to a bilinear leveled one we get:

Theorem 4.11 FEvery arithmetic circuit C' of depth d, that computes the trace of the product
of three m X m matrices, over a field of characteristic zero, is of size:

1
Q (ﬁmQ)\ﬁd(mQ)) .

We can also generalize this result for circuits over finite fields, but we must make another
assumption: the circuit computes

m m m

Z Z Z Tijg - Yjk " Rk,

i=1j=1k=1

as a polynomial and not as a function. As mentioned in the introduction, over finite fields
there are many polynomials that represent the same function. For example, 2P —z = 0 over a
field with p elements. Therefore, we demand that the circuit computes this exact polynomial.
In this case we can apply the theorem of Baur and Strassen as before and get the same lower
bound as in the case of characteristic zero.

5 Circuits with Arbitrary Gates

In this section, we prove lower bounds for circuits with arbitrary gates over finite fields. Since
the proofs are similar for all finite fields, we will only give in details the proofs for the field
GF(2), that is, the Boolean case. The proofs for other fields are only sketched.

A Boolean circuit with arbitrary gates is a directed acyclic graph as follows. Nodes of
in-degree 0 are called inputs and are labeled with input variables. Nodes of out-degree 0 are
called outputs. All nodes other than the inputs are labeled with arbitrary Boolean functions.
That is, if v is a node of in-degree k£, then v is labeled with some function

g, : {0,1}* = {0,1} !

The inputs to the circuit are Boolean variables and each node in the circuit computes in a
natural way a Boolean function in the original input variables. The size of a circuit C' is
denoted by size(C) and is defined to be the number of edges in it. The depth of a circuit is

1Since g, is not necessarily a symmetric function, we need to order the inputs to v, so we know which input
is the first variable of g, etc.
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defined to be the length of the longest directed path from an input to an output in the circuit.
Note that the standard definition of a Boolean circuit requires g, € {V, A, =}. Our definition
is more general and allows g, to be any function.

The model of Boolean circuits with arbitrary gates includes all other models of Boolean
circuits, e.g.: standard Boolean circuits, Boolean circuits with threshold gates, Boolean circuits
with MODP gates etc’. For some of these models almost nothing is known. For example, for
constant depth threshold circuits only slightly super-linear lower bounds are known [IPS97]
(exponential lower bounds are known for depth 2 [HMPST87]).

We will mainly concentrate on matrix product over GF'(2). Our main result in this section
is the following lower bound:

Theorem 5.1 Any leveled Boolean circuit with arbitrary gates, C, of depth d, for the product
of two m x m Boolean matrices over GF(2), is of size:

: [ Q(m?) d=1
size(C) = { Q(im2ag(m?)) d>1

As before, in order to prove lower bounds for a non-leveled circuit, we just level it. We can
do that by increasing it’s size by a factor of d. We can then use the lower bounds for leveled
circuits. We hence have the following corollary.

Corollary 5.2 Any Boolean circuit with arbitrary gates, C, of depth d, for the product of two
m X m Boolean matrices over GF(2), is of size:

. Q(m?) d=1
size(C) = { QLm*A(m?) d> 1

Our proof for these lower bounds is quite general and can be applied for many other
functions. In particular, the lower bound applies also for the following functions:

1. The product of two m x m matrices over GF(p), where each element of the field is
represented by [logp]| bits.

2. All the functions considered in [Pud94], e.g., the parallel prefix linear transformation
over GF(2).

As mention above, we define a similar model of circuits with arbitrary gates over any finite
field. We prove similar lower bounds for this model for any finite field. In particular, for the
field GF(p), we prove a lower bound for the product of two m x m matrices, where the inputs
take values in the field.

