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Abstract

Experimental data show that biological synapses behave quite differently from
the symbolic synapses in all common artificial neural network models. Biological
synapses are dynamic, i.e., their “weight” changes on a short time scale by several
hundred percent in dependence of the past input to the synapse. In this article we
address the question how this inherent synaptic dynamics – which should not be
confused with long term “learning” – affects the computational power of a neural
network. In particular we analyze computations on temporal and spatio-temporal
patterns, and we give a complete mathematical characterization of all filters that
can be approximated by feedforward neural networks with dynamic synapses. It
turns out that even with just a single hidden layer such networks can approximate
a very rich class of nonlinear filters: all filters that can be characterized by Volterra
series. This result is robust with regard to various changes in the model for synap-
tic dynamics. Our characterization result provides for all nonlinear filters that are
approximable by Volterra series a new complexity hierarchy which is related to the
cost of implementing such filters in neural systems.

1 Introduction

Synapses in common artificial neural network models are static: the value ��� of a synap-
tic weight is assumed to change only during “learning”. In contrast to that, the “weight”
�
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� �
�����

of a biological synapse at time
�

is known to be strongly dependent on the inputs� � ���	��
��
that this synapse has received from the presynaptic neuron 
 at previous time

steps
����


. (Varela et al., 1997) have shown that a model of the form

� �
�������

� ����� ����� � ���������������
(1)

with a constant � � , a depression term � �����
with values in

��� �!�#"
, and a facilitation term�$�����&%'�

, can be fitted remarkably well to experimental data for synaptic dynamics.
The facilitation term

�������
is usually modeled as a linear filter with exponential decay:

If � � ���(�)
*�
is the output of the presynaptic neuron (typically modeled by a sum of + -

functions), then the current value of this facilitation term is of the form

�$�����,� -/.102 � � ���3��
�� �547698;:=<7> 
 (2)

for certain parameters
-*��?A@B�

that vary from synapse to synapse. A few other mod-
els have been proposed for synaptic dynamics (see e.g. [Dobrunz and Stevens, 1997],
(Murthy et al., 1997), (Tsodyks et al., 1998), (Koch, 1999), (Maass and Zador, 1998),
(Maass and Zador, 1999)) that are all quite similar. Closely related models had already
been proposed and investigated in (Grossberg, 1969), (Grossberg, 1972), (Grossberg,
1984), (Francis et al., 1994). Our analysis in this article is primarily based on the model
of (Varela et al., 1997). However we will prove that our results also hold for the some-
what more complex model for synaptic dynamics in a mean-field context of (Tsodyks et
al., 1998).

We show in this article that such inherent synaptic dynamics empower neural net-
works with a remarkable capability for carrying out computations on temporal patterns
(i.e., time series) and spatio-temporal patterns. This computational mode, where inputs
and outputs consist of temporal patterns or spatio-temporal patterns – rather than static
vectors of numbers – appears to provide a more adequate framework for analyzing
computations in biological neural systems. Furthermore their capability for processing
temporal and spatio-temporal patterns in a very efficient manner may be linked to their
superior capabilities for real-time processing of sensory input, hence our analysis may
provide new ideas for designing artificial neural systems with similar capabilities.

We consider not just computations of neural systems with a single temporal pat-
tern as input, but also characterize their computational power for the case where several
different temporal patterns CED �����F�!G!G!GH� C*I ����� are presented in parallel as input to the neu-
ral system. Hence we also provide a complete characterization of the computational
power of feedforward neural systems for the case where salient information is encoded
in temporal correlations of firing activity in different pools of neurons (represented by
correlations among the corresponding continuous functions C�D �����F�!G!G!GJ� C�I ����� ). There-
fore various informal suggestions for computational uses of such code can be placed on
a rigorous mathematical foundation: It is easy to see that a large variety of computa-
tional operations that respond in a particular manner to correlations in temporal input
patterns define time invariant filters with fading memory, hence they can in principle
be implemented on each of the various kinds of dynamic networks considered in this
article.

Previous standard models for computations on temporal patterns in artificial neural
networks are time-delay neural networks (where temporal structure is transformed into
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spatial structure) and recurrent neural networks, both being based on standard “static”
synapses (Hertz et al., 1991). Such transformation makes it impossible to let “time rep-
resent itself” (Mead, 1989) in subsequent computations, which tends to result in a loss
of computational efficiency. The results of this article suggest that feedforward neural
networks with simple dynamic synapses provide an attractive alternative.

Various questions regarding artificial neural networks with more general recur-
rent structure, in which the time-series character of the data plays a central role,
were answered, within the framework of computational learning theory, in the pa-
pers (Dasgupta and Sontag, 1996) (studied hard-threshold filters with a discrete time
scale), (Koiran and Sontag, 1998) (discrete-time recurrent networks), and (Sontag, 1998)
(continuous-time recurrent networks). The paper (Sontag, 1997) summarizes some of
the approximation capabilities and other properties of these classes of recurrent net-
works.

In section 2 of this article we introduce the formal notion of a dynamic network,
which combines biologically realistic synaptic dynamics according to (Varela et al., 1997)
with standard sigmoidal neurons (modeling firing activity in a population of neurons),
and we review some basic concepts regarding filters. In section 3 we characterize the
computational power of feedforward dynamic networks for computations on temporal
patterns (i.e., functions of time), and we show that our result can be extended to the
model of (Tsodyks et al., 1998) for synaptic dynamics. The formal proofs of the charac-
terization results in this article rely on standard techniques from mathematical analysis.
In section 4 we extend our investigation to computations on spatio-temporal patterns.
Section 5 discusses some conclusions.

2 Basic Concepts

In contrast to the static output of gates in feedforward artificial neural networks the
output of biological neurons consists of action potentials (“spikes”), i.e., stereotyped
events that mark certain points in time. These spikes are transmitted by synapses to
other neurons, where they cause changes in the membrane potential that affect the times
when these other neurons fire and thereby emit a spike. We will focus in this article on
the implications of one type of temporal dynamics provided by the components of such
neural computations: the inherent temporal dynamics of synapses.

The empirical data of (Varela et al., 1997) describe the amplitudes of EPSC’s (excita-
tory postsynaptic currents) in a neuron in response to a spike train from a presynaptic
neuron. These two neurons are likely to be connected by multiple synapses, and the
resulting EPSC amplitude can be understood as a population response of these mul-
tiple synapses. Therefore it is justified to employ a deterministic model for synaptic
dynamics in spite of the stochastic nature of synaptic transmission at a single release sit
(Dobrunz and Stevens, 1997). The EPSC amplitude in response to a spike is modeled in
(Varela et al., 1997) by terms of the form � � ��� � � �

and � ��� � ��� � � �
, where

�
is a linear

filter with impulse response
- ��4 698F:=< modeling facilitation and � is some nonlinear filter

modeling depression at synapses. In some versions of the model considered in (Varela
et al., 1997) this filter � consists of several depression terms. However it only assumes
values

@)�
and is always time invariant and has fading memory.

We analyze the impact of this synaptic dynamics in the context of common models
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for computations in populations of neurons where one can ignore the stochastic as-
pects of computation in individual neurons in favor of the deterministic response of
pools of neurons that receive similar input (“population coding” or “space rate cod-
ing”), see (Georgopoulos et al., 1986), (Abbott, 1994), (Gerstner, 1999). More precisely,
our subsequent neural network model is based on a mean-field analysis of networks of
biological neurons, where pools � of neurons serve as computational units, whose time-
varying firing activity (measured as the number of neurons in � that fire during a short
time interval � �F���	��� "

) is represented by a continuous bounded function � ����� . In case
that pool � receives inputs from � other pools of neurons �(D �!G!G!G � ��� , we assume that
� ����� �	����
 �

�
� D � � ����� � � �����E� � 2 � , where � � ����� represents the time-varying firing activity in
pool � � and � �

�����
represents the time-varying average “weight” of the synapses from

neurons in pool � � to neurons in pool � .1 In the context of neural computation with
population coding considered in this article we have to expand the model of (Varela
et al., 1997) to populations of synapses that connect two pools of neurons, where presy-
naptic activity is described not by spike trains but by continuous functions � � ����� ranging
over some bounded interval ��� 2 � � D " with

��� � 2 � � D . Therefore we generalize their
model for the dynamics of synapses from a nonlinear filter applied to a sequence of+ -functions (i.e., to a spike train) to a corresponding nonlinear filter applied to a contin-
uous input function � � ����� .2 Thus if � � ����� is a continuous function describing the firing
activity in the 
 th presynaptic pool � � of neurons we model the size of the resulting
synaptic input to a subsequent pool � of neurons by terms of the form � �

����� � � � ����� with
� �
������� �

� � � � � � � � � ������� or � �
������� �

� �E� � � � ����� � � � � � � � ������� , where the filters
�

and
� are defined as in (Varela et al., 1997). The first equation that just models facilitation
gives rise to the definition of the class DN of dynamic networks in Definition 2.1, and
the second equation, that models the more common co-occurrence of facilitation and
depression, gives rise to the definition of the class DN � .

