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Tautologies from pseudo-random generators

Jan Krajicek*

Abstract

We consider tautologies formed from a pseudo-random number gener-
ator, defined in Krajicek [12] and in Alekhnovich et.al. [2]. We explain a
strategy of proving their hardness for EF via a conjecture about bounded
arithmetic formulated in Krajicek [12]. Further we give a purely finitary
statement, in a form of a hardness condition posed on a function, equiva-
lent to the conjecture.

This is accompanied by a brief explanation, aimed at non-logicians, of
the relation between propositional proof complexity and bounded arith-
metic.

It is a fundamental problem of mathematical logic to decide if tautologies can
be inferred in propositional calculus in substantially fewer steps than it takes to
check all possible truth assignments. This is closely related to the famous P/NP
problem of Cook [3]. By propositional calculus I mean any text-book system
based on a finite number of inference rules and axiom schemes that is sound
and complete. The qualification substantially less means that the number can
be bounded above by a poly-logarithm of the number of truth assignments.

The topic of this paper is a search for tautologies that make viable candidates
for being hard for Extended Frege proof system EF. Rather than explaining what
EF is let me only say that the minimum size (i.e. the number of symbols) of EF
proofs is proportional to the minimum number of inference steps in the usual
calculus, cf.[5].

The tautologies considered are defined in a simple way from a pseudo-random
number generator. I arrived at them in [12] as a consequence of a work on forms
of weak pigeonhole principle in bounded arithmetic and their relations to various
cryptographic primitives, searching also for a generalization of prime tautologies
from [16] (cf. Section 2) that would be more generic and hopefully suspectable
to forcing.

The same tautologies were recently rediscovered in [2] in a purely combina-
torial language as a framework in which one can think of certain known lower
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bound methods and try to generalize them to stronger systems. In a sense both
lines of thought have a common origin in Razborov’s [22] which was the first
paper to bring cryptography into bounded arithmetic and propositional logic.

The first aim of this note is to explain that the two lines of thought did
not really diverge that much. In order to do that I recapitulate briefly the
development of propositional proof complexity with emphasis on the interplay
between complexity proper and bounded arithmetic. I keep logic notation to a
minimum. This is in Section 1.

The rest of the paper is organized as follows. In Section 2 I recall two
known candidates for tautologies hard for EF. The definition of tautologies
from a pseudo-random number generator is given in Section 3, together with the
conjecture from [12], and the implication of the conjecture for the EF-hardness
of the tautologies. In Section 4 I give a statement that is purely finitary and
equivalent to the main conjecture. It is in a form of a new hardness condition
posed on a function. This is a necessary step towards showing that some usual
hardness assumption (e.g. some cryptographic hardness) posed on a function
implies the conjecture and hence a lower bound to the size of EF proofs of
concrete tautologies. The paper is concluded by an example and a remark on
stronger proof systems.

Whenever paper [12] uses Buss’s theory S3 I use here Cook’s PV (albeit in
the formulation as PV; of [17, 10]). I also speak here about polynomial sizes
rather than subexponential sizes. This is all in order not to overflow the self-
imposed quota for logic notation. From the point of view of properties (1) -
(3) in Section 1 of the relation of arithmetic to propositional proof complexity,
theories PV and S} are essentially indistinguishable and have the relation to the
system EF. I should say few words about PV: the language has symbols for all
polynomial time algorithms and the axioms are equations that codify how the
algorithms use one another. The reader only needs to know that it is a theory
suitable for formalizing polynomial time constructions in the most natural way;
details can be found in [10].

1 Proof complexity and bounded arithmetic

Propositional proof complexity starts with Cook’s 1971 and 1975 papers [3, 4].
The former is the famous paper stating the P/NP problem and its relation to
propositional logic, the later is another pioneering work uncovering a tight re-
lation of proof complexity to formal arithmetic theories. This paper introduces
Cook’s theory PV, the translation of arithmetic formulas and proofs into propo-
sitional ones, and proves a relation of PV to Extended Frege system EF (the
same relation was rediscovered by Paris and Wilkie [19] in the context of another
but closely related systems). This was in my opinion the birth of proof complex-
ity proper, although even earlier there were results and ideas about lengths of
propositional proofs that are still very interesting and important. Most notable



is work of Tseitin [23] about resolution that was inspired by problems about
formal linguistic. Then came Cook and Reckhow’s [5] systematic classification
of various usual calculi for propositional logic and the definition of the right
notion of reducibility (polynomial simulation).

