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Abstract

This article initiates a rigorous theoretical analysis of the com-
putational power of circuits that employ modules for computing
winner-take-all. Computational models that involve competitive
stages have so far been neglected in computational complexity the-
ory, although they are widely used in computational brain models,
artificial neural networks, and analog VLSI. Our theoretical analy-
sis shows that winner-take-all is a surprisingly powerful computa-
tional module in comparison with threshold gates (= McCulloch-
Pitts neurons) and sigmoidal gates. We prove an optimal quadratic
lower bound for computing winner-take-all in any feedforward cir-
cuit consisting of threshold gates. In addition we show that ar-
bitrary continuous functions can be approximated by circuits em-
ploying a single soft winner-take-all gate as their only nonlinear
operation.

Our theoretical analysis also provides answers to two basic ques-
tions that have been raised by neurophysiologists in view of the
well-known asymmetry between excitatory and inhibitory connec-
tions in cortical circuits: how much computational power of neural
networks is lost if only positive weights are employed in weighted
sums, and how much adaptive capability is lost if only the positive
weights are subject to plasticity.
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1 Introduction

Computational models that involve competitive stages are widely used in com-
putational brain models, artificial neural networks, and analog VLSI (see (Ar-
bib, 1995)). The simplest competitive computational module is a hard winner-
take-all gate that computes a function WTA,, : R* — {0,1}" whose output
(b1, ... ,bp) = WTA, (24, ... ,x,) satisfies

b — 1 ,if z;>z; forall j#1
! 0 ,if z;>uz; forsome j#i .

Thus in the case of pairwise different inputs z4,... ,x, a single output bit b;
has value 1, which marks the position of the largest input z;.!

In this article we also investigate the computational power of two common
variations of winner-take-all: k-winner-take-all, where the ith output b; has
value 1 if and only if z; is among the k largest inputs, and soft winner-take-all,
where the ith output is an analog variable r; whose value reflects the rank of
x; among the input variables.

Winner-take-all is ubiquitous as a computational module in computational
brain models, especially in models involving computational mechanisms for
attention (Niebur and Koch, 1998). Biologically plausible models for comput-
ing winner-take-all in biological neural systems exist both on the basis of the
assumption that the analog inputs x; are encoded through firing rates — where
the most frequently firing neuron exerts the strongest inhibition on its com-
petitors and thereby stops them from firing after a while —, and on the basis
of the assumption that the analog inputs x; are encoded through the tempo-
ral delays of single spikes — where the earliest firing neuron (that encodes the
largest x;) inhibits its competitors before they can fire (Thorpe, 1990).

We would like to point to another link between results of this article and
computational neuroscience. There exists a notable difference between the
computational role of weights of different signs in artificial neural network
models on one hand, and anatomical and physiological data regarding the in-
terplay of excitatory and inhibitory neural inputs in biological neural systems
on the other hand (see (Abeles, 1991) and (Shepherd, 1998)). Virtually any
artificial neural network model is based on an assumed symmetry between pos-
itive and negative weights. Typically weights of either sign occur on an equal
footing as coefficients in weighted sums that represent the input to an artificial
neuron. In contrast to that, there exists a strong asymmetry regarding pos-
itive (excitatory) and negative (inhibitory) inputs to biological neurons. At

! Different conventions are considered in the literature in case that there is no unique
“winner” x;, but we need not specify any convention in this article since our lower bound
result for WTA,, holds for all of these versions.



most 15% of neurons in the cortex are inhibitory neurons, and these are the
only neurons that can exert a negative (inhibitory) influence on the activity of
other neurons. Furthermore, the location and structure of their synaptic con-
nections to other neurons differ drastically from those formed by excitatory
neurons. Inhibitory neurons are usually just connected to neurons in their im-
mediate vicinity, and it is not clear to what extent their synapses are changed
through learning. Furthermore the location of their synapses on the target
neurons (rarely on spines, often close to the soma, frequently with multiple
synapses on the target neuron) suggest that their computational function is
not symmetric to that of excitatory synapses. Rather, such data would sup-
port a conjecture that their impact on other neurons may be more of a local
regulatory nature, that inhibitory neurons do not function as computational
units per se like the (excitatory) pyramidal neurons, whose synapses are sub-
ject to fine-tuning via various learning mechanisms. These observations from
anatomy and neurophysiology have given rise to the question, whether a quite
different style of neural circuit design may be feasible, that achieves sufficient
computational power without requiring symmetry between excitatory and in-
hibitory interaction among neurons. The circuits constructed in section 3 and
4 of this article provide a positive answer to this question. It is shown there
that neural circuits that use inhibition exclusively for lateral inhibition in the
context of winner-take-all have the same computational power as multi-layer
perceptrons that employ weighted sums with positive and negative weights in
the usual manner. Furthermore one can, if one wants to, keep the inhibitory
synapses in these circuits fixed, and just modify the excitatory synapses in
order to program the circuits so that they adopt a desired input/output be-
havior. It should be noted that it has long been known that winner-take-all
can be implemented via inhibitory neurons in biologically realistic circuit mod-
els ((Elias and Grossberg, 1975), (Amari and Arbib, 1977), (Coultrip et al.,
1992), (Yuille and Grzywacz, 1989)). The only novel contribution of this ar-
ticle is the result that in combination with neurons that compute weighted
sums (with positive weights only) such winner-take-all modules have universal
computational power, both for digital and for analog computation.