1The function ��������� is some “activation function”, for example ��� �"!$#&%(')�*%,+.-)/102! . For the
following it suffices to assume that � is continuous and not a polynomial. In sections 3.2 and 3.3 we
have to assume in addition that � assumes nonnegative values only. We refer to (Maass and Natschläger,
1999) for theoretical arguments and computer simulations that support the use of a sigmoidal activation
function in this context.

2So far no empirical data are available for the temporal dynamics of a population of synapses (that con-
nects two pools of neurons in a feedforward direction) in dependence of the pool-activity of the presynap-
tic pool of neurons. It is not completely unproblematic to assume that synaptic dynamics can be modeled
on the level of pool-activity in the same way as for spiking neurons, although this is commonly done. The
exact formula for the firing activity 34� 56! in the postsynaptic pool 7 of neurons requires to multiply for
each presynaptic pool 798 of neurons the product of the vector of spike activity of individual neurons :;8=< >
in pool 7?8 with the matrix of current synaptic coupling strengths @A8=< >B< CD�=56! for neurons :BC in pool 7 . The
resulting firing activity 34� 56! of pool 7 is the average of the current firing activities of neurons :2C in pool7 . In our mean-field model we assume that this average over E can be expressed in terms of products of
the average @F8�� 56! of the synaptic weights @G8=< >B< CD�=56! over E and H with the average firing activity �48�� 56! in the
presynaptic pool 798 . In particular this mean-field model ignores that the value of @A8=< >B< CD�=56! will in general
depend on the specific firing history of the specific presynaptic neuron :D8=< > .

We refer to (Tsodyks et al., 1998) for a detailed mathematical analysis of this problem. It is shown in
that article through computer simulations and theoretical arguments that for the slightly different model
for synaptic dynamics considered there the error resulting from generalizing the model from presynaptic
individual neurons to presynaptic pools is benign. We will discuss the model from (Tsodyks et al., 1998)
in sections 3.2 and 3.3, and we will show in Theorems 3.4 and 3.6 that our results can be extended to their
model.
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Definition 2.1. We define the class DN of dynamic networks (see Fig. 1) as the class
of arbitrary feedforward networks consisting of sigmoidal gates that map input functions� D ����� �!G!G#GH� � � �����

to a function

� �����	� ��� ��
� � D � �

����� � � �����H� � 2 � �
with

� �
�������

� ��� ������- . 02 � � ��� � 
*� 4 698F:=< > 
��
for parameters � ����� and

-*��?&@)�
.

�
is some “activation function” from � into � , for example

the logistic sigmoid function defined by
�	� � � � ��� � � � 4 6	� � . We will assume in the following

only that
�

is continuous and not a polynomial 3.
The slightly different class DN � is defined in the same way, except that � �

�����
is of the form

� �
�������

� � � � � � ����� � ��� ��-(. 02 � � ������
*� 4 698F:=< > 
*� �
where � is some arbitrary given time invariant fading memory filter4 with values � � � ����� ���� �!�#"

.5

Thus dynamic networks in DN or DN � are simply feedforward neural networks consist-
ing of sigmoidal neurons, where static weights � � are replaced by biologically realistic history-
dependent functions � �

�����
. The input to a dynamic network consists of an arbitrary vector of

functions CHD � � �F�!G!G!GJ� C�I � � � . The output of a dynamic network is defined as a weighted sum


 ����� � ��
� � D
� � � �

�����H�
�
2

of the time-varying outputs � D ����� �!G#G!GH� � � ����� of certain sigmoidal neurons in the network, where
the “weights”

�
2 �!G!G!GH�

� �
can be assumed to be static. Thus a dynamic network with � inputs

maps � input functions CED � � �F�!G!G!G � C*I � � � onto some output function 
 � � � . 6

A somewhat related network model has been investigated in (Back and Tsoi, 1991).
They exhibited a learning algorithm for this model, but no characterization of the com-
putational power of such networks was given there.

Temporal patterns are modeled in mathematics as functions of time. Hence networks
that operate on temporal patterns map functions of time onto functions of time. We will

3According to (Leshno et al., 1993) the subsequent theorems would hold under even weaker conditions
on � .

4See the remainder of this section for a review of these notions.
5This filter � models synaptic depression, and can for example be defined as in (Varela et al., 1997).

Our subsequent results are independent of the specific definition of � .
6In principle one is also interested in a more general type of operators that map vectors � of real valued

functions on vectors 3 of � real valued functions, where � is larger than 1. However in order to answer
the questions that are addressed in this paper for the case ��� % it suffices to focus on the case �&# % .
The reason is that operators which output vectors of � real valued functions can be viewed as vectors of
� operators that output one real valued function each. In this way our results for the case � # % will
imply a complete characterization of all operators that can be approximated by a more generalized type
of dynamic networks that output � real valued functions instead of just one.
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PSfrag replacements

CJD �����

C�� �����

C*I �����


 �����

output of
� D �

����
 I
�
� D � � ����� �5C � �����H� � 2 �

� D
� �

output of
� � �

��� 
 I
�
� D��� � ����� �5C � �����H� �� 2 �

Figure 1: A dynamic network with one hidden layer consisting of two hidden neurons � D and � � .
The synapse from the � th input to � D computes the filter � �	��

���� � ����

��
 � �	��

� , the synapse from the� th input to � � computes the filter � �	��

���� �� �	��

��
 � ����

� . The output of the network is of the form� ��������� D�
� �� I!

�
� D � �������"
 � �������$#%� 2 �$#&�'�(
� �� I!� � D �� �	���	�"
 � �����	�$#)�� 2 �$#&� 2 with � 2+* � D * �'�-,/. . Thus

the network computes a filter that maps the input functions � D0��

� *2121213* � I4��

� onto the output function� ��

� .

refer to such maps from functions to functions (or from vectors of functions to functions)
as filters (in mathematics they are usually referred to as operators). We will reserve the
letters

� �65 �67
for filters, and we write

� C for the function resulting from an application
of the filter

�
to a vector C of functions. Notice that when we write

� C ����� we mean,
of course,

� � C �#����� (that is, the function
� C evaluated at time

�
). We write 8 �:9 � � �

for
the class of all continuous functions ; �<9>= � . We will consider suitable subclasses?A@ 8 �:9 � � �

for
9 @ � � and � @ � , and study filters that map

? I into �CB (where �CB
is the class of all functions from � into � ), i.e. filters that map � functions C � � � �!G#G!G � CHI � � �
onto another function 
 � � � . In this section and in section 3 we will focus on the caseD � �

, i.e. the case where the input functions C3D � � � �#G!G!GJ� C*I � � � are functions of a single
variable – which we will interpret as time. The case

D @ �
will be considered in section

4.
A trivial special case of a filter is the shifting filter

7FEHG
with

7IEHG C ����� � C ��� �1� 2 � . An
arbitrary filter

� � ? I = �FB is called time invariant if a shift of the input functions by
a constant

� 2 just causes a shift of the output function by the same constant
� 2 , i.e., if

for any
� 2 � � and any C �KJ CHD �!G!G!GJ� C�IML � ? I one has that

� C EHG ����� � � C ������� 2 � whereC EHG �NJ:7IEHG CJD �!G#G!GH�67IEHG C*IOL . All filters considered in this article will be time invariant. Note
that if

?
is closed under

7PEHG
for all

� 2 � � then a time invariant filter
� � ? I = � B is

fully characterized by the values
� C ��� � for C � ? I .

Another essential property of filters considered in this article is fading memory. If
a filter

�
has fading memory then the value of

�%Q ��� �
can be approximated arbitrar-

ily closely by the value of
� C �=� � for functions C that approximate the functions

Q
for
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sufficiently long bounded intervals � ��� � �7" . The formal definition is as follows:

Definition 2.2. We say that a filter
� � ? I = � B has fading memory if for every

Q �J Q D �!G!G#GJ� Q I$L � ? I and every � @ �
there exist + @ �

and
� @ �

so that � � Q �=� ��� � C ��� � � � �
for all C � J CHD �!G!G#GJ� C*I$L � ? I with the property that � Q ������� C ����� � � + for all

� � � ��� � �7" .7
Remark 2.3. Interesting examples of linear and nonlinear filters

� � ? = � B can be
generated with the help of representations of the form

� C ����� � . 02 G!G!G . 02 C ����� 
 D � � G!G!G �5C ��� ��

�
���E��
 D �!G!G!G ��
 � � > 
 D G#G!G > 
 �

for measurable and essentially bounded functions C � � = � . We will always assume in
this article that

� ��� D . One refers to such integral as a Volterra term of order
D
. Note that

for
D � �

it yields the usual representation for a linear time invariant filter. The class of
filters that can be represented by Volterra series, i.e., by finite or infinite sums of Volterra
terms of arbitrary order, has been investigated for quite some time in neurobiology and
engineering (see for example (Palm and Poggio, 1977), (Palm, 1978), (Marmarelis and
Marmarelis, 1978), (Schetzen, 1980), (Poggio and Reichardt, 1980), (Rugh, 1981), (Rieke
et al., 1997) ).