Let us start with a short sketch of the proof of Theorem 5.1. As before, the proof is based
on Lemma 3.13. In all that comes below we use the notations of Subsection 3.5. We will
apply Lemma 3.13 on the circuit C. By Lemma 3.13, there is a set of columns, D C [m], and
small sets of vertices I, 0, V, such that, I is a set of inputs, O is a set of outputs, V is a set
of intermediate gates, and such that,

PG[Ig\I, OD\O, V]:O
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(where Op is the set of outputs corresponding to the set of columns D). The values of the
outputs in Op \ O are hence determined by the outputs of the gates in V' and by the values
of the inputs in I. Therefore, for any fixed assignment for the inputs in I, the total number
of possible values that the outputs in Op \ O can take is at most 2/V/ (which is the total
number of values that the gates in V' can output). Since V is a small set, 2!V is a relatively
small number and we conclude that for any fixed assignment for the inputs in I the outputs
in Op \ O can only get a small number of values. We will derive a contradiction by finding a
fixed assignment for the inputs in I, such that the outputs in Op \ O can get many values.

Let us describe our assignment, for I. First, we fix Y to be a matrix in which any minor of
size ¢ x |D| is of high rank. Therefore, there will be many vectors in the image of any such
minor. After fixing YV, we set to zero all the inputs in I that come from the matrix X. That
is, we allow X to be any matrix in which this certain set of entries is zero (the entries that
appear in I). Since I is a relatively small set, there are many such matrices. More accurately,
the set of all such matrices form a linear subspace of dimension > m? — |I|. The last step will
be to show that after fixing Y as above, and after fixing to 0 all the inputs in / that come
from X, there are still many possibilities for the product X - Y. In particular, we will get that

the number of possible values for the outputs in Op \ O is larger than 2.

Thus, the first step is to show that there is a matrix Y, in which any minor of size % x |D|
is of high rank. Note that it is not hard to prove that there exists a matrix Y, in which any
such minor is of maximal rank. For our proof, however, it will be enough to have the weaker
requirement that any such minor is of high rank.

Definition 5.3 Let Y = (y;;) be an m x m matriz. For sets o, 3 C [m], denote
(Y)aps = (yij) suchthati € o, j €,

i.e., (Y)a,p is the minor of Y with the set of rows o and the set of columns (5.

Claim 5.4 For any | = o(m), there exists an m X m matriz Y (over GF(2)), such that for
any o, B C [m], with |a| = [F] and || =1,

rank((Y)qp) >

DN | =~

Proof:

We assume for convenience that m, [ are even numbers. We will show that a random matrix
Y satisfies the requirement of the lemma (with high probability). Let us first calculate the
probability that a certain minor of size 2 x [ is of rank < % As in the proof of Lemma 4.9,

the number of % x [ matrices of rank < 2% is at most

(f) 9% g  gdmikii
2
Therefore, the probability that a certain minor of size % X [ is of rank < % is at most

oamit P+l o= Bl _ o—(gml—3I®~1)
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Hence, if Y is a random matrix the probability that some %+ x I minor is of rank < % is at
most
() (7) et o thmteom <y
2/ \! -
Consequently, there is an m x m matrix Y, in which every 3 x [ minor is of rank > % O

For a set of coordinates 5 C [m], and an m-vector v, denote by vg the restriction of v to
B, i.e.,
vg = (vi)ies -
For a set of coordinates a C [m], denote by V, the subspace of all vectors that have the value
0 in all the coordinates outside a, i.e.,

Vo={ve{0,1}"|Vie[m]\a, v,=01}.

We will now prove that if Y is the matrix guaranteed by Claim 5.4, for [ = ||, then for every
vector space V, of high dimension, there are many different vectors in the set

{(w-Y)glveV,}

Claim 5.5 Let § C [m] be such that |3| = o(m). Let o C [m] be such that |a| = [F]. Let Y
be an m X m matriz that satisfies the requirement of Claim 5.4 for 1 = |B|. Then, the number

of different vectors of the form (v-Y)g, where v € V,, is at least 2@.

Proof:

Since Y satisfies the requirement of Claim 5.4 for [ = |§|, the minor (Y), s is of rank at least
|B|/2. Hence, the image of this minor is of dimension at least |3|/2. The image of this minor
is just the set of all vectors of the form (v -Y')s, where v € V,. Hence, this set is of size at

least 27 . O
We are now ready to give the proof of Theorem 5.1.

