Electronic Colloquium on Computational Complexity, Report No. 30 (2000)

A Simple Model for Neural
Computation with Firing Rates and
Firing Correlations

Wolfgang Maass

Institute for Theoretical Computer Science
Technische Universitaet Graz
Klosterwiesgasse 32/2
A-8010 Graz, Austria
e-mail: maass@igi.tu-graz.ac.at

Abstract

A simple extension of standard neural network models is introduced
that provides a model for neural computations that involve both firing
rates and firing correlations. Such extension appears to be useful since it
has been shown that firing correlations play a significant computational
role in many biological neural systems. Standard neural network models
are only suitable for describing neural computations in terms of firing
rates.

The resulting extended neural network models are still relatively
simple, so that their computational power can be analyzed theoreti-
cally. We prove rigorous separation results, which show that the use of
firing correlations in addition to firing rates can drastically increase the
computational power of a neural network.

On the side one of our separation results also throws new light
on a question that involves just standard neural network models: We
prove that some high-order sigmoidal neural nets can compute boolean
functions which require for their computation with first-order sigmoidal
units a substantially larger neural net, without imposing restrictive con-
ditions on the architecture, parameters, or activation functions of the
first-order sigmoidal neural nets.

1 Introduction

A large number of results in experimental neurophysiology show that in
addition to firing rates also correlations between firing times of neurons are
relevant for neural coding and computation in various biological neural sys-
tems (see for example [deCharms, Merzenich, 1996], [Engel et al., 1992],
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[Eggermont, 1990], [Hatsopoulos et al.,1996], [Kreiter, Singer, 1996],
[Kriiger, 1991], [MacLeod, Laurent, 1996], [Sillito et al., 1994], [Singer, 1995],
[Vaadia et al., 1995]). The standard neural network models, such as threshold
circuits or sigmoidal neural nets (MLP’s), are not suitable for evaluating the
potential capabilities and limitations of such neural systems, since they are
tailored to modeling neural computation just in terms of firing rates.

There exist of course substantially more detailed mathematical models for
biological neural systems, where one can study correlations between firing
times, such as networks of integrate-and-fire neurons or “spiking neurons”
(see for example [Bower, Beeman, 1995|, [Gerstner, 1995], [Maass, 1996a),
[Maass, 1997a], [Tuckwell, 1988]). However these models have the disadvan-
tage that they keep track of every single firing of each neuron in the system,
which makes them less suitable for exploring analytically those types of neural
computations where only the high-level statistical correlations of firing times
are relevant for the neural computation, whereas individual firing times are
corrupted by various sources of noise.

We initiate in this article a new approach towards modeling neural compu-
tation with firing rates and correlations in firing times. We introduce a simple
extension of the familiar abstract neural network models (i.e., of threshold-
circuits and sigmoidal neural nets) that allows us to model also salient compu-
tational features of correlations between firing times in this simplified setting.
From a more general point of view one may view this approach as an attempt
to project one particularly important new computational aspect of the “third
generation of neural network models” (i.e., of networks of spiking neurons, see
[Maass, 1996b]) into the simplified “symbolic” setting of the first and second
generation of neural network models (threshold circuits and sigmoidal neural
nets).

There are certainly advantages to studying salient aspects of computations
and learning in biological neural systems in a simplified setting. In fact, a
large portion of our present insight into the functioning of biological neural
systems has been obtained by building on ideas that have emerged from the
investigation of extremely simplified models for biological neural systems, such
as networks of McCulloch-Pitts neurons (i.e., threshold circuits) and sigmoidal
neural nets. However, one has to make sure that such simplified models cap-
ture the essence of the organization of computation and learning in the more
complex biological models. In this regard the usefulness of standard neural
network models has reached a limit. They are not able to reflect the com-
putational role of transient correlations in firing times of biological neurons,
although it has become clear during the last few years that such correlations
play an important role for computations in biological neural systems.

Several models that reflect computational effects of firing cor-
relations in a simplified setting have already previously been pro-
posed ([Milner, 1974], [von der Malsburg, 1981], [Eckhorn et al., 1990],
[Abeles, 1991],  [Lumer, Huberman, 1992],  [Shastri, Ajjanagadde, 1993],
[Phillips, Singer, 1997]). The model in [Shastri, Ajjanagadde, 1993] is of a
somewhat different nature, since it models on an abstract level possible effects



of the structure of phases among neurons that fire at the same frequency.
One interesting difference is that the relation of having the same phase is a
transitive relation, whereas partial correlation between spike trains - which
is reflected in the other models and in our new model - is in general a
non-transitive relation. All these preceding models focus on special purpose
computations related to selective input enhancement, or “binding” of different
features of an object. One has not been able to prove separation results
that distinguish the computational power of these models from that of
standard neural network models. Since for example sigmoidal neural nets
are “universal approximators”, it is clear that there ezrist sigmoidal neural
nets that compute the same functions as the previously mentioned more
complex models that involve also computational effects of firing correlations.
Therefore it is impossible to demonstrate a computational advantage of firing
correlations by showing that they allow the computation of certain functions
that cannot be computed without firing correlations. Instead, the essential
question is a quantitative one: for example, by how much larger would a
standard neural network model have to be that computes the same function as
some network that also models firing correlations. This question has not been
answered for the preceding models. In this sense the conjectured superiority
of computational models that also involve firing correlations has remained an
open question.

In contrast to these preceding approaches we consider in the article not
just special purpose computations, but we model the role of firing correlation
within the context of a general computational model. Furthermore we prove
rigorous quantitative results about the computational power of this augmented
computational model in comparison with standard neural network models.

Similarly as previous general purpose neural network models, such as sig-
moidal neural nets, the new model introduced in this article may provide a
useful simplified reference model for the investigation of the organization of
computation and learning in cortical neural systems. We would like to point
out two possible directions for such applications.