It is obvious that any filter
�

which can be represented by a sum of finitely many
Volterra terms of any order (i.e., by a Volterra polynomial or finite Volterra series) is time
invariant and has fading memory. This holds for any class

?
of uniformly bounded in-

put functions C . According to the subsequent Lemma 2.5 both of these properties are
inherited by filters

�
that can be approximated by some arbitrary infinite sequence of

such filters. This implies that any filter that can be approximated by finite or infinite
Volterra series (which converge in the sense used here) is time invariant and has fad-
ing memory (over any class

?
of uniformly bounded functions C ). (Boyd and Chua,

1985) have shown that under some additional assumptions about
?

(for example the
assumptions in Theorem 3.1 below) the converse also holds: any time invariant filter� � ? = � B with fading memory can be approximated arbitrarily closely by Volterra
polynomials.

Remarks 2.4.

1. It is easy to see that for classes
?

of functions that are uniformly bounded (i.e.,? @ 8 � 9 � � �
for some bounded set � @ � ) our definition of fading memory

agrees with that considered in (Boyd and Chua, 1985). All classes
?

considered in
this article are uniformly bounded.

2. It is obvious that any time invariant filter
�

that has fading memory is causal, i.e.,C ����� � Q �����
for all

�
	 � 2 implies that
� C ��� 2 � � �%Q ��� 2 � for all

� 2 ��� .

3. All dynamic synapses considered in this article are modeled as filters that map an
input function � � � � � onto an output function � �

� � � � � � � � � . Furthermore all these filters
turn out to be time invariant with fading memory. This has the consequence that
all models for dynamic networks considered in this article compute time invariant
filters with fading memory.

7We will reserve �
��� for the max-norm on ��� , i.e., for � #�� ������������� � ����� ��� we write � � � for "!$#&%(' � 8 ' ��)?# %*���������,+�- .
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4. If one considers recurrent versions of such networks, then in the absence of noise
such networks can theoretically also compute filters without fading memory. Con-
sider for example some filter

�
with

� C �=� � � �
if C �����,� �

for all
� 	 �

and� C �=� � � �
if there exists some

� 2 	 �
so that C ��� 2 � %'�

. It is obvious that such
filter does not have fading memory. But a network where some “self exciting” re-
current subcircuit is turned on (and stays on permanently) whenever the input C
reaches a value

% �
for some

� 2 � � can compute such filter. Alternatively a feed-
forward network can of course also compute a non-fading-memory filter if any of
its components (synapses or neurons) have some permanent memory feature.

5. A special case of time invariant filters
�

with fading memory are those defined
by

� C ��� � � ; � C �=� ��� for arbitrary continuous functions ; � � I = � . Therefore the
“Universal Approximation Theorem for Filters” that follows from our subsequent
Theorem 3.1 contains as a special case the familiar “Universal Approximation The-
orem for Functions” from (Hornik et al., 1989).

6. It is obvious that a filter
�

on
? I has fading memory if and only if the functional�� � ? I = � defined by �� C � � � C �=� � is continuous on

? I with regard to the
topology

�
generated by the neighborhoods ��C � ? I � � Q �����(� C ����� � � + for all� � � ��� �;� "�� for arbitrary

Q � ? I and + ��� @)�
.

Lemma 2.5. Assume that
?

is closed under
7PEHG

for all
� 2 � � and a sequence

� � I � I���� of
filters converges to a filter

�
in the sense that for every � @B�

there exists an � 2 �
	 so that
� � I7C ������� � C ����� � � � for all � % � 2 � C � ? I � and

� ��� . Then the following holds:

a) If all the filters
� I are time-invariant then

�
is time-invariant.

b) If all the filters
� I have fading memory then

�
has fading memory.

Proof. Claim a) follows immediately from the fact that
� C ����������
�� I�� 0 � I C ����� for allC � ? I and

� ��� . In order to prove b) we can assume that some � @ �
and someQ � ? I have been given. We fix some � 2 ��	 so that � � I G C �����(� � C ����� � � � ��� for allC � ? I ��� � � . Since

� I G has fading memory there exists some
� @A�

and some + @ �
so

that � � I G C ��� ��� � I G Q ��� � � � � ��� for all C � ? I with the property that �FC ����� � Q ����� � � + for
all

� �	� � � �;�7" . By our choice of � 2 this implies that � � C ��� � � �%Q ��� � � � � for all C � ? I
with �FC ������� Q ����� � � + for all

� � � � � �;�7" . Hence
�

has fading memory.

3 Computations on Temporal Patterns

3.1 Characterizing the Computational Power of Neural Networks
with Dynamic Synapses

Our subsequent Theorem 3.1 shows that simple filters that only model synaptic facilita-
tion (as considered in the definition of DN) provide the networks already with sufficient
dynamics to approximate arbitrary given time invariant filters with fading memory. We
show that the simultaneous occurrence of depression (as in DN � ) is not needed for that,
but it also does not hurt. This appears to be of some interest for the analysis of computa-
tions in biological neural systems, since a fairly large variety of different functional roles
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have already been proposed for synaptic depression: explaining psychological data on
conditioning and reinforcement (Grossberg, 1972), boundary formation in vision and vi-
sual persistence (Francis et al., 1994), switching between different neural codes (Tsodyks
and Markram, 1997), and automatic gain control (Abbott et al., 1997). As a complement
of these conjectured roles for synaptic depression our subsequent Theorem 3.1 points to
a possible functional role for synaptic facilitation: it empowers even very shallow feed-
forward neural systems with the capability to approximate basically any linear or non-
linear filter that appears to be of interest in a biological context. Furthermore we show
that this possible functional role for facilitation can co-exist with independent other
functional roles for synaptic depression: Our result shows that one can first choose the
parameters that control synaptic depression to serve some other purpose, and can then
still choose the parameters that control synaptic facilitation so that the resulting neural
system can approximate any given time invariant filter with fading memory.8

Theorem 3.1. Assume that
?

is the class of functions from � into � � 2 � � D " � which satisfy
� C �����(� C ��� � � 	 � � � � � ��� � for all

�F��� � � , where � 2 � � D � � � are arbitrary real-valued con-
stants with

� � � 2 � � D and
� � � � . Let

�
be an arbitrary filter that maps vectorsC �)J CJD �!G!G#GJ� C*IOL � ? I into functions from � into � .

Then the following are equivalent:9

(a)
�

can be approximated by dynamic networks
7 ��� �

(i.e., for any � @ �
there exists

some
7 � DN such that � � C ������� 7 C ����� � � � for all C � ? I and all

� ��� )

(b)
�

can be approximated by dynamic networks
7 � � �

with just a single layer of sigmoidal
neurons

(c)
�

is time invariant and has fading memory

(d)
�

can be approximated by a sequence of (finite or infinite) Volterra series.

These equivalences remain valid if DN is replaced by DN � .
The following result follows from the proof of Theorem 3.1. It shows that the class

of filters that can be approximated by dynamic networks is very stable with regard to
changes in the definition of a dynamic network.

Corollary 3.2. Dynamic networks with just one layer of dynamic synapses and one subsequent
layer of sigmoidal gates can approximate the same class of filters as dynamic networks with
an arbitrary finite number of layers of dynamic synapses and sigmoidal gates. Even with a
sequence of dynamic networks that have an unboundedly growing number of layers one cannot
approximate more filters.

Furthermore if one restricts the synaptic dynamics in the definition of dynamic networks to

the simplest form � �
�������

� �9� � �3� - 0� 2 � � ��� �&
*� 4 698F:=< > 
�� with some arbitrarily fixed
-�@1�

and

time constants
?

from some arbitrarily fixed interval ��� �	� " with
� �

�
�
�

, the resulting class
of dynamic networks can still approximate (with just one layer of sigmoidal neurons) any filter
that can be approximated by a sequence of arbitrary dynamic networks considered in Definition

8We will show in section 3.3 that alternatively one can employ just depressing synapses for approxi-
mating any such filter by a neural system.

9The implication “ ��� !�
 ���;! ” was already shown in (Boyd and Chua, 1985).
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2.1. In the case of DN � one can either choose to fix
-&@ �

or one can arbitrarily fix the interval
� � �	� " for the value of

?
.

In addition we will show in section 3.2 that the claim of Theorem 3.1 remains valid if
we replace the model from (Varela et al., 1997) for synaptic dynamics (that is employed
in the definition of the classes DN and DN � of dynamic networks) by the model from
(Tsodyks et al., 1998). Furthermore we will show in section 3.3 that the claim of Theorem
3.1 also holds for networks where synapses exhibit just depression, not facilitation.