A large number of efficient implementations of winner-take-all in analog
VLSI have been proposed, starting with (Lazzaro et al., 1989). The circuit of
(Lazzaro et al., 1989) computes an approximate version of WTA,, with just 2n
transistors and wires of total length O(n), with lateral inhibition implemented
by adding currents on a single wire of length O(n). Its computation time scales
with the size of its largest input. Numerous other efficient implementations
of winner-take-all in analog VLSI have subsequently been produced, see for
example (Andreou et al., 1991), (Choi and Sheu, 1993), (Fang et al., 1996).
Among them are circuits based on silicon spiking neurons ((DeYong et al.,
1992), (Meador and Hylander, 1994), (Indiveri, 1999)) and circuits that em-
ulate attention in artificial sensory processing ((DeWeerth and Morris, 1994),
(Horiuchi et al., 1997), (Brajovic and Kanade, 1998), (Indiveri, 1999)). In
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spite of these numerous hardware implementations of winner-take-all and nu-
merous practical applications, we are not aware of any theoretical results on
the general computational power of these modules. It is one goal of this article
to place these novel circuits into the context of other circuit models that are
commonly studied in computational complexity theory, and to evaluate their
relative strength.

There exists an important structural difference between those circuits that
are commonly studied in computational complexity theory, and those circuits
that one typically encounters in hardware or wetware. Almost all circuit mod-
els in computational complexity theory are feedforward circuits, i.e. their archi-
tecture constitutes a directed graph without cycles ((Wegener, 1987), (Savage,
1998)). In contrast to that, typical physical realizations of circuits contain be-
sides feedforward connections also lateral connections (i.e. connections among
gates on the same layer), and frequently also recurrent connections (i.e. con-
nections from a higher layer backwards to some lower layer of the circuit).
This gives rise to the question whether this discrepancy is relevant, for exam-
ple whether there are practically important computational tasks that can be
implemented substantially more efficiently on a circuit with lateral connections
than on a strictly feedforward circuit. In this article we address this issue in the
following manner: we view modules that compute winner-take-all (whose im-
plementation usually involves lateral connections) as “black boxes” of which
we only model their input/output behavior. We refer to these modules as
winner-take-all gates in the following. We study possible computational uses
of such winner-take-all gates in circuits where these gates (and other gates) are
wired together in a feedforward fashion.? We charge one unit of time for the
operation of each gate. We will show that in this framework the new modules,
which may internally involve lateral connections, do in fact add substantial
computational power to a feedforward circuit.

The arguably most powerful gates that have previously been studied
in computational complexity theory are threshold gates (also referred to as
McCulloch-Pitts neurons or perceptrons, see (Minsky and Papert, 1969),
(Siu et al., 1995)) and sigmoidal gates (which may be viewed as soft ver-
sions of threshold gates). A threshold gate with weights a4,...,q, € R
and threshold © € R computes the function G : R* — {0,1} defined by

G(zy,...,2,) = 1< > ayz; > ©. Note that AND and OR of n bits as well
i=1

as NOT are special cases of threshold gates. A threshold circuit (also referred

to as multi-layer perceptron) is a feedforward circuit consisting of threshold

2We only examine computations in such a circuit for a single batch-input, not for streams
of varying inputs. Hence it does not matter for this analysis whether one implements a
winner-take-all gate by a circuit that needs to be re-initialized before the next input, or by
a circuit that immediately responds to changes in its input.



gates. The depth of a threshold circuit C' is the maximal length of a directed
path from an input node to an output gate. The circuit is called layered if all
such paths have the same length. Note that a circuit with £ hidden layers has
depth £+ 1 in this terminology. Except for Theorem 2.1 we will discuss in this
article only circuits with a single output. The other results can be extended to
networks with several outputs by duplicating the network so that each output
variable is formally computed by a separate network.