So far one has mainly tried to understand the use of firing correlations in
sensory cortical systems in the context of symbolic concepts such as “binding”
of features. It has remained open whether the organization of pattern recog-
nition in sensory cortical neural systems can be understood in such terms, in
spite of their intuitive plausibility. One has been able to build systems based
on symbolic concepts such as “binding” that work well for artificial pattern
recognition problems with very few inputs. It has remained open whether such
systems can be scaled up to handle realistic numbers of inputs, and “real world”
noisy pattern recognition tasks. On the other hand there exist many artificial
systems that work quite well for “real world” noisy pattern recognition tasks
with very large numbers of diverse inputs, but all these systems are based on
quite different approaches (see e.g. [Weiss, Kulikowski, 1991], [Ripley, 1996],
[Mel, 1997]). Hence there is a chance that sensory neural systems in the cortex
also involve complex computations involving firing correlation that cannot be
adequately understood in psychological terms such as “binding”. This argu-
ment raises the question which other computational role could firing correla-



tions possibly play for pattern recognition in complex sensory neural systems.
The model introduced in this paper provides a framework for approaching this
question.

Another problem area concerns the possible use of firing correlations in
higher cortical systems. It may become even more difficult to assign conceptu-
ally tractable simple roles such as “binding” to the use of firing correlations in
these substantially more complex systems. Therefore it appears to be useful
to explore also other possible computational uses of firing correlations in the
context of general purpose computational models in order to generate more
sophisticated hypotheses for their possible computational role in cortical neu-
ral systems. A related question that apparently requires this more abstract
level of analysis is the question how a neural system can compute in terms
of firing correlations. On the basis of the results of [Eckhorn et al., 1990],
[Kreiter, Singer, 1996] one may conjecture that every projection of a moving
bar or edge on the retina generates in the visual cortex an independent local
firing correlation among neurons whose receptive fields are crossed by that bar
of edge. In a real world situation where the retina-images of dozens of visual
objects simultaneously move, especially if the subject is also moving himself,
this mechanism would create simultaneously a large number of different local
firing correlations in the visual cortex. On the other hand experimental results
(see [Traub et al., 1996] and the references therein) also report the occurrence
of firing correlations in cortical systems on a much larger level, that are ap-
parently related to the response of the whole cortex to an input. Hence the
question arises which computational operations are executed by cortical neu-
ral systems to generate from a complex multitude of local firing correlations
in the visual cortex and other sensory neural systems a few large-scale firing
correlations that represent a system-response of the cortex to the most salient
aspects of a complex sensory input. Therefore one needs to explore compu-
tational models for computations on firing correlations, i.e. for computations
which receive certain firing correlations (in addition to firing rates) as input
and produce other firing correlations as part of their output. The model in-
troduced in this article provides a first platform for this type of computational
analysis.

An independent motivation for investigating the possible computational
role of firing correlations arises from recent experiments with new electronic
hardware. In the context of attempts to build reliable devices for signal pro-
cessing and computation in the micro-watt range one has started to explore
silicon-implementations of networks of spiking neurons (“pulsed VLSI”), see
e.g. [Murray, Tarassenko, 1994], [Zaghloul et al., 1994]. Very recently (see
[van Schaik et al., 1997]) one has also started to explore the computational
use of correlations among different pulse streams. However the question how
correlations between pulse streams can best be used in a technological context
remains wide open. The model introduced in this paper provides a frame-
work where possible uses of pulse correlations in pulsed VLSI can be analyzed
and compared with other computational models and known mechanisms of
biological neural systems.

In the next section we define our model for computations with firing rates



and firing correlations. We explore the computational power of a single unit
of this model in section 3. In section 4 we analyze the computational power of
multi-layer versions of this model. Conclusions are given in section 5.

2 Definition of the Model

In the usual neural network models one reserves for each gate (or “unit”) u
of the network a formal variable o(u) which denotes the output of v . In a
biological interpretation this variable o(u) models the current firing rate of
a neuron u . We will now consider a new type of neural network model N
where one has in addition to the formal variables o(u) for each gate u of N
a second type of formal variables ¢(S) for various sets S of gates in /. In a
biological interpretation the formal variable ¢(.S) models the current correlation
in the firing times of neurons in this set S . A characteristic feature of this
new type of variables is that no additional computational units are needed
to compute their value. Instead, their values are determined through the
collective activity of the gates according to the subsequent equation (2.2). In
particular, a computation may involve many more variables ¢(S) than there
are gates in the network.

We assume that an arbitrary directed graph is given that describes the ar-
chitecture of N . Each gate v of the network A receives both types of variables
as input, i.e. in addition to the variables o(u) for immediate predecessors u it
also receives the variables ¢(S) for subsets S of its set of immediate prede-
cessors. The output o(v) of v depends on both types of inputs, reflecting the
biological property that the firing rate of a neuron may depend both on the
firing rates of its predecessors and on the firing correlations among subsets of
its predecessors. Dually, in addition to the variable o(v) the input of v also
contributes to the values of the variables ¢(T) for sets T with v € T .

Thus, besides the “real” variables o(u) , gates in A also handle a second
type of “imaginary” variables ¢(S) . Furthermore, the computational operation
of a gate v cannot be decomposed into its operation on “real” variables and its
operation on “imaginary” variables, since both its “real” output o(v) and its
“imaginary” output ¢(7") depend on both types of input variables. Hence the
computational operation of such gate v is reminiscent of a complex function in
mathematics (for example z +— e*, where the real and imaginary component
of its output e* for an input z = x + iy depend on both z and y). Because
of this loose analogy we refer to the new type of gates for neural networks
that are investigated in this article as compler gates. In contrast we will refer
to traditional gates of neural network models as standard gates. A standard
neural net is in our terminology a neural net consisting of standard gates.

The “real” component o(v) of the output of a complex gate v is described
by the equation

o(v) = (D -o(w) + > ays-c(S) - ] olu) + o) (2.1)
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where U is the set of immediate predecessors of v in the directed graph that
describes the architecture of the network A/ . The parameters au,, s and o,
may have arbitrary real values. We refer to parameters of the form «,, and
s as weights, and to «, as the bias of the complex gate v . The letter o
in (2.1) denotes some arbitrary activation function ¢ : R — R, that can be
chosen as in traditional neural network models. If o is the Heaviside-function
(defined by o(y) = 1if y > 0 and o(y) = 0 if y < 0) we refer to such gate
as a complex threshold gate. If o is a smooth squashing function (such as the
logistic sigmoid o (y) = 1= ) we refer to the gate defined by (2.1) as a complex
stgmotdal gate.