Remark 3.3. The proof of Theorem 3.1 shows that its claim as well as the claims of
Corollary 3.2 hold under much weaker conditions on the class

?
. Apart from the re-

quirement that
?

is closed under translation it suffices to assume that
?

is some ar-
bitrary class of uniformly bounded and equicontinuous10 functions that is closed with
regard to the topology defined in part 6 of Remarks 2.4, since this assumption is suffi-
cient for the application of the Arzela-Ascoli Theorem (see (Dieudonne, 1969) or (Boyd
and Chua, 1985)) in the proof.

Proof of Theorem 3.1: According to Lemma 2.5 any filter that can be approximated by
finite or infinite Volterra series is time invariant and has fading memory. This implies
“
� > � � ���#�

”. Furthermore it is shown in (Boyd and Chua, 1985) that for the classes
?

considered in this article any time invariant filter
� � ? = � B with fading memory can

be approximated by a sequence of finite Volterra series (i.e., by Volterra polynomials).
This argument can be trivially extended to filters

� � ? I = �CB with � % �
. This implies

“
���#� � � > � ”. Hence we have shown that

��� ��� � > � .
The implication “

� � � � �
�
�
” is obvious. In order to prove ”

�
�
� � ��� �

” we observe
that all filters occurring at synapses of a dynamic network (see Definition 2.1) are time
invariant and have fading memory. This implies that all filters

7
defined by dynamic

networks (i.e., all
7 � � ��� � � � ) are time invariant and have fading memory. Ac-

cording to Lemma 2.5 this implies that any filter
�

that can be approximated by such
networks is time invariant and has fading memory.

For the proof of “
��� � � � � �

” we first consider the case � � �
. We assume that

�
is

some arbitrary given filter that is time invariant and has fading memory. We will first
show that

�
can be approximated by filters

7 �,� �
. The proof is based on an applica-

tion of the Stone-Weierstrass Theorem (see for example (Dieudonne, 1969) or (Folland,
1984)) similarly as in (Boyd and Chua, 1985). That article extends earlier arguments by
(Sussmann, 1975), (Fliess, 1975), and (Gallman and Narendra, 1976) from a bounded to
an unbounded time interval. Furthermore our proof exploits the fact that any contin-
uous function can be uniformly approximated on any compact set by weighted sums
of sigmoidal gates (Hornik et al., 1989), (Sandberg, 1991), (Leshno et al., 1993). We will
apply the Stone-Weierstrass Theorem to functionals from

? 6 � � ��C �
	 6 0�� 2�
 � C � ? �
into

� . For that purpose we have to show that the filters
5

of the form

5 C ����� � C ����� � ������-(. 02 C ��� ��
�� 47698F:=<7> 
��
separate points in

? 6 , i.e., for any C � Q � ? 6 with C��� Q
there exists a filter

5
of this

form such that
5 C �=� � �� 5 Q ��� �

. Thus we consider some arbitrary given C � Q � ?
with

10 � is equicontinuous if for any � ��� there exists a � ��� so that ' 5���� '�� � implies ' �9� 56!�� �9���(! '�� � for
all 5 ��� � � and all � � � .
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C ����� �� Q �����
for some

�
	A�
. Then the function C �=� � � C ��� 
��H� Q �=� � � Q ��� 
�� assumes a value

�� �
for some


 % �
. This implies that

� ����� � . 02 � C ��� � �!C ��� 
�� � Q �=� � � Q ��� 
���� 47698F:�� > 

does not assume a constant value for all arguments

�
in � � �	� " . This follows because, if� ���������

for all such
�
, then � , being an analytic function of

� ��� with real part
@ �

,
would equal

�
, for all real

��@)�
. Since the limit of � ����� as

�I= �
is zero, this means

� �A�
.

However the Laplace transform is one-to-one (this is a standard fact; one way to prove
it is using that the Laplace transform of a bounded measurable function � , evaluated
at any point of the form

� � � � 
	� , coincides, as a function of � , with the Fourier
transform of �

����� 4 6 E , and the Fourier transform is one-to-one on integrable functions,
cf. for instance (Hewitt and Stromberg, 1965), Corollary 21.47). Hence, � ����� does not
assume a constant value for all arguments

�
in � � �	� " . Since � is analytic, it therefore

assumes, in any interval � � �	� " with
� �

�
� �

, infinitely many different values. This
implies that for any fixed

-�@1�
C �=� �H��- � . 02 C �=� � �5C ��� 
�� 47698;:=<7> 
 �� Q �=� �J��- � . 02 Q ��� � � Q ��� 
�� 47698F:=<7> 


for some
? � � � �	� " . Therefore we have

5 < C ��� � �� 5 < Q ��� � for the filter
5 < defined by

5 < C ������� C ����� � � ����- � . 02 C ����� 
*� 47698F:=< > 
���G
In order to apply the Stone-Weierstrass Theorem we also need to show that

? 6 is a
compact metric space with regard to the topology

�
defined in part 6 of Remarks 2.4.

Obviously this topology
�

coincides with the topology generated on
? 6 by the metric

> � C � Q � � ��

���E�� 2 � C ������� Q ����� ��/� � � �
(since all functions in

?
are assumed to be uniformly bounded). The compactness of

? 6
with regard to this metric follows by a routine argument, applying the Arzela-Ascoli
Theorem successively to the sequence of restrictions

? ��� 6�� � 2�
 � � ��C ��� 6�� � 2�
 � C � ? �
for� � 	 and by diagonalizing over converging subsequences for these restrictions (see,

for instance, Lemma 1 in (Boyd and Chua, 1985)).
The Stone-Weierstrass Theorem implies then that there exists for every given � @ �

some � � 	 , filters
5 <�� �!G!G!G �65 <�� as specified above, and a polynomial � such that

� � C ��� �3� � � 5 <�� C �=� � �!G!G#GJ�65 <�� C ��� ��� � � � �

for all C � ? 6 . Since the functionals �5 <�� � ? 6 = � defined by �5 <�� C � � 5 <�� C �=� � are
continuous over the compact space

? 6 , the values
5 <�� C ��� � for 
 � � � �!G!G#GJ� � � and C �? 6 are contained in some bounded interval � � �5�	� " . Furthermore according to (Hornik

et al., 1989), (Leshno et al., 1993) there exist sigmoidal gates
� D �!G!G#GJ� � � and parameters

�
2 �!G!G!G �

� �
� � such that

� � � � � � � ��
� � D � � � �

� � �H�
�
2 � � � � �
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for all � � � � �5�	� " � .11 Note that
� � � 5 < � C ��� � �#G!G!GJ�65 < � C �=� ��� is of the form��� 
 �

� � D � � ��� � C �=� � � � 2 � with � 2 � � and � �
�����

as in Definition 2.1 (with � � � � � re-
placed by C � � � ). Hence the previously constructed

5 <�� �#G!G!GH�65 < � together with this layer
of

D
sigmoidal gates

� D �!G!G!G � � � define a dynamic network � � DN. We then have
� � C �=� � � 7 C �=� � � � � for all C � ? 6 . Because of the time invariance of

�
and

5 <�� �#G!G!GJ�65 < �
this implies that � � C ����� � 7 C ����� � � � for all C�� ? and all

� ��� . This completes the proof
of “

��� � � � � �
” for the case of dynamic networks that define filters

7 � � �
and � � �

.

In order to show that for C � Q � ? 6 with C �� Q
we have

5 C ��� � �� 5 Q �=� �
also for some

filter
5

that reflects synaptic dynamics with some arbitrary given depression filter � as
in the definition of DN � we consider two cases for the filter

5 < with
5 < C ��� � ��N5 < Q �=� �

that we have already constructed.

Case 1: C ��� � � � C �=� �	� Q �=� � � � Q �=� �
Then the function C �=� � � � C ��� � �5C ��� 
�� � Q �=� � � � Q ��� � � Q ��� 
�� assumes a value �� �

for
some


 % �
. Hence we can apply the same argument as before to the function

�� ������� .102 � C ��� � � � C �=� � �5C � � 
*��� C �=� � � � Q ��� � � Q ��� 
���� 47698F:�� > 

to show that this function assumes infinitely many different values for

� � � � �	� " , for any
given interval ��� �	� " with

� �
�

� �
. This implies that there exists for every given

- @ �
some

? � � � �	� " so that C �=� � � � C ��� � � � � �A- � � 02 C ��� 
�� 4 698;:=< > 
*� �� Q �=� � � � Q ��� � � � � � - �� 02 Q � � 
*� 4 698F:=< > 
�� .
Case 2: C ��� � � � C �=� � �� Q �=� � � � Q �=� �
Then the claim follows since

- � � 02 C ��� 
�� 4 698;:=< > 
 � - � � 02 Q � � 
*� 4 698F:=< > 
 converges to�
if
- = �

or
? = �

.

The rest of the argument is exactly as in the preceding argument for filters
7 � � �

.
This completes the proof of “

��� � � ��� �
” also for the case of dynamic networks that define

filters
7 �&� � � and � � �

.