We will prove in section 2 that WTA,, is a rather expensive computational
operation from the point of view of threshold circuits, since any such circuit
needs quadratically in n many gates to compute WTA,. We will show in
section 3 that the full computational power of two layers of threshold gates
can be achieved by a single k-winner-take-all gate applied to positive weighted
sums of the input variables. Furthermore we will show in section 4 that by
replacing the single k-winner-take-all gate by a single soft winner-take-all gate,
these extremely simple circuits become universal approximators for arbitrary
continuous functions.

2 An Optimal Quadratic Lower Bound for
Hard Winner-Take-All

We show in this section that any feedforward circuit consisting of threshold
gates needs to consist of quadratically in n many gates for computing WTA,,.
This result also implies a lower bound for any circuit of threshold gates involv-
ing lateral and/or recurrent connections that computes WTA,, (provided one
assumes that each gate receives at time ¢ only outputs from other gates that
were computed before time ¢): One can simulate any circuit with s gates whose
computation takes ¢ discrete time steps by a feedforward circuit with s-t gates
whose computation takes ¢ discrete time steps. Hence for example if there ex-
ists some circuit consisting of O(n) threshold gates with lateral and recurrent
connections that computes WTA,, in ¢ discrete time steps, then WTA,, can
be computed by a feedforward circuit consisting of O(t - n) threshold gates.
Therefore the subsequent Theorem 2.1 implies that WTA,, cannot be com-
puted in sublinear time by any linear size circuit consisting of threshold gates
with arbitrary (i.e. feedforward, lateral, and recurrent) connections. In case
that linear size implementations of (approximations of) WTA,, in analog VLSI
can be built whose computation time grows sublinearly in n, then this nega-
tive result would provide theoretical evidence for the superior computational
capabilities of analog circuits with lateral connections.

For n = 2 it is obvious that WTA,, can be computed by a threshold circuit
of size 2, and that this size is optimal. For n > 3 the most straightforward



design of a (feedforward) threshold circuit C that computes WTA,, uses (3) +n
threshold gates: For each pair (i,7) with 1 < i < j < n one employs a
threshold gate G;; that outputs 1 if and only if z; > z;. The ith output
b; of WTA,, for a circuit input z is computed by a threshold gate G; with
Gi=1& Z G]Z(Q) + Z —Gij(g) >3 —1.
j<i j>i

This circuit design appears to be sub-optimal, since most of its threshold
gates — the (g) gates G;; — do not make use of their capability to evaluate
weighted sums of many variables, with arbitrary weights from R. However the
following result shows that no feedforward threshold circuit (not even with
an arbitrary number of layers, and threshold gates of arbitrary fan-in with
arbitrary real weights) can compute WTA,, with fewer than (g) + n gates.

Theorem 2.1. Assume that n > 3 and WTA,, is computed by some arbitrary
feedforward circuit C' consisting of threshold gates with arbitrary weights. Then
C' consists of at least (g) + n threshold gates.

Proof of Theorem 2.1. Let C' be any threshold circuit that computes
WTA,, for all z = (z1,...,z,) € R* with pairwise different z,,...,2, . We
say that a threshold gate in the circuit C' contains an input variable xj if
there exists a direct “wire” (i.e., an edge in the directed graph underlying C)
from the kth input node to this gate, and the kth input variable x; occurs
in the weighted sum of this threshold gate with a weight # 0. Note that this
threshold gate may also receive outputs from other threshold gates as part of
its input, since we do not assume that C is a layered circuit.

Fix any 4,5 € {1,...,n} with ¢ # j. We will show that there exists a
gate G;; in C that contains the input variables z; and z;, but no other input
variables. The proof proceeds in 4 steps.

Step 1: Choose h € (0.6,0.9) and p € (0,0.1) such that no gate G in C that
contains the input variable x;, but no other input variable, changes its
output value when z; varies over (h — p, h + p), no matter which fixed
binary values ¢ have been assigned to the other inputs of gate G.

For any fixed a there exists at most a single value ¢, for z; so that G
changes its output for z; = t, when z; varies from —oo to +oo. It
suffices to choose h and p so that none of these finitely many values of
t, (for arbitrary binary a and arbitrary gates @) falls into the interval
(h - P h + :0)

Step 2: Choose a closed ball B C (0,0.5)" 2 with a center ¢ € R* 2 and
a radius > 0 so that no gate G in C' changes its output when we set
x; = x; = h and let the vector of the other n — 2 input variables vary



over B (this is required to hold for any fixed binary values of the inputs
that G may receive from other threshold gates).

We exploit here that for fixed z; = z; = h the gates in C' (with in-
puts from other gates replaced by all possible binary values) partition
(0,0.5)"=? into finitely many sets S, each of which can be written as in-
tersection of half-spaces, so that no gate in C' changes its output when we
fix x; = x; = h and let the other n — 2 input variables of the circuit vary
over S (while keeping inputs to C' from other gates artificially fixed).