The “imaginary” part of the output of the same complex gate v , i.e.
the values of the variables ¢(T) with v € T , is determined by the following
equation

o(T) =0c(> ary-ou)+ > ars- ¢(S)- [[ o(v) + ar) (2.2)
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This equation is not relevant for the computational problems discussed in
this section or section 3. Hence we defer its discussion to section 4, where we
will look at multi-layer computations with complex gates.

The computation of the “real” component o(v) of the output of a com-
plex gate v from inputs o(u) and ¢(S) is carried out according to equa-
tion (2.1) by a high-order sigmoidal gate, where the order refers to the de-
gree of the polynomial in the variables o(u) and ¢(S) to which the acti-
vation function o is applied. High-order gates have previously been dis-
cussed in various contexts in the neural network literature (see for example
[Durbin, Rumelhart, 1989], [Koch, Poggio, 1992], [Bruck, Smolenski, 1992,
[Omlin, Giles, 1996], [Maass, 1997b]), although apparently not in the context
of modeling firing correlations. The product ¢(S) - IT o(u) in (2.1) models the
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following effect: a firing correlation of the neurons in S can increase the firing
rate of v if simultaneously all neurons in S fire above their resting firing rate
(see [Bernander et al., 1994] for detailed simulation results).

If one assumes that the firing rate o(u) of each input neuron u is propor-
tional to the probability p,(I) that neuron wu fires during some fixed short
time-window I (say of length 2 ms), and if the spike trains from a set S of
such neurons u can be modeled by independent stochastic processes, then the
probability that all neurons u € S fire during this time-window [ is given by

[T pu(I) . If the spike trains from these neurons u € S are not generated by
u€eS

independent stochastic processes, one can interpret the value of the variable
c(S) as

Pr[ all neurons u € S fire during I |
I1 p.(I) .

u€eS

(2.3)



Then the term ¢(S)- [T o(u) in equation (2.1) is equal to Pr| all neurons u €
ues
S fire during I | . The actual impact that a larger than “usual” (i.e. larger

than [] py(I)) probability of synchronous firing of input neurons v € S may
u€S

have on the firing rate of v is scaled in equation (2.1) by some generalized
“weight” aus -

In a biological interpretation the value «,s depends on the locations of the
synapses between neurons u € S and v on the axonal tree of the presynaptic
neurons v and on the dendritic tree or soma of the postsynaptic neuron v .
In addition it depends on the biochemical structure of these synapses, and
on the distribution of voltage-dependent channels on the dendritic tree of v .
For example, if the transmission delays between the neurons u € S and their
synapses on v all have roughly the same values, if all neurons in u have synapses
close together on the dendritic tree of v , and if there exists an accumulation
of voltage-dependent channels in a close-by branching point on the way to the
soma of v (so that a “dendritic spike” can be generated at such “hot spot”),
then an increase in the firing correlation of the neurons in S is likely to have
a significant impact on the firing rate of neuron v , and a,s should be given a
relatively large value. In a similar way the parameters ar, and arg in equation
(2.2) also provide a possibility to reflect salient computational aspects of the
specific geometrical and biochemical structure of biological neurons (see the
discussion at the beginning of section 4). We refer to [Mel, 1994] for further
information on biological details of dendritic integration.

Our simple model gives rise to a number of interesting new research ques-
tions regarding computations with biological neurons. One question is whether
all features of concrete biological neurons that are relevant for their computa-
tions in terms of firing rates and firing correlations can be captured through
suitable choices of the parameters involved in equations (2.1) and (2.2). In
addition the questions arise how many of these parameters can be chosen in-
dependently by a biological neuron, which specific constraints limit their inde-
pendence, which of these parameters can be tuned through a learning process
in a developing or mature neuron, and which learning algorithms govern the
determination of these parameters in biological neural systems.

Unfortunately there does not yet exist much knowledge about the way in
which the firing rate of a neuron v depends on the incoming spike trains from
its presynaptic neurons v € S . A quantitative experimental investigation of
this dependency would require to record in vivo or in vitro the output spike
train of a neuron v simultaneously with the spike trains from all presynaptic
neurons. It is dubious whether such experiment will become feasible for a
typical cortical neuron for all sets S of presynaptic neurons, since a cortical
neuron may have as many as 10 000 synapses.

Computer simulations of dendritic integration in a detailed compartmen-
tal model for a biological neuron may be viewed as the next best source of
information. We refer to [Bernander et al., 1994] for some first results in this
direction.



Apart from these biological questions, our abstract computational model
also gives rise to the question which ranges of values for the parameters in
equations (2.1) and (2.2) can be achieved through silicon-implementations of
networks of spiking neurons, and how many of these parameters can be tuned
independently.

An interpretation of ¢(S) according to (2.3) suggest that ¢(S) may assume
arbitrary real values in the range [0, 00] . However, similarly as the variables
o(u) in standard neural network models, we allow that these new variables
c(S) are interpreted in a more abstract way. Their actual range depends in
our model on the specific activation functions o, that are employed.

3 The Computational Power of a Complex
Threshold Gate

In this section we exhibit concrete computational problems for which one can
prove that they can be computed more efficiently by a complezr threshold gate.
More precisely, we identify a class of boolean functions F' that can be com-
puted by a single complex threshold gate, whereas any feedforward threshold
circuit or sigmoidal neural net computing the same function F' needs to have
many gates. We will discuss after Theorem 3.1 four concrete instances of such
functions F' which are assumed to be related to fundamental computational
tasks of biological neural systems.

Let C be some arbitrary class of nonempty subsets of {uy,...,u,} . We
consider the boolean function F¢ : {0,1}™ — {0,1} for m := n+ [C| . Fg
gives for input vectors (z;)i=1,..n " (zs)sec from {0,1}™ the output 1 if and
only if zg - [1,,es «; = 1 for some S € C . The operation “ " ” denotes the
concatenation of vectors.