In the claim of the theorem we had considered a slightly more general class of filters�
that are defined over

? I for some given � % �
. In order to extend the preceding proof

of “
��� � � ��� �

” to the more general input space for � % �
one just has to note that

? I is a
compact metric space with regard to the product topology generated by the topology

�
over

?
as in part 6 of Remarks 2.4 , and that our preceding arguments imply that filters

over
? I of the form

J CHD �!G!G!G � C*IML = 5 C � with 
 � � � �!G!G#GJ� � � (and
5

modeling synaptic
dynamics according to Definition 2.1) separate points in

? I6 .

3.2 Extension of the Result to the Model for Synaptic Dynamics by
Tsodyks, Pawelzik, and Markram

In (Tsodyks et al., 1998) a slightly different temporal dynamics for depression and fa-
cilitation in populations of synapses has been proposed. In contrast to the model from

11These approximation results were previously applied in this context by (Sandberg, 1991).

12



(Varela et al., 1997) that underlies our Definition 2.1, this model has been explicitly for-
mulated for a mean-field analysis, where the input to a population of synapses consists
of a continuous function � � ����� that models firing activity in a presynaptic pool � � of neu-
rons, rather than a spike train from a single presynaptic neuron. We will show in this
section that our characterization result from the preceding section also holds for this
model for synaptic dynamics.

The first difference to the synapse model from (Varela et al., 1997) is a use-dependent
discount factor 4 6�� � G��� ��� 	 8��	��
 8�� � 4 698F:=< instead of just 4 698F:=< in the model for facilitation,
that reduces the facilitating impact of preceding large input � � ��� 
�� on the value of the
synaptic weight at time 0. In other words: facilitation is no longer modeled by a linear
filter, instead one assumes that facilitation has less impact on a synapse that has already
been facilitated by preceding inputs.

For a precise definition of the resulting variation DN � of our definition of dynamic
networks from Definition 2.1 we replace � �

����� �
� � � ��� � - � 02 � � ��� � 
*� 4 698F:=< > 
�� by

� �
�������

� ����
� � ����� , where


� � �����	� - � . 02 � � ���3��
�� ��4 6�� ���� ��� ��� 	 8 � ��
 8 � ��47698;:=<7> 
�G
(3)

This is the model for facilitation proposed in equation (3.5) of (Tsodyks et al., 1998) for
a mean-field setting, where � � ���J� 
*�

models firing activity at time
�J� 


in a presynaptic
pool � � of neurons ( 
� � ����� is denoted by

? D��� �*-
is denoted by

? ��� ��? is denoted by

������

� � ,
and � � is denoted by

9 ��� in (Tsodyks et al., 1998)).
We will show in the subsequent result that for any given value of the parameter

-
(which models the normal utilization of synaptic resources caused by input to a “rested”
synapse) and for any given interval ��� �	� " one can choose the values � ����� and time con-
stants

?
from � � �	� " so that a network consisting of facilitating synapses in combination

with one layer of sigmoidal neurons can approximate any time invariant filter with fad-
ing memory.

(Tsodyks et al., 1998) also propose a model for populations of synapses that ex-
hibit both depression and facilitation (one substitutes equation (3.5) for

? ��� in (3.3) of
(Tsodyks et al., 1998)). A new feature of this model is that one can no longer express
the current synaptic weight � �

�����
as a product of the outputs of two separate filters, one

for depression and one for facilitation. Rather, the output of the filter for facilitation
(see our equation (3)) enters the computation of the current output of the filter for de-
pression. This is biologically plausible, since a facilitated synapse spends its resources
more quickly – and hence is subject to stronger depression. In our notation the model
from (Tsodyks et al., 1998) for depression and facilitation in a mean-field setting (equa-
tions (3.3) and (3.5) in (Tsodyks et al., 1998)) yields the following formula for the value
� �
�����

of the current weight of a population of synapses (with 
� � ����� defined according to
equation (3)):

� �
����� � �

� ����
� � ����� � . 02 47698F: 8���� �	��4 6 � �� ���"!# � 	 8 � � ��� 	 8 � ��
 8 � > 
 G
(4)

This formula involves another parameter

�$&%'�

: the time constant for the recovery from
utilizing synaptic resources. We will write DN �(� for the class of feedforward networks
consisting of sigmoidal neurons with dynamic weights � �

�����
according to equation (4).
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In order to make sure that the integrals in equation (3) and (4) assume a finite value for
bounded synaptic inputs � � � � � , one has to make sure that not only the network inputs,
but also the outputs of sigmoidal units in networks from the classes DN � and DN �(� are
always nonnegative. For that purpose we assume in this section and the next section
that the sigmoidal activation function

�
assumes nonnegative values only. Note that

this is no real restriction since the output of a sigmoidal unit models the current firing
activity in a pool of neurons.

Note that any filter that maps � � � � � onto � �
� � � � � � � � � with � �

� � � defined according to
equation (3) or (4) is time invariant and has fading memory. Hence every network in
DN � and DN �(� computes a time invariant filter with fading memory.

Theorem 3.4. Assume that
?

is the class of functions from � into � � 2 � � D " � which satisfy
� C �����(� C ��� � � 	 � � � � � ��� � for all

�F��� � � , where � 2 � � D � � � are arbitrary real-valued con-
stants with

� � � 2 � � D and
� � � � . Let

�
be an arbitrary filter that maps vectorsC �)J CJD �!G!G#GJ� C*IOL � ? I into functions from � into � .

Then the following are equivalent:

(a)
�

can be approximated by dynamic networks
7 � � � � (i.e., for any � @ �

there exists
some

7 � DN � such that � � C ������� 7 C ����� � � � for all C � ? I and all
� � � )

(b)
�

can be approximated by dynamic networks
7 �A� � � with just a single layer of sig-

moidal neurons

(c)
�

is time invariant and has fading memory

(d)
�

can be approximated by a sequence of (finite or infinite) Volterra series.

These equivalences remain valid if DN � is replaced by DN �(� .

It will be obvious from the proof of Theorem 3.4 that in principle quite small ranges
suffice for the “free” parameters

?
and


�$ %'�
that control the synaptic dynamics according

to (3) and (4):

Corollary 3.5. In order to approximate an arbitrary given time invariant fading memory filter�
by dynamic networks � from DN � , one can choose for any given

- @ �
the parameters

?
of

the synapses in � (defined according to (3)) from some arbitrarily given interval � � � �;" . In order
to approximate

�
by networks � from DN �(� one can choose for any given

-$@)�
the parameters?

from some arbitrarily given interval � � �	� " and the parameters

�$ % �

according to equation (4)
from some arbitrarily given interval ��� � �	� � " .
Proof of Theorem 3.4. It suffices to describe how the proof of “

��� � � � � �
” from Theorem

3.1 has to be changed. For the case of networks from the class DN � we have to show
that the filters

5 �< of the form

5 �< C �����	� C ����� � - . 02 C ���3��
�� ��4 6�� ���� ����� 	 8 � ��
 8 � ��47698F:=<7> 

separate points in

? 6 . We show that for any given
- @ � �

�
�	� � � with

�.�
�

� �
, and

any C � Q � ? 6 with C �� Q
there exists some

? ��� � �	� " such that
5 �< C �=� � �� 5 �< Q �=� � . Thus
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we consider some arbitrary given C � Q � ? with C ����� �� Q �����
for some

�
	 �
. According to

our argument in the proof of Theorem 3.1 it suffices for that to show that

C ��� � �5C ��� 
�� ��4 6�� � G��� � 	 8 � ��
 8 � �� Q �=� � � Q � � 
*� ��4 6�� � G��� � 	 8 � ��
 8 � for some

 % � �

(5)

because this implies that the function � � defined by

� � ���!� � � . 02 � C �=� � �#C � � 
*� ��4 6�� � G��� � 	 8 � ��
 8 � � Q ��� � � Q ��� 
�� ��4 6�� � G��� � 	 8 � ��
 8 � � 47698F:���> 

assumes infinitely many different values for

� � � � �	� " .
Assume for a contradiction that (5) does not hold. This implies that C ��� � � Q ��� � G

Consider some
� 2 � �

with C ��� 2 � �� Q ��� 2 � . We assume without loss of generality thatC ��� 2 �/@ Q ��� 2 � . Set � �2 � � 
��	� � �(@�� 2 � C �����
	 Q ����� �� 62 � � 

��� � � �1� 2 � C ����� 	 Q ����� � G
We have

� �2 	 �
since C ��� �	� Q �=� �

.

Case 1:
� 62 @ � �

( i.e., 
 � � � 2 � C ����� 	 Q �����
)

Then
� 62 � � 2 � � �2 � C ��� 62 � � Q ��� 62 �F� C ��� �2 � � Q ��� �2 � and C ����� @ Q �����

for all
� � ��� 62 ��� �2 � .