Step 3: Choose v € (0, p) so that in every gate G in C that contains besides
x; some other input variable z; with k& ¢ {i,j} a change of z; by an
amount vy causes a smaller change of the weighted sum at this threshold
gate G than a change by an amount ¢ of any of the input variables xy
with & ¢ {7, j} that it contains.

This property can be satisfied because we can choose for v an arbitrarily
small positive number.

Step 4: Set x; := h, (Tk)reqi ) = ¢, and let z; vary over [h— 2, h+2]. By as-
sumption, the output of C' changes since the output of WTA,,(z1, ... ,z,)
changes (; is the winner for z; < h, x; is the winner for z; > h). Let
Gi; be some gate in C' that changes its output, whereas no gate that
lies on a path from an input variable to G;; changes its output. Hence
G, contains the input variable z;. The choice of h and p > v in step 1
implies that G;; contains besides z; some other input variable.

Assume for a contradiction that G;; contains an input variable z; with
k ¢ {i,j}. By the choice of v in step 3 this implies that the output
of G;; changes when we set z; = z; = h and move z; by an amount
up to d from its value in ¢ , while keeping all other input variables and
inputs that G;; receives from other threshold gates fixed (even if some
preceding threshold gates in C' would change their output in response to
this change in the input variable x). This yields a contradiction to the
definition of the ball B in step 2.

Thus we have shown that £ € {4, j} for any input variable z; that G;;
contains. Therefore G;; contains exactly the input variables z; and z;.

So far we have shown that for any 4,5 € {1,... ,n} with ¢ # j there exists
a gate G;; in C that contains the two input variables z;, z;, and no other input
variables.

It remains to be shown that apart from these (7) gates G;; the circuit C
contains n other gates Gy, ..., G, that compute the n output bits by,... b,
of WTA,,. It is impossible that G, = G| for some k # [, since by # b, for

some arguments of WTA,,. Assume for a contradiction that G, = G;; for some
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k,i,j € {1,...,n} with i # j. We have k # i or k # j. Assume without loss
of generality that & # 7. Let [ be any number in {1,... ,n} — {k,i}. Assign

to x1,...,x, some pairwise different values a4, ... ,a, so that a¢; > a; for all
I'" #1. Since | # k and 7 # k we have that for any z; € R the kth output
variable b, of WTA,, (a4, ... ,a;—1, %, Giy1, .. . a,) has value 0 (a) cannot be the

maximal argument for any value of z; since a; > a;). On the other hand,
since G;; contains the variable x;, there exist values for z; (move z; — oo or
z; = —00) so that G;; outputs 1, no matter which binary values are assigned
to the inputs that G; receives in C' from other threshold gates (while we keep
z; fixed at value a;). This implies that G;; does not output by in circuit C,
i.e., Gy # Gj;. Therefore the circuit C' contains in addition to the gates G;; n
other gates that provide the circuit outputs by, ... , b,.

3 Simulating Two Layers of Threshold Gates
with a Single £-Winner-Take-All Gate as the
only Nonlinearity

A popular variation of winner-take-all (which has also been implemented in
analog VLSI (Urahama and Nagao, 1995)) is k-winner-take-all. The output
of k-winner-take-all indicates for each input variable x; whether z; is among
the k largest inputs. Formally we define for any & € {1,... ,n} the function
k-WTA,, : R* — {0,1}" where &--WTA,, (z1,...,2,) = (b1,...,b,) has the
property that

b =1 (z; > x; holds for at most £ — 1 indices j).

We will show in this section that a single gate that computes k&-WTA,, can ab-
sorb all nonlinear computational operations of any two-layer threshold circuit
with one output gate and any number of hidden gates.

Theorem 3.1. Any two-layer feedforward circuit C' (with m analog or binary
input variables and one binary output variable) consisting of threshold gates
can be simulated by a circuit consisting of a single k-winner-take-all gate k-
WTA,, applied to n weighted sums of the input variables with positive weights,
except for some set S C R™ of inputs that has measure 0.

In particular, any boolean function f : {0,1}™ — {0,1} can be computed
by a single k-winner-take-all gate applied to weighted sums of the input bits.

If C' has polynomial size and integer weights, whose size is bounded by a
polynomial in m, then n can be bounded by a polynomial in m and all weights



i the simulating circuit are natural numbers whose size s bounded by a poly-
nomtal in m.