The beginning of contemporary research in lower bounds for propositional
proof systems starts by Ajtai’s lower bound for constant depth Frege proofs of
pigeonhole principle PHP [1]. This is in my view the most important propo-
sitional lower bound paper ever written as it opened the relation to boolean
complexity and freed the research from narrowly combinatorial approach. This
is not to diminish other important achievements, notably Haken’s exponential
resolution lower bound [7].

The relation between proof systems and theories, present in the field from
its beginning, can be summarized as follows. Let A(z) be a coNP definition
of a set of numbers. Assume A(z) has the form Vy;|y| < |z|* — B(z,y) with
B(z,y) a polynomial time predicate. Fix length n to bound |z|’s and construct
a propositional formula ||A(z)||™ as in the completeness of satisfiability: the
formula has n atoms pi,...,p, for bits of an z, m = n* atoms qi,...,qn for
bits of potential y, and also atoms r1, . . ., 7, for s = n?) bits of values on nodes
of a fixed circuit C,, computing from p, g the truth value of predicate B(z,y).
Formula ||A(z)||™ says, in a DNF form, that if 7 are correctly computed by
circuit C), from inputs P, g then the output of the computation is 1. Having
any b of length at most n with bits b(1),...,b(n) denote by ||A(z)||”(b) the
propositional formula with b(i) substituted for p;, and with remaining atoms
g and 7 left unsubstituted. Clearly then b satisfies A(z) iff ||A(z)||™*(d) is a
tautology.

The relation between proof systems and theories is as follows: The sys-
tems/theories come in pairs P/T such that:

(1) If T proves Vz; A(x) then tautologies ||A(z)||™(B) have polynomial size
proofs in P.

(2) T proves the soundness of P and for any another proof system @, if T
proves also the soundness of () then P polynomially simulates Q.

One such prominent pair is formed by Extended Frege system EF and by
Cook’s PV.

The first property has also a converse (used first explicitly by Paris and
Wilkie [19] and also by famous Ajtai’s paper [1]) that is slightly more complex
to state (and cannot be done in a logic-free combinatorial set-up only). It is a
simple instance of compactness of first order logic though. Assume that by, bo, ...
is a sequence of numbers of lengths ny < ny < ... such that the formulas
||A(z)||™ (b;) are tautologies and have P-proofs of size < n;*. Let M be any
countable model of true arithmetic. Then there will be a non-standard n* € M
and an element b* € M of length n* such that the formula (in M) [|A(z)||"" (b*)
is a tautology and has (in M) a P-proof ©* of size < n*". Moreover, if all




original elements b; satisfy some property U(z) from polynomial hierarchy (and
thus expressible by a bounded formula in the language of PV) also b* will satisfy
in M the same property.

Now comes the idea from item (1) above. Take an initial substructure Mp«
of M consisting of all elements that have the length bounded by some n*t, la
standard natural number. In particular, b* as well as 7* are in M., and both
A(b*) and U(b*) hold in My-. Let N D Mj- be any extension of My that is a
model of theory T and preserves polynomial time predicates (in particular, the
predicate “to be a P-proof”). Then the element b* must have property A(x)
also in N: Otherwise take any ¢ € N witnessing the existential quantifier in
—A(b*) = Jy; |y| < n*¥ A=B(b*,y). The bits of ¢ define a truth evaluation (in
N) of the atoms g of ||A(z)||™ (b*) that together with evaluation of atoms 7
by the actual bits that occur in the computation of Cp+ on b, ¢ yield a truth
assignment falsifying the formula ||A(z)||"" (b*). However, the formula has a P
proof 7* in N (as 7* was already in Mj+) and the system P is sound in N (as
the soundness is provable in T and N is a model of T'); hence the existence of
such a truth assignment and of ¢ is impossible and consequently b* must satisfy
A(z) also in N.

Thus we have the suitable inverse to the first property:

(3) Let M be an arbitrary countable model of true arithmetic and b* € M its
arbitrary non-standard element satisfying a property U(z). Assume that
for any such M and b* we can find an extension of the substructure Mp-
to a model N of T in which —A(b*) holds.

Then there are no k£ < w and infinite sequence by, ba, ... of numbers of
lengths nq < na < ... having all property U(z) such that all formulas
[|A(z)||™ (b;), i = 1,2,... are tautologies with P - proofs of size < n;*.

(In fact, the opposite implication also holds.)