According to our assumption this implies that
� 2E��G C ����� > �$� � 2E��G Q ����� > � and

� 2E �G C ����� > � �
� 2E �G Q ����� > � , although

� E��GE �G C ����� > �/@ � E��GE �G Q ����� > � . This yields a contradiction.

Case 2: C �����/@ Q �����
for all

� � � 2
Our assumptions imply then that

� 2E��G C ����� > �	� � 2E��G Q ����� > � and C �����(@ Q �����
for all

� �1� �2 .

Therefore there exists some � @)�
such that 4 � � G� 	 � 	 8 � ��6 � 	 8 � ����
 8 � % �	� � for all

�
	 � 2 . Hence
we can conclude from our assumption that � 	

E
�� 	 E �
% � � � for all

� 	 � 2 . This implies

that 4 � � G� 	 � 	 8 � � 6 � 	 8 � � ��
 8 � = �
for

� = � �
, hence � 	

E
�� 	 E �
= �

for
� = � �

. This provides a
contradiction to our definition of the class

?
of functions to which C and

Q
belong, since

all functions in
?

have values in � � 2 � � D " for
� � � 2 � � D .

This completes our proof of the direction “
���#� � ��� �

”. The remainder of the proof for
the case of dynamic networks from the class DN � is the same as for Theorem 3.1.

In order to prove “
��� � � � � �

for networks from the class DN �(� , we have to show that
the filters that map an input function � � � � � onto the output function � �

� � � � � � � � � with � �
�����

defined according to equation (4), separate points in
? 6 . Thus we fix some C � Q � ?

with C ����� �� Q �����
for some

� 	 �
. According to the preceding proof for DN � there exists

some
? � ��� �	� " such that

5 �< C ��� � �� 5 �< Q ��� � . We want to show for this
?

that there exists
for any given � �

�	� �
with

� �
� �

� � �
some


 $ %'� � � � � �	� � " so that the resulting filter defined
by the synapse according to equation (4) can separate C and

Q
. More precisely, we show

for the filter 
 < that is defined in analogy to equation (3) by


 < C ����� � � - � . 02 C ����� 
*� ��4 6�� � �� ��� � 	 8�� ��
 8 � �547698F:=<7> 
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(thus
5 �< C ������� C ����� � 
 < C ����� ) that

C �=� � � 
 < C �=� � � . 02 47698F: 8�� � �	��4 6 � G��� ��� � 	 8��	��� � 	 8 �	��
 8 � > 
 �� (6)

Q ��� � � 
 < Q ��� � � .102 47698F: 8���� � ��4 6 � G��� � � � 	 8 � ��� � 	 8 � ��
 8 � > 
�G
It is obvious that the function

� � � = � defined by

�E��
�� � � C ��� � � 
 < C ��� � ��4 �
G
��� ��� � 	 8�� ��� � 	 8 �	��
 8 � � Q �=� � � 
 < Q ��� � ��4 6 � G��� ��� � 	 8 ����� � 	 8��	��
 8��

assumes a value �� �
for some


1% �
, since

�E�=� � �� �
by our choice of

?
. Hence by the

argument via the Laplace transform from the proof of Theorem 3.1 there exists some
 $ %'� � � � � �	� � " (for any given � �
�	� � ��� with

� �
� �

� � �
) so that

. 02 4 698F: 8 � � � � �E��
*� > 
 �� � �
which is equivalent to the desired inequality (6).

Thus we have shown that the filters defined by the temporal dynamics of synapses
in dynamic networks from the class DN �(� separate points in

? 6 . The rest of the proof
is the same as for Theorem 3.1.

3.3 Universal Approximation of Filters with Depressing Synapses
only

We will show in this section that the computational power of feedforward neural net-
works with dynamic synapses remains the same if the synapses just exhibit depression,
not facilitation. This holds provided that the time constants


 $ % �
for their recovery from

depression can be chosen individually from some interval � � �	� " (this holds for any val-
ues of �

�	�
with

� �
�

� �
). This result is of interest since according to (Tsodyks et al.,

1998) all synapses between pyramidal neurons just exhibit depression, and not facilita-
tion. We will employ the model from (Tsodyks et al., 1998) for synaptic depression in a
mean-field setting, which is specified in equation (3.3) of (Tsodyks et al., 1998).

We write DN 6 for the class of feedforward neural networks consisting of sigmoidal
neurons (whose activation function

�
assumes nonnegative values only) with weights

� �
�����

evolving according to

� �
�����	�

� ��� ? ��� � . 02 47698;: 8 � � � ��4 6 ���� ���	��
�� � ��� 	 8�� ��
 8�� > 
 (7)

in dependence of the presynaptic pool activity � � ��
*� , where
? ��� @)�

is some given con-
stant. Note that � �

����� � � � ����� agrees with the term
9 ��� � J � ����� L with

J � ����� L defined by
equation (3.3) in (Tsodyks et al., 1998), which models the average value of the postsy-
naptic current caused in pool � by the firing activity � � ����� in the pool � � in the case of
depressing synapses between pools � � and � (the parameter

9 ��� is denoted by � � in
our notation).
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Theorem 3.6. Assume that
?

is the class of functions from � into � � 2 � � D " � which satisfy
� C �����(� C ��� � � 	 � � � � � ��� � for all

�F��� � � , where � 2 � � D � � � are arbitrary real-valued con-
stants with

� � � 2 � � D and
� � � � . Let

�
be an arbitrary filter that maps vectorsC �)J CJD �!G!G#GJ� C*IOL � ? I into functions from � into � .

Then the following are equivalent:

(a)
�

can be approximated by dynamic networks
7 � � � 6 (i.e., for any � @ �

there exists
some

7 � DN 6 such that � � C ������� 7 C ����� � � � for all C � ? I and all
� � � )

(b)
�

can be approximated by dynamic networks
7 �A� � 6 with just a single layer of sig-

moidal neurons

(c)
�

is time invariant and has fading memory

(d)
�

can be approximated by a sequence of (finite or infinite) Volterra series.

Proof. It is obvious that all filters defined by dynamic networks from the class DN 6
are time invariant and have fading memory. Hence it suffices to show how the proof of
“
���#� � ��� �

” has to be changed in comparison with the proof of Theorem 3.1. Assume that
parameters �

� ��� ? ��� � � with
� �

�
���

and
��� ? ��� have been fixed in some arbitrary

manner. We have to show that for any two functions C � Q � ?
with C ��� 2 � @ Q ��� 2 � for

some
� 2 	 �

there exists some

 $ % � � � � �	� " so that the filter that models synaptic dynamics

according to (7) differs at time 0 for the two input functions C � Q (instead of � � ), i.e., we
have to show that

C ��� � � .102 4 698F: 8 � � � �54 6 � G��� � 
�� � � 	 8�� ��
 8�� > 
 �� Q ��� � � . 02 4 698F: 8 � � � ��4 6 � G��� � 
�� � � 	 8�� ��
 8�� > 
�G
According to our argument with the Laplace-transform in the proof of Theorem 3.1 it
suffices for that to show that

� ��
�� �� �
for some


 % �
, where

��� � = � is the function
defined by �E��
*� � � C ��� � ��4 6 � G��� � 
�� � � 	 8�� ��
 8�� � Q �=� � �54 6 � G��� � 
�� � � 	 8 �	��
 8 � G
If C �=� � �� Q �=� �

this is obvious, since then
� ��� � �� �

. Hence we assume that C �=� � � Q ��� �
.

Furthermore we assume for a contradiction that
�E��
*� � �

for all

 %A�

. Set� �2 � �
inf � �(@�� 2 � C ����� 	 Q ����� � G

Then we have
� 2 � � �2 	 �

,
� 2E��G C ��
 � � > 
 � � � 2E��G Q ��
 � � > 
 � , and

� 2EHG C ��
 � � > 
 � � � 2EHG Q ��
 � � > 
 � .
This yields a contradiction to the fact that C ��
 � � @ Q ��
 � �

for all

 � � � � 2 ��� �2 " , and hence� E��GEHG C ��
 � � > 
 � @ � E��GEHG Q ��
 � � > 
 � .

3.4 Focusing on Excitatory Synapses

In the preceding dynamic network models we had assumed that the constant factors
� � could be chosen to be positive or negative, thus yielding excitatory or inhibitory
synapses in a biological interpretation. This formal symmetry between excitatory and
inhibitory synapses is not adequate for most biological neural systems, for example the
cortex of primates, where just 15% of the synapses are inhibitory. We would like to
point out in this section that according to (Maass, 1999a) one can replace the dynamic
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networks considered in the preceding sections by an alternative type of network where
just the dynamics of excitatory synapses matters – which can be just depressing, just
facilitating, or depressing and facilitating, like in the preceding sections.