Remark 3.2. The exception set of measure 0 in this result is a union of up
to n hyperplanes in R™. This exception set is apparently of no practical
significance, since for any given finite set D, not just for D C {0,1}™ but for
example for D := {(z1,... ,2n) € R™: each z; is a rational number with bit-
length < 1000}, one can move these hyperplanes (by adjusting the constant
terms in their definitions) so that no point in D belongs to the exception set.
Hence the k-WTA circuit can simulate the given threshold circuit C on any
finite set D, with an architecture that is independent of D.

On the other hand it should be noted that the proof of the lower bound re-
sult from Theorem 2.1 requires that the circuit C' computes WTA everywhere,
not just on a finite set.

Remark 3.3. One can easily show that the exception set S of measure 0 in
Theorem 3.1 is necessary: The set of inputs z € R™ for which a k-WTA,, gate
applied to weighted sums outputs 1 is always a closed set, whereas the set of
inputs for which a circuit C' of depth 2 consisting of threshold gates outputs 1
can be an open set. Hence in general a circuit C' of the latter type cannot be
simulated for all inputs z € R™ by a k-WTA,, gate applied to weighted sums.

Corollary 3.4. Any layered threshold circuit C' of arbitrary even depth d can
be simulated for all inputs except for a set of measure 0 by a feedforward circuit
consisting of £ k-WTA gates on g layers (each applied to positive weighted sums
of circuit inputs on the first layer, and of outputs from preceding k-WTA gates
on the subsequent layers), where £ is the number of gates on even-numbered
layers in C'. Thus one can view the simulating circuit as a d-layer circuit with
alternating layers of linear and k-WTA gates.

Alternatively one can simulate the layers 3 to d of circuit C by a single
k-WTA gate applied to a (possibly very large) number of linear gates. This
yields a simulation of C' (except for some input set S of measure 0) by a 4-
layer circuit with alternating layers of linear gates and k-WTA gates. The
number of k-WTA gates in this circuit can be bounded by fs + 1, where £y is
the number of threshold gates on layer 2 of C.

Proof of Theorem 3.1: Since the outputs of the gates on the hidden layer

of C are from {0, 1}, we can assume without loss of generality that the weights

aq,...,q, of the output gate G of C are from {—1,1} (see for example (Siu

et al., 1995) for details; one first observes that it suffices to use integer weights

for threshold gates with binary inputs, one can then normalize these weights

to values in {—1,1} by duplicating gates on the hidden layer of C'). Thus for
n

any z € R™ we have C(z) = 1 & 3 ;G,(2) > ©, where G, ... ,G, are the
j=1
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threshold gates on the hidden layer of C, «,...,a, are from {—1,1}, and
© is the threshold of the output gate G. In order to eliminate the negative
weights in G' we replace each gate @j for which a; = —1 by another threshold
gate G; so that G;(z) =1 — @j (z) for all z € R™ except on some hyperplane.
We utilize here that =) " w;z; > © & Y " (—w;)z; > —O for arbitrary
w;, 2,0 € R. We set G := G’j for all j € {1,...,n} with o; = 1. Then we
have for all z € R™, except for z from some exception set S consisting of up
to n hyperplanes,

Y aiGi(e) = 3 Gile) ~ i € {1, ,m} oy = —1}]

Hence C(z) =1 ) G;(z) > k for all z € R™ — S, for some suitable k£ € N.

i=1

Let w{, ...,w) € R be the weights and @_j € R be the threshold of gate
Gi,j=1,...,n. Thus Gj(z) =1 & Y |wl|zi— > |w!|z > ©7. Hence

imw! >0 i:w{<0
with . _
S = Z |w!|z; +©7 +Z z \wtlz; forj=1,...,n
iw! <0 A5 iwf>0

and

n .

S =30 Y Julls

I=1 wi>0

we have for every j € {1,...,n} and every z € R™ :

Sn1 >S5 Y |wllzm— Y |wllzm > O e Giz)=1.
i:wz>0 i:w{<0
This implies that the (n + 1)st output b, of the gate (n — k + 1)—WTA, 4
applied to Si, ..., S,y1 satisfies

bn+1:1 @\{je{l,...,n+1}:5’j>5’n+1}|§n—k
s |{je{l,...,n+1}: 5,1 >S;}>k+1
<:>‘{.7€{1a:n}‘S’n—l—lz‘s’]}'zk

&Y G =k

Jj=1
<Cz)=1.
Note that all the coefficients in the sums S, ..., 5,41 are positive. |

Proof of Corollary 3.4. Apply the preceding construction separately to the
first two layers of C', then to the second two layers of C', etc. Note that the later
layers of C' just receive boolean inputs from the preceding layer. Hence one can
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simulate the computation of layer 3 to d also by a two-layer threshold circuit,
that requires just a single k—WTA gate for its simulation in our approach from
Theorem 3.1. |

4 Soft Winner-Take-All Applied to Positive
Weighted Sums is an Universal Approxima-
tor

We consider in this section a soft version soft-WTA of a winner-take-all gate.
Its output (ry,...,7,) for real valued inputs {x1,... ,z,) consists of n analog
numbers r;, whose value reflects the relative position of z; within the ordering of
x1,- .., %, according to their size. Soft versions of winner-take-all are also quite
plausible as computational function of cortical circuits with lateral inhibition.
Efficient implementations in analog VLSI are still elusive, but in (Indiveri,
1999) an analog VLSI circuit for a version of soft winner-take-all has been
presented where the time when the ith output unit is activated reflects the
rank of x; among the inputs.