Theorem 3.1 The function F¢ : {0,1}™ — {0, 1} can be computed by a single
complex threshold gate.

Let C C C be an arbitrary collection of sets in C so that no S,S" € C exist
with S G S . Then any standard feedforward threshold circuit computing
F¢ needs to have at least |C|/log(|C| + 1) gates, and any standard feedforward
sigmoidal neural net with piecewise rational activation functions needs to have
Q(|C|*?) gates. For standards sigmoidal neural nets whose activation function
involves exponentiation one gets a lower bound of Q(|C|'/*) for the required
number of gates.

Proof: The computation of Fi by a single complex threshold gate v is straight-
forward. We assume that v receives the input variables x; in the form of acti-
vations o(u;) = x; of its input neurons uy,...,u, , and the input variables xg
in the form of correlations ¢(S) of the corresponding set S of input variables.



One sets aq,, =0fori=1,...,n ,qs =1if Se€Cand as =0if S ¢ C,
and o, = —% . With this parameter assignment the complex threshold gate v
computes the given function Fg .

Let A be some arbitrary standard feedforward threshold circuit or sig-
moidal neural net with m binary input variables (z;)i=1,..» "(Zs)sec that com-
putes Fi . In the case of a sigmoidal neural net we assume that the real-valued
output of its output-gate is rounded to 0 or 1 to yield a boolean-valued output.

Assume that ¢ gates of A have a direct edge to at least one of the input
nodes for the input variables x5, S € C . Obviously ¢ is not larger than the
total number of gates (i.e. computation nodes) in N .

Let A be a variation of N whose only input variables are z4,...,x, , and
where the biases of those £ gates in N that have a direct edge from one of the
input nodes for the input variables {zs : S € C} are the only “programmable

parameters” of N . All other weights and biases in A have the same values
as in N . The input nodes for the variables x5, S € C , are no longer present
in N . For arbitrary ¢ € R® we write N'C for the network that results if the
values in ¢ are assigned to the ¢ programmable parameters of N .

Consider the set
D: = {{ay,...,a,) €{0,1}": 3S(S€CAS={uj:a;=1}).

This is the set of all inputs for N that encode the “characteristic function” of
some set S € C .

We show that A — or more precisely the class of all boolean functions from
{0,1}™ into {0, 1} that are computed by N for different ¢ € R - “shatters”
the set D . In other words, we show that for every A C D there exists some
¢ € R such that AC outputs the value 1 for an input a € D if and only if
acA.

Thus, we fix some arbitrary A C D . Let by € {0,1}°l be a corresponding
assignment to the input variables {zs : S € C} of N which assigns to zg the
value 1 if and only if S = {u; : a; = 1} for some {ay,...,a,) € A . Let c4 be
the values of the £ programmable parameters of A which result if one assigns

b4 to the input variables (xg)sec of N'. Obviously NC€4 computes the same
function from {0,1}" into {0,1} as the net N with this fixed assignment b4
to its input variables (zs)sec . Since N computes F¢ and since no set in c
is contained in another set in C , it outputs by definition of b4 the value 1
for input {aq,...,a,, ba) from {0,1}™ if and only if (ay,...,a,) € A . Hence
N€4 with input {ay,...,a,) € D outputs 1 if and only if (ay,...,a,) € A .

The preceding argument shows that the neural net N with its £ pro-
grammable parameters shatters the set D of size |C| . Hence the VC-dimension
of N is at least |C| . Since N has £ programmable parameters, any upper bound



B(¥) for its VC-dimension induces for £ a lower bound of the form
least £ such that B(¢) > |C| .

By the definition of Z this argument yields the same lower bound for the number
of gates in N/ . We would like to point out that such argument has first been
used (in a different context) by Koiran [Koiran, 1996].

In the case of a sigmoidal neural net N with piecewise rational acti-
vation functions the upper bound O(¢?) for the VC-dimension of N from

[Goldberg, Jerrum, 1995] yields £ = Q(|C|'/?) . In the case of a sigmoidal
neural net with the sigmoid activation functions o(y) = 1/(1 + e ¥) (or other
activation functions involving exponentiation) the upper bound O(¢*) for the

VC-dimension of N from [Karpinski, Macintyre, 1996] yields £ = Q(|C|*/*) .

In the case of a first order threshold circuit A one can show that
¢ > |C|/log(|C| +1) by using a more direct counting argument from the
proof of Theorem 1 a) in [Maass, 1996b]. An almost equivalent bound

¢ > |C|/(1 +log|C|) follows from the estimates in [Cover, 1968]. Note that
one cannot use here the upper bound from [Baum, Haussler, 1989] for the
VC-dimension of a threshold circuit, since that bound assumes that instead
of our ¢ chosen biases all weights and biases of the threshold circuit are
programmable parameters. [ |

We will now discuss applications of Theorem 3.1 to concrete classes C of
subsets of {u1,...,u,} , for which the computation of the associated boolean
function F¢ : {0,1}"*/¢l — {0,1} appears to be of interest in the context of
biological neural systems.

Application 1. Kreiter and Singer [Kreiter, Singer, 1996] have shown that
the firing of pairs of neurons in the motion-sensitive area MT of the visual
cortex is synchronized when their individual receptive fields are crossed by a
single moving bar. In contrast, if the same cells are activated by two different
moving bars, responses show no or much fewer synchronous epochs.

Assume that a neuron in a higher cortical area wants to extract from
these neurons in area MT the information whether a single moving ob-
ject crosses at least k vertically adjacent receptive fields, where £k is
some given parameter. On the basis of the neural coding that is sug-
gested by the results of [Kreiter, Singer, 1996], this neuron has to com-
pute the function F¢ for C := {S C {uy,...,u,} : the neuronsu; €
S represent at least k vertically adjacent locations}, for some fixed spatial
map of the neurons u;,...,u, . For simplicity we assume that the neurons
U1, ..., U, represent some ¢ X m grid under their spatial map.