All these three properties are very well established and fruitfully used, and
they earned to bounded arithmetic the adjective of ”uniform proof complexity”,
having a relation to boolean proof complexity analogous to the relation of Turing
machines to circuit complexity. To give some examples: quasi-polynomial proofs
of WPHP in constant-depth Frege were obtained via (1) from Paris-Wilkie-
Woods [20], or the construction of polynomial size EF-proofs of disjointness of
two NP-sets related to RSA from [16], an important link of proof complexity and
cryptography. There are many such examples and I regret that the beautiful new
proof of WPHP by Maciel-Pitassi-Woods [18] is not presented in this way as the
combinatorics used is the same as the one used in establishing the appropriate
correspondence P/T (cf.[8]) and the presentation may be done on one page!.

Property (2): the polynomial simulation of system SF (Frege system with
the substitution rule) by EF was first proved in this way, while the explicit con-
struction is quite involved, cf. [6, 13]. Property (2) is currently totally ignored,
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although various recent polynomial (non)simulation between tree-like/non-tree-
like systems, or between constant-depth subsystems of Frege system and alge-
braic systems are immediate corollaries of (2), often even stated in print as the
corresponding soundness properties or explicitly as lower bound criteria.

Property (3): the most famous instance is Ajtai’s proof of super-polynomial
lower bound for constant-depth Frege proofs of PHP. Or Wilkie’s proof of Cook’s
simulation results from [4] as generalized in [9].

2 Earlier tautologies possibly hard for EF

Let me recall two types of tautologies possibly hard for EF. The first type is
simply the property (2) of the relation of soundness to polynomial simulation.
Let P and T be a pair as earlier and take a proof system () that you believe
to be impossible to polynomially simulate by P. The soundness of () can be
expressed as Cong := Va,Cong(x) where Cong(x) says that there is no Q-
proof w of size |w| < |z| of a formula v, and a truth assignment u satisfying the
negation of v (clearly |u| an |v| are also bounded by |z|). Then one expects that
tautologies ||Cong(z)||™ do not have polynomial size P-proofs. This is because
by (1) the existence of polynomial P-proofs is close to provability in 7' and
provability of the soundness of @) in T" would imply the polynomial simulation.
These candidates go back to [4].

In fact, a bit stronger assumption about P and @ is equivalent to the non-
existence of polynomial size P-proofs of ||Cong(z)||™. The assumption is that
the minimal size of P-proofs cannot be bounded by a polynomial in minimal
sizes of ()-proofs. See [13] or [10] for details.

The second example is from [16], a part of a work showing that the method
of feasible interpolation (cf. [11] for explanation) cannot be applied to EF. The
tautologies express that a number is a prime. Namely, take formula A(z) of the
form Vy, z < x;y-z # x. Then for a prime p of length n the formula || A(z)||™(p)
is a tautology. The question what is the minimum size of EF-proofs of these
tautologies was posed in [16] and it was proved there that the tautologies do have
polynomial EF-proofs iff there is an NP-definition E(z) of primes such that PV
proves that the definition is sound: Vz, E(x) — A(z). All such definitions seem
to use at some point or another the Little Fermat theorem that is a notorious
number-theoretic statement which is unknown to be provable in PV. In fact, it
is not provable assuming the RSA is secure, see [16].

Note that these second tautologies are of the form ||z ¢ Rng(f)||” for a
conjectured one-way function.



3 Tautologies from pseudo-random generators

Denote by WPHP3, the statement that f : @ — 2a cannot be onto. I shall call
it dual WPHP, similarly as [2]. This has been first considered by Wilkie and
his witnessing theorem (see [10, 12]) is the best result about the principle. A
question about provability of the principle for a concrete polynomial time func-
tion was posed also in [21, Append.C]. It is explained in [12] that proof-theoretic
properties of (dual) WPHP are related to the existence of strong pseudo-random
number generators and other cryptographic primitives in several ways. The
problem whether PV proves WPHPZ, for all polynomial time functions [12,
Sec.7] seems to me to be the right avenue towards other main problems; it has
bigger quantifier complexity (£5) than ordinary (W)PHP while still having im-
plications for propositional proof complexity, and it also relates to the famous
problem on finite axiomatizability of bounded arithmetic, cf.[10].

A strong pseudo-random generator is a polynomial time function G that
stretches the inputs by (at least) one bit and has exponential hardness. That
is: there is € > 0 such that for any n and any circuit C(y1,...,Yn+1) of size less
than 2™ it holds that

Prob,[C(G(x)) = 1] — Prob,[C(y) = 1] < 2™

where z are chosen uniformly at random from {0,1}" and y from {0, 1}"+'.