The key observation is that instead of approximating the given polynomial � by a
weighted sum of sigmoidal neurons in the proof of Theorem 3.1 (and analogously in the
subsequent Theorems), one can approximate � by a single soft winner-take-all module
applied to several weighted sums of the filters

5 <�� �!G!G!G �65 <�� with non-negative weights
� � only.12 The resulting network structure corresponds to a biological neural system
where the filters

5 <�� �!G#G!GJ�65 <�� are realized exclusively by excitatory dynamic synapses,
and the role of inhibitory synapses is restricted to the realization of the subsequent soft
winner-take-all module. We refer to (Maass, 1999a) for details of this alternative style of
network construction.

3.5 Allowing the Input Functions to Vanish

We had assumed in Theorem 3.1 that all input functions C � satisfy C � ����� % � 2 for all� � � , where � 2 @ �
is some arbitrary constant. This assumption is usually met in the

sketched application to biological neural systems, because the minimum firing rate of
neurons is larger than

�
(typically in the range of 5 Hz). Alternatively one can assume

that all input functions C � are superimposed with some positive constant input (that
could be interpreted as background firing activity).

The following result shows that from a mathematical point of view the assumption
� 2 @ �

is necessary at least in the case of single-layer networks, since in the case � 2 � �
a

strictly smaller class of filters is approximated by dynamic networks with a single layer
of sigmoidal neurons. Theorem 3.7 gives a precise characterization of this smaller class
of filters.

Theorem 3.7. Assume that
?

is the class of functions C in 8 � � � � � � � D "�� which satisfy � C ����� �C � ��� � 	 � � � � ��� � � for all
�F��� � � , where � D and � � are arbitrary real-valued constants with� � � D and

� � � � . Let
�

be an arbitrary filter that maps functions from
?

into � B . We
consider here only the version of dynamic networks giving rise to filters in DN.

Then
�

can be approximated by dynamic networks with a single layer of sigmoidal gates
if and only if

�
is time invariant, has fading memory, and there exists a constant

���
such that� C �����	� ���

for all C � ? and
� � � with C ������� �

.

Proof of Theorem 3.7: Notice that the form of the filters defining the class DN implies that,
when C �����	� �

, all filters output the value
�

at the given time
�
, and hence the sigmoidal

gate outputs the value
� ����� � ���

� 2 � , irrespective of the values of C at other times. It
is easy to see from here that all filters approximated by such networks must also have
the same property. The converse implication is established in almost exactly the same
manner as in the proof of Theorem 3.1. The only difference is as follows.

It could be the case that C �=� �	� Q ��� �	� �
, in which case our argument fails to provide

a separating filter. However, this separation is not needed if we only need to approx-
imate filters which are constant on the set of inputs which have zero value at

� � �
.

12If one prefers, one can replace the non-negative weighted sums of the filters �����$�����������	��
 in this
alternative approximation result by sigmoidal neurons applied to non-negative weighted sums of the
filters � � � ����������� � 
 .
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This follows from the following lemma, which is, in turn, a small variation of the Stone-
Weierstrass Theorem. Given a compact Hausdorff topological space

?
, and a closed

subset � of
?

, we say that a function ; � ? = � is � -constant if the restriction of ; to � is
a constant function. We say that a class of real-valued functions on

?
is � -separating if,

for each C � Q � ? , C �� Q
, such that not both of C and

Q
are in � , there is some ; � �

such
that ; � C � �� ; � Q � .
Lemma 3.8. Suppose that

�
is a class consisting of continuous and � -constant functions which

� -separates. Then, polynomials in elements of
�

approximate every � -constant continuous
function

? = � .

This Lemma is proved as follows. We consider the quotient space
? � � � ? � � , where

we collapse all points of � to one point, endowed with the quotient topology (its open
sets are those open sets � in

?
for which ����� ���� implies � @ � ). The topological space? � is compact, because the canonical projection onto the quotient is continuous, and

?
was assumed to be compact. In addition,

? � is a Hausdorff space, as follows from the
fact that for each � �� � there are disjoint neighborhoods of � and � (since � is compact).
The Lemma is established by noticing that continuous � -constant functions induce con-
tinuous functions on

? � , so that we may apply the standard Stone-Weierstrass Theorem
to this quotient space.

Now the Theorem follows, using as � the set consisting of all inputs so that C �=� �	�A�
.

The � -separation property is established just as in the proof of Theorem 3.1; we omit the
routine details.

3.6 Combining Synaptic Dynamics with Membrane Dynamics

One other source of temporal dynamics in biological neural systems is the dynamics
of the membrane potential of neurons. Hence it is of interest to consider a variation
of our notion of a dynamic network where a function � ����� is processed at a connection
of the network first by a filter

5
that maps � � � � � onto � �

� � � � � � � � � (modeling synapse
dynamics) and then by another filter 
 modeling membrane dynamics of the receiving
neurons. Since each single EPSP and IPSP (i.e., each excitatory and inhibitory postsy-
naptic potential) can be fitted very well by a function of the form ��D�4 698F:=< � � � �F4 698F:=<�� ,
it appears to be justified to model membrane dynamics in the context of our model
for population coding with pools of neurons by first order linear filters 
 with an im-
pulse response � ��
*� consisting of a weighted sum of functions of the form 4 698;:=< . In the
resulting variation of our notion of a dynamic network one replaces the filters

5
that

model synaptic dynamics according to Definition 2.1 at the connections of the network
by compositions 

	 5 with such linear filters 
 . All preceding results remain valid for
this variation of the network model. In order to approximate arbitrary given time in-
variant filters with fading memory by such networks one just has to show that for any
two functions C � Q � ?

with C ����� �� Q �����
for some

� 	 �
there exist filters

5 � 
 of the de-
sired type such that

� 
�	 5 � C �=� � �� � 
�	 5 � Q �=� �
. This holds even for C � Q � 8 � � � ��� 2 � � D "��

with � 2 �B�
, since we just have to find a filter

5
modeling synaptic dynamics accord-

ing to Definition 2.1 so that
5 C ����� �� 5 Q �����

for some
� 	 �

(hence we can allow thatC �=� ��� Q �=� � � �
). We then can apply to the functions

5 C ����� and
5 Q �����

for
� 	 �

the
argument from the proof of Theorem 3.1 to find a linear filter 
 with impulse response4 698F:=< so that

� 
�	 5 � C ��� � �� � 

	 5 � Q ��� �
. The same argument shows that theoretically
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the same class of filters can be approximated by dynamic networks if one only relies on
linear filters 
 modeling membrane dynamics.

4 Computations on Spatio-Temporal Patterns

A closer look shows that many temporal patterns that are relevant for biological neu-
ral systems are not just temporal but spatio-temporal patterns. For example in audi-
tory systems the additional spatial dimension parameterizes different frequency bands.
These are represented by spatial locations of the inner hair cells on the cochlea , and
corresponding spatial maps in higher parts of the auditory system. In visual systems
it is obvious that the analysis of moving objects (and/or the stabilization of visual in-
put in spite of body movements of the receiving organism) requires the processing of
complex spatio-temporal patterns. In this context two spatial dimensions correspond
directly to retina locations. But one should note that other “spatial” dimensions in the
subsequent Definition 4.1 need not correspond to spatial locations in the outer world
(or on the retina), but can also correspond to scales in a more abstract feature space,
for example to spatial frequency or phase. Therefore we will consider in the following
spatio-temporal patterns with an arbitrary finite number > � 	 of spatial dimensions.

The transformation and classification of complex spatio-temporal patterns appears
to be relevant also for higher cortical areas, since recordings from larger populations
of neurons via voltage-sensitive dyes or MEG, EEG etc. suggest that sensory input is
encoded in spatio-temporal activation patterns of associated cortical neural systems.
These spatio-temporal activation patterns provide the input to higher cortical areas.
Also the output of various systems in the motor cortex can be viewed as spatio-temporal
patterns (Georgopoulos, 1995). Hence one may argue that also higher cortical areas
carry out computations on spatio-temporal patterns.

We will show in this section that one can extend our analysis of computations on
temporal patterns to an analysis of computations on spatio-temporal patterns. For that
purpose we introduce a suitable extension of our definition of a dynamic network that
allows for > spatial dimensions in the input functions C .

Definition 4.1. We define a spatial dynamic network and the corresponding classes SDN
and SDN � of filters as a variation of the preceding Definition 2.2 of a dynamic network. Fix
some arbitrary > � 	 . A spatial dynamic network with > spatial input dimensions (in addition
to the time dimension) assigns to vectors C of � input functions C � � 
�� � = � an output
function 
 � � = � . The only difference to the preceding definition of a dynamic network is that
now there exists for each network a finite set

�
of vectors � � � 
 so that the actual input to the

network consists of functions of the form C � � � � � for � � � .

According to this definition any spatial dynamic network samples the input func-
tions C � � 
�� � = � just at a fixed finite set

�
of points � . Nevertheless we will

show in Theorem 4.2 that these networks can approximate a very large class of filters
on functions C � � 
 � � = � .