If £ < ¢/2, this class C contains a subclass C of > n/2 sets with no set
contained in another set. Hence a network of Q(n/logn) standard threshold
gates or Q(n'/?) standard sigmoidal neurons with piecewise rational activation
functions would be needed to compute this function F¢ . On the other hand a
single complex threshold gate can compute the function Fg .
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Application 2. Closely related to the previously discussed spe-
cial cases is the socalled “binding problem” (see e.g.  [Milner, 1974],
[von der Malsburg, 1981], [Singer, 1995], [Shastri, Ajjanagadde, 1993],
[Phillips, Singer, 1997]).  Assume that objects in the outside world are

analyzed by sensory systems in terms of m basic properties Py, ..., P, from
different categories (e.g. blue, round, large, approaching, honking, ...).
Furthermore assume that a collection C of subsets H of {P,...,P,} has

been singled out because the existence of an object in the outside world

that satisfies a combination A P; of basic properties in H (e.g. large A
PjEH

approaching A honking) is of particular relevance for the system. On the
other hand it may be of no relevance for the systems if the same properties
P; € H are satisfied by different objects in the outside world (for example, if
the human sensory systems detects in a busy street scene simultaneously a
large house, an approaching child, and a honking car in a distant traffic jam).

It has been conjectured that neurons vy, ..., v,, , where the firing rate o(v;)
of neuron v; indicates the absence or presence of an object with basic property
P; , communicate through their firing correlation which basic properties are
shared by the same object. Obviously a single complex threshold gate can
then decide whether some combination A P; of basic properties is satisfied

PjEH
by a single object, since this amounts to computing the function F¢ for the
previously described class C . On the other hand, according to Theorem 3.1
neural networks of substantial size are needed to compute the same function
F¢ with standard sigmoidal neural nets.

The same example will be analyzed further at the beginning of section 4
in the context of multi-layer computations.

Application 3. Many biological neural systems can select particular parts
of their input for processing by higher layers, whereas the remainder of their
input is ignored for the moment. This mechanism is referred to as “attention”
or “awareness” and we refer to [Koch, Crick, 1994] for a detailed discussion of
this problem in the context of neurophysiology.

One possible mechanism that has been put forward as a possible neuro-
physiological correlate of attention is a transient firing correlation of those
sensory neurons whose receptive fields fall into the current region of attention.
In this context a firing correlation would occur even among neurons that en-
code a static stimulus. Hence it has been conjectured that firing correlation
in the context of attention is induced by internal mechanisms of the network,
rather then by the stimulus itself.

Within the mathematical framework considered in this article one can
model the use of firing correlation for mediating attention in the following
way. We assume that there are n input neurons ug, ..., u, , whose firing rates
o(u1), . ..,0(uy) constitute the network input. In addition we assume that an
additional neuron wuy fires at a constant rate, and that the firing times of u,
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are correlated with the firing times of those input-neurons u; which currently
receive “attention”. In other words, we assume that c({ug, u;}) is increased for
those neurons u; that currently receive attention through some internal mech-
anism. This can take place without changing the firing rates o(u;) of these
neurons. Under these assumptions a subsequent complex gate that computes

o i a; - c({ug, u;}) - o(ug) - o(u;)) can simulate any standard sigmoidal neuron
i=1
that computes o( Y «; - o(u;)) for the set A C {uy,...,u,} of neurons that
i€A

currently receive attention.

As a particularly simple special case consider the computational task to
output 1 if and only if o(u;) = 1 for some u; € A . This amounts to the
computation of the function F¢ for the class C := {{ug,u;} : ¢ = 1,...,n} ,
where ug is an additional input neuron with constant output value o(up) =1 .
According to Theorem 3.1 a single complex threshold gate can carry out this
task, whereas a neural network consisting of standard sigmoidal neurons needs
to have a substantial number of gates to carry out the same computation. One
noteworthy feature of the previously described computational task is that a
single complex gate v can solve this task which has parameter values a,s # 0
only for sets S of size 2.

Larger separation results can easily be shown by Theorem 3.1 for more
complex computational tasks involving attention.

The last result of this section is not related to the new neural network
models that are discussed in the other parts of this paper. It concerns the
computational power of two different types of standard sigmoidal gates: high-
order sigmoidal gates (also called XII-units [Durbin, Rumelhart, 1989]) and
first-order sigmoidal gates. The “order” of a sigmoidal gate is defined as the
degree of the polynomial in the input variables that provides the argument for
the acitivation function of the gate. In the most common case of a first-order
gate this polynomial is simply a weighted sum.

There exist various preceding results on the difference in compu-
tational power between high-order and first-order sigmoidal gates (see
[Koch, Poggio, 1992] and [Siu et al., 1994] for a survey). Most of them re-
quire for the first-order gates the restriction that the activation function is the
Heaviside-function (then a first-order sigmoidal gate is simply a threshold gate)
and that the depth of the network of first-order sigmoidal gates is bounded
by some constant. In [Hajnal et al., 1993] it was shown that the function IN-
NER PRODUCT MOD2 can be computed by a second-order threshold circuit
(with linearly many product terms) of depth 2 with polynomially many gates
and polynomial size integer weights, whereas any first-order threshold circuit of
depth 2 with polynomial size weights needs to have exponentially many gates to
compute the same function. Other separation results follow from lower bounds
for bounded depth circuits computing PARITY (see [Bruck, Smolenski, 1992]
and the survey in [Siu et al., 1994]). These lower bounds provide nice separa-
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tion results between first-and second-order threshold circuits if one encodes bits
by —1,1 instead of 0,1 . In this case PARITY with n input bits can be com-
puted by a single threshold gate of order n with polynomially many product
terms. The lower bounds for first-order threshold circuits of bounded depth
can be extended to first-order sigmoidal neural nets of bounded depth with
smooth activation functions if one assumes that their analog circuit-outputs
have some fixed separation between outputs for accepted inputs and outputs
for rejected inputs (see [Maass et al., 1994]).

In contrast to the preceding separation results the following Corollary pro-
vides a separation between high-order and first-order sigmoidal nets without
any restriction on the architecture of the first-order networks for gates with any
common activation function, without any restriction on their weights, without
a required separation at the output, and without a required encoding of bits
by —1,1.