We show in this section that single gates from a fairly large class of soft
winner-take-all gates can serve as the only nonlinearity in universal approxi-
mators for arbitrary continuous functions. The only other computational oper-
ations needed are weighted sums with positive weights. We start with a basic
version of a soft winner-take-all gate soft-WTA,, , for natural numbers k,n
with £ < 2, that computes the following function (x1,... ,2,) = (r1,... ,75)
from R” into [0, 1]™:

k )

where 7 : R — [0, 1] is the piecewise linear function defined by

ri = 7(

1, if z>1
m(z) =< =z, if 0<z<1
0, if x<0.

If one implements a soft winner-take-all gate via lateral inhibition, one can
expect that its ith output r; is lowered (down from 1) by every competitor
x; that wins the competition with z; (i.e., ; > ;). Furthermore one can
expect that the ith output r; is completely annihilated (i.e., is set equal to 0)
once the number of competitors z; that win the competition with z; reaches
a certain critical value c. This intuition has served as guiding principle in
the previously described formalization. However for the sake of mathematical
simplicity we have defined the outputs r; of soft-WTA,, ; not in terms of the
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number of competitors z; that win over z; (i.e., z; > z;), but rather in terms of
the number of competitors z; that do not win over z; (i.e., z; > z;). Obviously
one has [{j € {1,... ,n}:z; > z;}|=n—|{j€{l,... ,n}:z; > z;}|. Hence
the value of r; goes down if more competitors x; win over z; — as desired.
The critical number ¢ of winning competitors that suffice to “annihilate” r; is
formalized through the “threshold” 7. Our subsequent result shows that in
principle it suffices to set the annihilation-threshold always equal to 3. But
in applications one may of course choose other values for the annihilation

threshold.

It is likely that an analog implementation of a soft-winner-take-all gate
will not be able to produce an output that is really linearly related to |{j €
{1,...,n} :2; > x;}| — 5 over a sufficiently large range of values. Instead, an
analog implementation is more likely to output a value of the form

{je{l,...,n} iz >} - %
9( P ),

where the piecewise linear function 7 is replaced by some possibly rather com-
plicated nonlinear warping of the target output values. The following result
shows that such gates with any given nonlinear warping g can serve just as
well as the competitive stage (and as the only nonlinearity) in universal ap-
proximators. More precisely, let g be any continuous function g : R — [0, 1]
that has value 1 for z > 1, value 0 for x < 0, and which is strictly increasing
over the interval [0,1]. We denote a soft winner-take-all gate that employs g
instead of 7 by soft-WTAY .

Theorem 4.1. Assume that h : D — [0, 1] is an arbitrary continuous function
with a bounded and closed domain D C R™ (for example: D = [0,1]™). Then
for any e > 0 and for any function g (satisfying above conditions) there exist
natural numbers k,n, biases o € R, and nonnegative coefficients o for i =

1,...,mand j=1,...,n, so that the circuit consisting of the soft winner-
m . .

take-all gate soft-WTA; , applied to the n sums Y ojzi+ag forj=1,...,n
i=1

computes a function® f: D — [0,1] so that |f(z) — h(z)| < € for all z € D.

Thus circuits consisting of a single soft WTA-gate applied to positive
weighted sums of the input variables are universal approrimators for continu-
ous functions.

Remark 4.2. The proof shows that the number n of sums that arise in the
circuit constructed in Theorem 4.1 can essentially be bounded in terms of the
number of hidden gates in a one-hidden-layer circuit C' of sigmoidal gates that
approximates the given continuous function A (more precisely: the function
g ' oh), the maximal size of weights (expressed as multiple of the smallest

®more precisely: we set f(z) := r, for the n-th output variable r,, of soft-WTAY *
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nonzero weight) on the second layer of C, and 1/¢ (where ¢ is the desired ap-
proximation precision). Numerous practical applications of backprop suggest
that at least the first one of these three numbers can be kept fairly small for
most functions h that are of practical interest.