The notion of a Volterra series (see Remark 2.3) can be readily extended to input func-
tions C � � 
�� � = � (again we assume that C is measurable and essentially bounded).
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In this case a
D
-th order Volterra term is of the form

0.
6 0

G!G!G 0.
6 0

0.
2

G!G!G 0.
2 C � � D �!G!G!G � � 


������
 D � � G!G#G �5C � � D �!G#G!GH� � 

���3��


�
� � (8)

�E� � D �!G!G#GJ� � 

��
 D �!G!G!GJ��
 � � > � D G!G#G > � 
 > 
 D G!G#G > 
 �

for some function
� ��� D . Analogously as before we refer to a series consisting of finitely

many such terms as a Volterra polynomial or finite Volterra series.

Theorem 4.2. Let
?

be the class of functions in 8 � � 
 � � � ��� 2 � � D "�� that satisfy � C � � ����� �C � �� � ���� � 	 � � � J � ��� L � J �� � �� L � for all
J � ��� L , J �� � �� L � � 
�� � , where > � 	 and � 2 � � D � � � are

arbitrary real-valued constants with
� � � 2 � � D and

� � � � . Then the following holds for
any filter

� � ? I = � B �
�

can be approximated by spatial dynamic networks (i.e., for any � @B�
there exists some7 � SDN such that � � C ��������7 C ����� � � � for all C � ? I and

� ��� )
if and only if

�
can be approximated by a sequence of (finite or infinite) Volterra series.

The claim remains valid if SDN is replaced by SDN �
Proof. We show that the two alternative conditions on

�
in the claim of the theorem

are equivalent by proving that both conditions are equivalent to a third condition: the
condition that

�
is time invariant and has fading memory – for the straightforward

extension of this notion to filters
� � ? I = �FB , where

?
is now a class of functions from� 
 � � into � . We say that such filter

�
has fading memory if for every

J Q D �!G#G!G#� Q IML � ? I
and every � @ �

there exist + @ � ��� @ �
, and �

@ �
so that � � Q �=� �	� � C ��� � � � � for allC � J CJD �!G!G!GH� C�IOL � ? I with the property that � Q � � ������� C � � ����� � � + for all

� �&� ��� � �7"
and all � � � � �

�
�
" 
 . Note that this condition implies “fading influence” of C � � ����� for

arguments
J � ��� L where � � � or � � � are very large.

It is obvious that any
D
-th order Volterra term of the form (8) is time invariant and

has fading memory. Furthermore this property is preserved by taking sums and limits
(analogously as in Lemma 2.5). Hence also for filters with inputs C � � 
 � � = �
we have that any filter which can be approximated by a sequence of finite or infinite
Volterra series is time invariant and has fading memory. On the other hand one can
extend the proof of Theorem 1 in (Boyd and Chua, 1985) in a straightforward manner to
show that any time invariant filter that has fading memory and receives inputs from

? I
(for a class

?
with the properties as in the claim of the theorem) can be approximated

arbitrarily closely by Volterra polynomials. For this extension of the argument of (Boyd
and Chua, 1985) one just has to verify that this class

?
is compact with regard to the

topology generated by the neighborhoods ��C � ? I � � Q � � ����� � C � � ����� � � � for all� � � � � �;�7" and all � � � � �
�

�
" I � for arbitrary

Q � ? I and � ��� � �
@)�

.
It is clear that any spatial dynamic network according to Definition 4.1 is time in-

variant and has fading memory. Thus it only remains to show that any time invariant
filter

� � ? I = � B with fading memory can be approximated arbitrarily closely by spa-
tial dynamic networks. In order to extend the proof of Theorem 1 in (Boyd and Chua,
1985) to this case one just has to observe that the proof of Theorem 3.1 implies that for
any two functions C � Q � � ?

with C � � ����� �� Q � � ����� for some
� 	 �

and � � � 
 there exists
some � � � 
 and some filter

5
modeling synaptic dynamics as in Definition 2.1 which

satisfies
5 C � � � � �#�=� � �� 5 Q � � � � �#�=� � . Thus we have shown that a filter

� � ? I = �FB can
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be approximated by spatial dynamic networks if and only if
�

is time invariant and has
fading memory. This completes the proof of Theorem 4.2.

Remark 4.3.

1. Analogous versions of Corollary 3.2, Remark 3.3, Theorem 3.4, Theorem 3.6, and
Theorem 3.7 also hold for the framework of computations on spatio-temporal pat-
terns considered in Theorem 4.2.

2. If one considers a system consisting of many spatial dynamic networks that pro-
vide separate outputs for different spatial output locations one also can produce
spatio-temporal patterns in the output of such systems. Theorem 4.2 implies that
exactly those maps � from spatio-temporal patterns to spatio-temporal patterns
can be realized by such systems where the restriction of the output of � to any
fixed output location is a time invariant filter

�
with fading memory.

5 Conclusion

We have analyzed in this article the power of feedforward models for biological neu-
ral systems for computations on temporal patterns and spatio-temporal patterns. We
have identified the class of filters that can be approximated by such models, and shown
that this result is quite stable with regard to changes in the model. In particular we
have shown that all filters which can be approximated by Volterra series can be ap-
proximated by models consisting of a single layer of dynamic synapses and neurons.
Furthermore the class of filters that can be approximated does not change if one con-
siders feedforward networks with arbitrarily many layers. In addition the filters in this
class are characterized by a very simple property (time invariance and fading memory)
that is in general easy to check for a concrete filter. This class of filters is very rich. In
fact, one might argue that any filter that is possibly useful for a function of a biological
organism belongs to this class.

Since we have included in our analysis the case where several temporal patterns are
presented simultaneously as input to a neural system, our approach also provides a new
foundation for analyzing computations that respond in a particular manner to temporal
correlations in the firing activity of different pools of neurons. We show that any such
computation that can be described by time invariant filters with fading memory ( which
is for example the case for most conjectured computations involving binding of features
belonging to the same object via temporal correlations) can in principle be carried out
by a feedforward neural system.

So far the analysis of the possible functional role of short term synaptic dynamics
has found the most convincing computational role for synaptic depression: Our results
in this article point to a possible computational role for the other important dynamical
mechanism in biological synapses: facilitation. We show that via facilitation models for
neural systems gain the power to approximate any filter in the very large class of linear
and nonlinear filters described above. Furthermore we have shown that this possible
function of facilitation does not interfere with any other computational role of synaptic
depression, since we have shown that for any fixed depression mechanisms one can
find parameters for the synaptic facilitation mechanisms that allow the approximation
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of arbitrary filters from this class. Apart from this we have also shown in section 3.3 that
the same very rich class of linear and nonlinear filters can be approximated by models
for neural systems whose synapses just exhibit depression, not facilitation.

The view of neural systems as computational models for computations on temporal
patterns or spatio-temporal patterns – rather than on static vectors of numbers – is likely
to have significant consequences for the analysis of learning in neural systems. It sug-
gests that learning should be analyzed in the context of adaptive filters. Whereas we do
not contribute directly to any learning result in this article, our results identify exactly
the class of filters within which such filter adaptation would take place, and thereby
prepare the ground for a closer analysis of learning in neural systems from the point of
view of adaptive filtering.

Finally we would like to point out that our “universal approximation results” for
computations on temporal and spatio-temporal patterns suggest a new complexity mea-
sure and a new parameterization for nonlinear filters in this domain, which may be
more appropriate in the context of biological neural systems. We show that instead of
measuring the complexity of a nonlinear filter

�
by the degree of the Volterra poly-

nomial or Wiener polynomial that is needed to approximate
�

within a given � , one
can also measure the complexity of

�
by the number of sigmoidal gates and dynamic

synapses that are needed to approximate
�

within � . Our results show that both com-
plexity hierarchies characterize the same class of linear and nonlinear filters. However
the latter measure is more adequate in the context of neural computation, because al-
ready the approximation of a single sigmoidal gate requires a high order Volterra poly-
nomial for a good approximation. Hence the order of the Volterra polynomial required
to approximate a given nonlinear filter

�
is in general a poor measure for the cost of

implementing
�

in neural hardware. On the other hand the alternative complexity
measure for filters

�
that is suggested by our results is closely related to the cost of

implementing
�

in neural hardware.
In addition our approach via formal models for dynamic networks provides a new

parameterization for all filters that are approximable by Volterra series – in terms of
parameters that control the architecture as well as the temporal dynamics and scale of
synaptic dynamics. Such parameterization is in particular of interest for the analysis of
learning (if the goal is to learn a map from spatio-temporal to spatio-temporal patterns),
especially since the parameters that occur in our new parameterization appear to be
related to those parameters that are “plastic” in biological neural systems.

This article also prepares the ground for an investigation of the required complexity
of models for neural systems for approximating specific filters that are of particular
interest in this context. Preliminary computer simulation results (Natschläger et al.,
1999) suggest that in fact quite small instantiations of the dynamic network models
considered in this article suffice to approximate specific quadratic filters. Other topics
of current research are the role of noise in this context, and the possible role of lateral
and recurrent connections in the network (see (Maass, 1999b)).
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