Corollary 3.2 A high-order sigmoidal gate has strictly more computational
power than a first-order sigmoidal gate:

There exist for any m € N boolean functions F : {0,1}™ — {0, 1} that can
be computed by a single high-order sigmoidal gate with m/2 product terms of
degree < 2, but where F' requires for its computation with first-order sigmoidal
gates a multi-layer circuit with a substantial number of gates. The precise lower
bounds depend on the activation function of the first-order sigmoidal gates: F
requires

o Q(m/logm) first-order threshold gates

o Q(m'/?) first-order sigmoidal gates with piecewise rational activation
functions

o Q(m'/?) first-order sigmoidal gates with activation functions that involve
exponentiation.

We always assume that the analog output of a sigmoidal neural net is
rounded to yield a boolean output.

Proof: Choose n € N maximal so that 2n < m . Set C := {S C {u1,...,un}:
|S| = 1} in Theorem 3.1. Then F¢ is a function from {0, 1}*" into {0,1} , and
IC| = Q(m) . Obviously F¢ can be computed by a single standard threshold
gate with second-order terms.

Theorem 3.1 yields lower bounds for the size of arbitrary feedforward first-
order sigmoidal neural nets that compute F¢ . These lower bounds are formu-
lated in terms of |C| , but since |C| = (m) they yield the same lower bounds
in terms of m .

One can make F¢ formally into a function F' from {0,1}™ into {0,1} by
adding m — 2n dummy input-variables.
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4 Modeling Multilayer Computations with
Firing Times and Firing Correlations

In the preceding section we had considered the case where the firing correla-
tions ¢(S) for sets S C U of input neurons were given as part of the network
input. In this section we consider the dual case where firing correlations among
input neurons play no role, but where internally generated firing correlations
¢(T) for sets T C {v1,...,v,} of “hidden” neurons become improtant for the
computation. It turns out that the computational power of the network can
be tremendously increased through the use of this new set of internal variables
e(T).

According to (2.2) the values of these correlation variables ¢(T") are deter-
mined as follows:

o(T) = 0> ary-ow)+ Y ars- c(S)- ] o(v) + ar) (4.1)

uel SCU u€eS

U is in this equation the set of all neurons which are immediate predecessor
of some neuron in the set T . The function o, is some suitable activation
function which scales the value of ¢(7') into the desired range of this variable.
For simplicity we assume in the following that ¢(7") ranges over [0,1] , and
that o, is either the Heaviside function or some sigmoidal function (like the
activation function o in equation (2.1)).

In a biological interpretation the parameters ar, and arg in equation (4.1)
can be used to model details of the geometrical and biochemical structure of
the neurons in 7" and U . The first term Y. ar, - o(u) in (4.1) reflects the

uelU

fact that the firing correlation of the neurons in 7" can be increased through
common input. Hence the value of aq, should be chosen positive if neuron u
has excitatory synapses to all neurons in 7', with roughly the same transmission
delays to the soma of neurons in 7' . In fact, one may expect that the value of
ary, is in many cases proportional to min{ay, : v € T} .

The second term Y- ags-c(S)- [T o(u) in (4.1) reflects an alternative way
SCU uesS

in which firing correlation among neurons in 7" can be achieved: if each neuron

in T receives input from some neuron v € S where S is a set of presynaptic

neurons that fire with a fairly large firing correlation (i.e., ¢(S) - IT o(u) is
ues

large). The parameter g depends on the connectivity structure between the
neuron sets S and T, and on biochemical details of their synapses and of the
dendritic trees of the neurons in 7' .

The computational model that is defined by the equations (2.1) and (4.1)
makes it very easy to solve computational problems related to the socalled
“binding problem” for scenes with different objects (see our discussion in ap-
plication 2 at the end of section 3). Assume again that there exists a set
of m basic properties Pi,..., P, of objects, and a collection C of subsets
H of {Py,...,P,}. Furthermore assume that for H € C the combination
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ANH := A P; of basic properties P; is of particular relevance for the neural
PjeH

system if it occurs in a single object. Finally assume that the computational

goal of this system is to output 1 if the input indicates the presence of objects

O; and O; so that O; satisfies A H and O; satisfies A H , where H and H are

two arbitrary but different sets in C .

This concrete computational problem involves the “binding problem”, since
it is required that one object O; satisfies all properties from some combination
H in C , and one object O; satisfies all properties from some combination H
in C . It would not suffice if both O; and O; each satisfy some properties in

H U H , even if altogether all properties in H U H get satisfied by at least one
of the objects O; and O; .

We will now construct a network N that solves this computational problem
with computations that involve firing rates and firing correlations according
to equation (2.1) and (4.1). We assume that the network A has n input

units ui, ..., u, , and that o(u;) = 1 indicates that object O; is present (else
o(u;) = 0),7=1,...,n . On the second layer of the network ' we have m
units vy, . .., Uy, so that o(v;) = 1 if and only if there is some object O; present

that has property P; . Assume that the weights «;; encode the knowledge
which objects O; have which basic properties P; : o, = 1 if O; has property
P; , else aj; = 0. If the output unit v of the network receives information about
the input only through the activations o(vy),...0(vy,) of the units vy, ..., vy
on its first hidden layer, it cannot solve the computational problem that we
consider. But if one takes into account that in addition the firing correlations
¢(T) for subsets T' C {v1,...,v,} can carry information about the input, one
can easily solve this problem.

This can be carried out by the following network A (see Figure 1). We
compute ¢(T) according to equation (4.1) with U = {uy,...,un},ary, =
min{aj; : v; € T}, arsg = 0forall S, and bias ap = —1/2 . If one em-
ploys for simplicity the Heaviside activation function for ¢ and o, , one has
for Ty := {v; : P; € H} that ¢(Ty) = 1 if and only if o(u;) = 1 for some
i€ {l,...,n} so that oj; = 1 for all P; € H (i.e., if an object O; is present

that has property P; for all P; € H). Furthermore one has [] o(v;) = 11in
PjeH
this case.

We employ a complex gate v as output gate on the third layer of N . Its bias
o, receives the value 1.5 . Its parameter a,s has value 1if S = {v; : P; € H}
for some set H € C , otherwise a,s = 0 . We set «,, = 0 for all preceding
neurons 1 .