Proof of Theorem 5.1:

For d = 1 the proof is trivial by the observation that every output column depends on all
the variables in X. For larger depth, assume for a contradiction that size(C') < (1/1000d) -
m2Xg(m?). Let G be the graph of the circuit. By Lemma 3.13 there exist sets V C Vg,
D C [m], O C Op, I C Ig, such that:

1. m < |V| =k =o0o(m?).

[\V]

. [D] =[] = o(m).

3. Forevery i € D, |0, N 0| < %m.

4. |1 < ggm?.

ot

. Pg[Ig\I, Op\O, V]=0.

28



Since Pg[ Ig\ I, Op\ O, V | = 0, the values of the outputs in Op \ O are determined by
the outputs of the gates in V and by the inputs in [.

Fix Y to be a matrix in which every [%] x |D| minor is of rank higher than % (by
Claim 5.4, there exists such a matrix). Denote by Ix the set of inputs in I that are variables

of X. Obviously,
1

Fix all the input variables in Ix to be 0. Since all the inputs in I are now fixed, the values
of the outputs in Op \ O are determined by the outputs of the gates in V. Since there are at
most 2¥ possible values for the outputs of the gates in V, we conclude that after fixing Y and
Ix as above, the outputs in Op \ O can get at most 2¥ different values.

On the other hand, we only fixed less than ll—om2 of the entries of X. Therefore, the number
of rows of X, in which we fixed at most % entries, is at least %m. For each one of these rows,

we can apply Claim 5.5 (with 8 = D) and conclude that the outputs in the corresponding row

in Op can get at least 2l7 possible values. Since the value of each of these %m rows of X

is independent of the values of the other rows, we conclude that the total number of different
values that the outputs in Op can get is at least

9% iom = 95Dl
Since for every i € D, |0; N O] < 15m, we get that
0l< 551D
—-|D|-m.
10

Hence, the outputs in O can get at most

ZILO.‘D‘.m
different values. Therefore, the outputs in Op \ O can get at least
916°|DI-m / 915°IDI'm _ 9+5+1D|'m > 93k

different values (a contradiction). O

As mentioned above, we can also obtain similar lower bounds for circuits with arbitrary
gates over any finite field. A circuit with arbitrary gates over a finite field GF(p) is defined
similarly to a circuit with arbitrary gates over GF(2). The only difference is that the inputs
take values in GF(p) and every gate of in-degree k is labeled with an arbitrary function from
GF(p)* to GF(p). Note that in particular this model includes the model of arithmetic circuits
over GF(p).

Theorem 5.6 Any circuit with arbitrary gates over GF(p), C, of depth d, for the product of
two m X m matrices over GF(p), is of size:

. Q(m?) d=1
size(C) = { Q(Lm*Ag(m?) d>1
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The proof is similar to the proof of Theorem 5.1 with some minor modifications: We prove
a version of Claim 5.4 to get a matrix with the same properties over GF'(p). Then we prove
a version of Claim 5.5 for GF(p). (Both proofs are similar to the original proofs). We then
repeat the proof of Theorem 5.1 to get Theorem 5.6 (we have to make some minor changes,
e.g., the outputs of the gates in V can get pV! different values (rather than 2/V1) etc’).

We can also prove similar lower bounds for Boolean circuits with arbitrary gates for the
product of two m X m matrices over the field GF(p), where each element of the field is
represented by [logp] bits (note that the input to the circuit is of size 2m?[logp]). One way
of proving this lower bound is by a reduction to Theorem 5.6. Just observe that {0,1} C
GF(p), and hence any Boolean circuit (with arbitrary gates) can be viewed as a circuit with
arbitrary gates over GF(p). Another way of proving this lower bound is by proving a version
of Lemma 3.13 with different parameters (because of the [logp]| factor), and then we can
repeat the proof of Theorem 5.1 with minor modifications.

Theorem 5.7 Any Boolean circuit with arbitrary gates, C, of depth d, for the product of two
m X m matrices over GF(p), is of size:

. | Q(m?) d=1
size(C) = { QLm2Ag(m?) d> 1
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