Proof of Theorem 4.1: The proof has the following structure. We first
apply the regular universal approximation theorem for sigmoidal neural nets
in order to approximate the continuous function g=*(h(2)) by a weighted sum
o7 ) B;G}(z) of m-gates, i.e. of sigmoidal gates G} that employ the piecewise
linear activation function 7 that was defined at the beginning of this chapter.
As the next step we simplify the weights and approximate the weighted sum

Z] 3G i(2) by another weighted sum ZJ 1 LZ G3(z) of m-gates G with o €

{=1,1} for j = 1,...,7n and some suitable k € N. We then eliminate all
negative weights by using that one can rewrite —G%(z) as G}(z) — 1 with

another 7-gate G2, for all j with o; = —1. By setting G} := G for all j
P ) " G3() T
with ;= 1 we then have Y77, ZG3(z) = W for all z € D, with
some T € {0,...,n}. As the next step we approximate each 7-gate G* by a
¢

sum % > G of £ threshold gates G;). Thus altogether we have constructed
i=1

an approximation of the continuous function g'(h(z)) by a weighted sum

Z?’:l G (i)_T of threshold gates with a uniform value  for all weights.® By
expanding our technique from the proof of Theorem 3.1 we can replace this
simple sum of threshold gates by a single soft—WTA;"% « gate applied to weighted
sums in such a way that the resulting WTA-circuit approximates the given

function A.

We now describe the proof in detail. According to (Leshno et al., 1993)
there exist 7 € N, 3; € R, and m-gates G; for 5 =1,...,n so that

forallz € D,

Lo | My

IZBJG}-@) — g (h(2)| <

where ¢! is the inverse of the restriction of the given function g to [0, 1], and
€ > 0 is chosen so that |g(z) — ¢(y)| < € for any z,y € R with |z —y| < &. We
use here that ¢g=! o h is continuous.

As the next step we simplify the weights. It is obvious that there exist

4One could of course also apply the universal approximation theorem directly to threshold
gates (instead of m-gates) in order to get an approximation of g~! o h by a weighted sum of
threshold gates. But the elimination of negative weights would then give rise to an exception
set S like in Theorem 3.1.
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keNand Bi,...,08 €7Z so that 2?21 |BJ - %| < £. We then have

W

|; %G]l(g) — g '(h(2))] < ;5 forallz € D .

7
We set n := ) |G|, and for all j € {1,...,n} we create |3;| copies of the
j=1
m-gate Gj. Let G7,...,G} be the resulting sequence of 7-gates G5. Then
there exist a; € {—1,1} for j =1,... ,7 so that

|Z %Gﬁ(g) — g_l(h(g))| < %5 forallze D .

We now eliminate all negative weights from this weighted sum. More precisely,

we show that there are m-gates G3,... , G2 so that
G T
Z%GQ() 271 @)~ forallz € D, (1)
Tk k
j=
where 7' is the number of j € {1,...,n} with a; = —1. Consider some

arbitrary j € {1,...,7} with a; = —1. Assume that G7 is defined by G3(z) =
m(w-z+wo+ %) for all z € R™, with parameters w € R™ and wy, € R. Because
of the properties of the function 7 we have

5

1
—W(Q-g—l—fwo—i—é) = —1+7r(—w-g—wo+2

for all z € R™. Indeed, if |w - z + wy| S%vve have —w(w-g-l—wo—i-%) =
—w - z—w0—§ = —1+7r( w-g—wo-l-%). If w-24+w < —% then
—7(w - g+w0+2)—0——1+7r(—w-§—w0—|—%),andifg-g—l—wo>%then
—m(w-z4+wy+3) =—-1=—-14+m(—w-z—wy+ 1). Thus, if we define the

m-gate G} by
3 1 m
Gi(z) = W(—w-g—w0+§) for all z € R™ ,

we have —G%(z) = —1+G3(z) for all z € R™. Besides transforming all 7-gates
G with a; = —1 in this fashlon we set GF = G for all j € {1,... 7} with
a; = 1. Obviously equation (1) is satisfied Wlth these definitions.

Since the activation function 7 can be approximated arbitrary closely by
step functions, there exists for each m-gate G a sequence Gay,...,G of
threshold gates so that

|G3( ) Zz 1£G(Z( )

?r»

|<§ for all z € R™.

§>
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., G2 we arrive at a se-

By applying this transformation to all 7-gates G?,
, G of threshold gates with n’ := 7 - £ so that one has for

quence Gu, ... K
k:=k-fand T :=T - ¢ that
" Gi2)-T
\Zj_l ]i(_) —gY(h(2))|<é forallze D .
According to the choice of € this implies that
forallze€ D .