According to (2.1) we have o(v) = 1 if and only if ¢(Tx) - II o(v;) =1
Pj€H

for at least two different sets H in C . Hence the network N outputs 1 if and

only if its input {(o(u1),...,0(us)) € {0,1}" satisfies o(u;) = 1 and o(y;) = 1

for some 4,7 € {1,...,n} so that O; satisfies A H and O; satisfies A H , where

H and H are two arbitrary but different sets in C . Therefore the network N

15



Figure 1: Construction of a network N of complex gates for the solution of a
computational problem which is related to the “binding problem”.

solves the computational problem that we have considered.

One can easily see that a very similar network of complex gates can also
handle the more realistic situation where the input units w4, ..., u, represent
n “sensors”’, and the presence of an object O; is signaled through correlated
firing of a characteristic set S; C {uy, . .., u,} of these n neurons. Formally, one
has then k subsets Si,..., Sk C {u1,...,u,} , input variables o(u),...o(u,)
and ¢(S;) for S; C {uy,...,u,} , and one says that “object O; is present”
for some 7 € {1,...,k} if ¢(S;) - [y;es, 0(u;) = 1 . The architecture of a
network N of complex gates that solves the same computational problem as
before for this “distributed” representation of objects O; can be chosen exactly
as in the previous case. In this case the information which object O; has
which basic property P; is encoded in the parameters a,s for S C {uy, ..., u,}
and v € {v1,...,vn} , rather than in the parameters «;; . Furthermore the
computation of ¢(T) for sets T C {v1, ..., vy} of hidden neurons according to
equation (4.1) depends now on a proper choice of the parameters arg for sets
S C {uy,...,u,} . It no longer depends on the parameters ar,, , which can
be chosen to be 0 in this more complex case. The construction of the output
neuron v remains unchanged. The preceding construction provides an example
for a computation that involves two different roles of firing correlation within
one computation (binding of sensors u; , and binding of features P;), as it
might occur for example for visual processing in different areas of the visual
cortex.
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Finally we would like to point out that the computational goal of the
preceding network N has been chosen to be simple in order to illustrate the
basic mechanisms. More complex computations involving different objects can
easily be carried out if one replaces the output neuron v of A" by a more
sophisticated subsequent network.

The preceding construction indicates in an informal way the new expres-
sive possibilities that arise if a network can internally use firing correlations
for its computation, even if the network-input and -output is given in terms
of firing rates. In the following rigorous result we also consider neural com-
putations where network-inputs and -outputs are given exclusively in terms of
firing rates. We prove in Theorem 4.1 and Corollary 4.2 by straightforward
arguments within the framework of computational complexity theory that the
computational power of a neural net of some given size becomes substantially
larger if it can internally employ auxiliary variables ¢(7') that model firing
correlations. In fact, it turns out that without constraining rules on possible
assignments of values to the parameters of a complex gate their computational
power is extremely large.

Theorem 4.1 Most functions F : {0,1}" — {0, 1} require exponentially in n
many gates for their computation on a feedforward network of standard thresh-
old gates.

On the other hand all functions F : {0,1}" — {0,1} can be computed by
a neural net N with a fized architecture that consists of just 2n + 2 complex
threshold gates.

Proof: The first part of the claim is well-known. It follows immediately from
[Muroga et al., 1961], where it was shown that the weights and the bias of any
threshold gate with £ binary inputs can be chosen to be integers of absolute

value 20(k108k)  The sharpest bound known is 23 ls(k+1)— ([Schmitt, 1994]).
This implies that feedforward networks with arbitrary architecture and arbi-
trary real weights and biases consisting of n input nodes and m standard

n+m

threshold gates can compute at most 2"+ % )(*5%)leg(n+m) different boolean
functions F': {0,1}" — {0,1} . The logarithm of this estimate has value o(2")

for m := 222 Therefore the fraction of functions F : {0,1}" — {0,1} that

n .

can be computed with < % standard threshold gates goes to 0 for n — oo .

The proof of the second part of Theorem 4.1 is provided by the following
construction of a network A that computes F' . We construct a 3-layer feedfor-
ward network N which employs complex gates on layers 2 and 3. The compu-
tation of N procedes according to equations (2.1) and (4.1). The architecture
of N and the parameters of the gates on its first two layers are independent of
the function F' . Only the parameters of its output gate depend on the given
function F': {0,1}" — {0,1} .

The first layer of A/ consists of n input gates ui,...,u, that encode the
network input z = (z1,...,,) € {0, 1}" through their firing rates (i.e., o(u;) =
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x; for i =1,...,n). In addition N contains a gate ug that outputs o(ug) =1,
independendly of the network input z .

Figure 2: Construction of a small network N of complex gates for the proof
of Theorem 4.1.

The second layer of N consists of 2n complex gates vy, ... vg, . The weight
on the edge from ug to v; has value 2 for j =1,...,2n . Fori € {1,...,n} the
weight on the edge from u; to vy;_; also has value 2. The bias of vy;_; is set
equal to -3 . The weight on the edge from u; to vy; has value -2, and the bias
of vy; is set to -1. The weights «j; on edges from u; to v; for j ¢ {2i — 1, 2:}
have value 0. Then we have o(u;) = 0(vei—1) = 1 — o(vy;) for every network
input z € {0,1}" . Hence exactly n gates on layer 2 output a “1” for every
network input z .

There are many ways to achieve that ¢(7T") = 1 according to equation (4.1)
for any set T C {vy,...,v2,} of size n . The only role of the auxiliary neuron
uo in N is to make this possible with an assignment of parameters in equation
(4.1) which is consistent with an interpretation of ¢(7) as firing correlation,
and with the assignment of values to the weights o . Since ug is the only
neuron that has edges with nonzero weights to all v; € T', it is plausible to
set ary, = 2 and agp,, = 0 for ¢ € {1,...,n} . With ars = 0 and ar = —1
one then has ¢(7) = 1 according to equation (4.1).

Hence for any network input z € {0,1}" one has ¢(T) . I o(v;) =1 for
v; €T
exactly one set T of size n (with ve; 1 € T if ; = 1 and vy; € T if 2; = 0). We
will denote this set by T}, in the following. Note that ¢(T) - [I o(v;) = 0 for
T

v; €
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all sets 1" of size > n with 7" # T, . The values of ¢(T") for sets T" of size less
than n will be irrelevant for the following (since a,r = 0 for these sets T').

The computation of the complex gate v on layer 3 of N procedes according
to equation (2.1). Its bias is set to -1/2, and its weights on edges from preceding
gates v; are allset to 0 (i = 1,...,2n). Its weight a,,s foraset S C {vy,..., v}
is set to 1 if S D T, for some z € {0,1}" with F(z) =1, otherwise a,s =0 .

The output gate v of this network N outputs o(v) = F(z) for any network
input z € {0,1}" . Hence the network N consisting of 2n + 2 gates (in
addition to the input gates uy,...,u,) computes the arbitrarily given function
F:{0,1}" — {0,1} .

On the side we would like to point out that the parameters of NV were
chosen in such a way that for all network inputs the input of the Heaviside
activation function of any gate in N is bounded away from zero. Therefore
one can apply standard transformations to carry out the same computations
also with smooth activation functions, such as the logistic sigmoid, instead of
the Heaviside function. |

Corollary 4.2 If a function F : {0,1}" — {0,1} can be defined by a boolean
formula in disjunctive normal form with k terms, then F' can be computed by
a neural net N consisting of at most 2n+ 2 complex gates which have nonzero
coefficients for just k product terms.

Proof: For the output gate v of the neural net N one sets a,g = 1 if S
corresponds to a monomial in the disjunctive normal form of F' , otherwise
one sets a,s = 0 . The rest of the construction of Theorem (4.1) remains
unchanged. [

Remark 4.3 Some recent experimental results (for example
[deCharms, Merzenich, 1996], [Vaadia et al., 1995]) show that some bio-
logical neural systems change their firing correlations in response to a
stimulus, whereas the firing rates of the neurons involved do not change.
This computational mode corresponds to the special case of our model where
all firing rates in (2.1) and (4.1) (except for the firing rates of input- and
-output-neurons) are constants. It turns out that this special case of our
model, which no longer contains any high-order terms if ¢(S) = 0 for any set
S of input neurons, is computationally still very powerful.

For example, one can compute in this way the NP-complete decision problem
CLIQUE on a linear-size feedforward circuit of complex threshold gates with
one hidden layer. This is possible because the computation of this circuit can
employ super-polynomically many correlation variables. We assume here that
the absence or presence of each edge in the input-graph G with n nodes is
indicated by a separate binary variable, and that the output of CLIQUE is 1
if and only if G has a clique of size > n/2 .
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We assume that ¢(S) = 0 for any set S of input neurons, and that the input
is given through the firing rates of the input neurons. We arrange that the
firing rates o(u) of all hidden neurons u are constants. Therefore all product

terms [] o(u) for sets S of hidden neurons that occur in the computation
ues

of this circuit can be replaced by constants. Hence all terms ¢(S) - I o(u)
u€eS
for arbitrary sets S of neurons on any layer of this network can be replaced

by linear terms. In the hidden layer of the network we employ one complex
gate v for each node of the input-graph G. For any set T of n/2 of these
hidden units v one arranges that ¢(7') = 1 if and only if T is a clique in G (set
ar, = 1 for an input node u if u represents an edge whose incident vertices

both belong to T, otherwise set az, = 0 ; the bias ar is set to —("42))

5 Conclusions

We have introduced a simple framework for modeling neural computations with
firing rates and firing correlations. In contrast to networks of spiking neurons,
these new models need not keep track of individual firing times. Therefore
they provide a suitable framework for a theoretical investigation of large-scale
features of neural computations with firing rates and firing correlations. In
contrast to previous models for modeling computational effects of firing cor-
relations, our new models are general purpose computational models, whose
function is not restricted to special types of computations.

We have presented several constructions of computationally powerful net-
works in this framework. Our constructions show that besides possible uses
in solutions of the “binding problem”, firing correlations may also play other
roles in the context of complex computations. Furthermore we present for the
first time a proof that a neural network model that reflects salient aspects of
neural computations with firing rates and firing correlations has strictly more
computational power than a network of the same size that just models neural
computations in terms of firing rates.

On the side one of our separation results also has implications for standard
neural network models. Corollary 3.2 provides the first proof that a high-order
sigmoidal neural net can have strictly more computational power than any
first-order sigmoidal neural net of a substantially larger size, without imposing
constraints on the architecture, parameters or (reasonable) choice of activation
functions employed by the first-order sigmoidal neural net.

We hope that the notion of a complex gate that is introduced in this paper
provides a useful reference model for evaluating the computational capabilities
of biological neurons. On the other hand our model is sufficiently abstract to
also provide a reference model for evaluating the computational capabilities
of related computational units in pulsed VLSI. In both cases our model gives
rise to interesting new questions regarding the possible values of parameters
of a complex gate which can be realized in that setting. In fact, the model
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introduced in this paper may turn out to be a useful “transmission tool” for
moving computational mechanisms and principles from biological neurons to
silicon-implementations. In addition it appears to be useful for quantifying
specific advantages of silicon-implementations of computations with correlated
pulse trains - for example new parameter ranges that can be achieved for the
parameters of a complex gate in silicon but not in wetware.

Finally, we would like to point out that the new computational model that
has been presented in this paper also has consequences for the investigation
of learning in neural systems. The function that is computed by a network of
complex gates depends on new parameters, and the question arises how these
parameters can be tuned by suitable learning rules. It should be noted that
according to Theorem 4.1 a fixed network architecture of linear size with just
one layer of “adjustable” complex gates provides already a universal compu-
tational model ( although only for binary inputs and outputs). This points
to the possibility that instead of biologically dubious learning rules for multi-
layer networks it may suffice to explore learning rules for tuning a larger set
of parameters for a single layer of complex gates.

Acknowledgment: I would like to thank Thomas Natschlager for helpful
comments.
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