T-l'_lng—T
2421 Oile) ) —h@)| <e

l9( ?
By adding dummy threshold gates Gi; that give constant output for all z € D
m—1 without changing the

one can adjust n' and T so that n' > 2k and T' = "5+,

value of Y G;(z) — T for any z € D.
7j=1

It just remains to show that
Z?:l Gj(z) - %
9( p )

can be computed for all z € D by some soft winner-take-all gate soft-WTA?

applied to n weighted sums with positive coefficients. We set n := n' + 1. For
j=1,...,n andi=1,... ,mlet w/,©/ € R be parameters so that
Giz) =1« Z lw?|2; — Z lwl|z > 07 .
irw] >0 iw! <0
nl
Then Y Gj(z) = |{j € {1,...,n'} : Sy > S;} for Spy1 =
j=1
n' , . )
o > Jwllzand S = Y |w!|z+07+>" > |wf|z . This holds because
j=1 i:w{>0 i:w{<0 #] iwf>0
we have for every j € {1,...,n'}
Swir =S Y |wllzi— > |wllz > 67
iwl >0 irw] <0

+1 = 2, the preceding implies that the
., S, outputs

n'—1

Since n = n'+1 and therefore "5
nth output variable r, of soft-WTAfl, . applied to 57,

el m: 8528} -5 :g(zgilGj(z) —
k

9( 7
for all z € D. Note that all weights in the weighted sums Si,

.., S, are
|

positive.
15



5 Conclusions

We have established the first rigorous analytical results regarding the compu-
tational power of winner-take-all.

The lower bound result of section 2 shows that the computational power of
hard winner-take-all is already quite large, even if compared with the arguably
most powerful gate commonly studied in circuit complexity theory: the thresh-
old gate (also referred to a McCulloch-Pitts neuron or perceptron). Theorem
2.1 yields an optimal quadratic lower bound for computing hard winner-take-
all on any feedforward circuit consisting of threshold gates. This implies that
no circuit consisting of linearly many threshold gates with arbitrary (i.e., feed-
forward, lateral, and recurrent) connections can compute hard winner-take-all
in sublinear time. Since approximate versions of winner-take-all can be com-
puted very fast in linear size analog VLSI chips (Lazzaro et al., 1989), this
lower bound result may be viewed as evidence for a possible gain in computa-
tional power that can be achieved via lateral connections in analog VLSI (and
apparently also in cortical circuits).

It is well known ((Minsky and Papert, 1969)) that a single threshold gate is
not able to compute certain important functions, whereas circuits of moderate
(i.e., polynomial) size consisting of two layers of threshold gates with poly-
nomial size weights have remarkable computational power (Siu et al., 1995).
We have shown in section 3 that any such 2-layer (i.e., 1 hidden layer) circuit
can be simulated by a single competitive stage, applied to polynomially many
weighted sums with positive integer weights of polynomial size.

In section 4 we have analyzed the computational power of soft winner-take-
all gates in the context of analog computation. It was shown that a single soft
winner-take-all gate may serve as the only nonlinearity in a class of circuits
that have universal computational power in the sense that they can approx-
imate any continuous functions. In addition we have shown that this result
is robust with regard to any continuous nonlinear warping of the output of
such soft winner-take-all gate, which is likely to occur in an analog imple-
mentation of soft winner-take-all in hardware or wetware. Furthermore our
novel universal approximators require only positive linear operations besides
soft winner-take-all, thereby showing that in principle no computational power
is lost if inhibition is used exclusively for unspecific lateral inhibition in neu-
ral circuits, and no flexibility is lost if synaptic plasticity (i.e., “learning”) is
restricted to excitatory synapses.

This result appears to be of interest for the understanding of the function
of biological neural systems, since typically only 15% of synapses in the cortex
are inhibitory, and plasticity for those synapses is somewhat dubious.
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Our somewhat surprising results regarding the computational power and
universality of winner-take-all point to further opportunities for low-power
analog VLSI chips, since winner-take-all can be implemented very efficiently
in this technology. In particular, our theoretical results of section 4 predict
that efficient implementations of soft winner-take-all will be useful in many
contexts. Previous analog VLSI implementations of winner-take-all have pri-
marily been used for special purpose computational tasks. In contrast, our
results show that a VLSI implementation of a single soft winner-take-all in
combination with circuitry for computing weighted sums of the input variables
yields devices with universal computational power for analog computation.

Altogether the theoretical results of this article support the viability of an
alternative style of neural circuit design, where complex multi-layer percep-
troms, i.e., feedforward circuits consisting of threshold gates or sigmoidal gates
with positive and negative weights, are replaced by a single competitive stage
applied to positive weighted sums. One may argue that this circuit design is
more compatible with anatomical and physiological data from biological neural
circuits.
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