For explaining Conjecture [12, 7.9] I shall use the same set-up as for property
(3) in Section 1. Denote by f,, the restriction of a function f to inputs of length
n.

Conjecture 3.1 ([12, 7.9]) Assume that a strong pseudo-random generator G
exists. Then there is a polynomial time computable function f such that any
countable model M- of the form as earlier, a* = 2" in M, has an extension
to a model N of PV that violates WPHPS,.(f).

In particular, if strong pseudo-random number generators exist then PV does
not prove WPHP;, for all polynomial time functions.

The reference to G seems redundant. However, I conjectured in [12] that
there is a construction of f from G uniform in G and that there are even G for
which one can take f := G. (This cannot be true for all G; e.g. G can have the
form 1+ H. For another example see Section 4.)

As noted in [12] the conjecture has also implications for Extended Frege
system EF. This is via property (3) from Section 1. To simplify notation denote
by 75 the propositional formula ||y ¢ Rng(f,)||"*(b), b € {0,1}"*1, and n € N.
The following statement is an obvious instance of property (3).

Corollary 3.2 Assume that G is a strong pseudo-random generator and f is a
function with properties guaranteed by the conjecture.

Then tautologies T, for b ¢ Rng(f,), n = 1,2,..., require superpolynomial
EF-proofs.



Alekhnovich et.al. [2] consider various propositional encodings of the state-
ment b ¢ Rng(Gy) and prove several lower bounds for systems like resolution,
polynomial calculus and their combination, and for concrete pseudo-random
generators inspired by the Nissan-Wigderson generator. They also offer a view
of Tseitin’s tautologies [23] that sees them as tautologies of the same form.

4 An equivalent form of the conjecture

We continue using the abbreviation 7, defined before Corollary 3.2 but as we
shall substitute into the formulas we shall use a notation showing explicitly
occurrences of atoms. The formula ||y ¢ Rng(f,)||"™! has atoms p, ..., pni1
for bits of y, atoms ¢, ..., g, for bits of possible z, and atoms 71,73, ... for bits
of computation of f(z). We shall neglect atoms r; as they are unique for any
particular g. (One may also think of EF as operating with circuits in which case
atoms r; can be replaced by the corresponding circuits.)

For b € {0,1}"*! the formula 74(g) is ||y ¢ Rng(f»)||""'(p/b). However,
assume that b is not a string of bits but a string of single output circuits with
inputs (atoms) @ = (uq, ..., us). The formula 7,(q, u) makes a perfect sense and
it is a tautology iff the range of the function b : {0,1}¢ — {0, 1}"*! is disjoint
with Rng(f,)-

Our hardness condition on f will have a similar form. We shall denote by
Circuit"*! (@) the set of circuits computing n + 1 output bits from atoms @. In
particular, Circuit™*! () is a circuit without inputs computing n + 1 constants.

Definition 4.1 Let k > 1. Function f is k-restricted for EF iff there is a
polynomial p(n) such that there are arbitrarily large n and circuits by, ..., bg,
by € Circuit™(0), by € Circuit"™(g'), bs € Circuit" ™ (@ ,q), ..., bp €
Circuit™ ™ (g*,..., @), @ disjoint n-tuples of atoms, of size at most p(n) such
that the formula

(*) Tb1(ql)V---VTbk(qlr":qk_l)

has an EF-proof of size at most p(n).
Function f is k-free for EF iff it is not k-restricted, and it is free for EF iff
it is k-free for all k > 1.

If the formula (*) is a tautology then either b; € {0,1}"*! is outside
Rng(fn), or if f(ai) = by for some a; € {0,1}" then b2(g*/a;) € {0,1}"+1
is outside Rng(f,) etc. So, in at most k steps one finds in this way an element
outside Rng(fy); in particular, such element exists in a model of PV if (*) has
an EF-proof there, as then it is a tautology by property (2) of Section 1.

The formula implies that the range of the map b : {0,1}(*=17 — {0, 1}#(n+1)
given by by, ..., b is not included in the range of @le fn- In fact, provability
of any similar non-inclusion in PV yields an analogous interactive computation.



Theorem 4.2 Conjecture 3.1 is satisfied with function f iff f is free for EF.

Proof :

The conjecture obviously implies that f must be free. Otherwise, by com-
pactness, there would model M, of the form as earlier containing circuits
b1,...,by for some non-standard n* (with appropriate inputs as in Definition
4.1) and an EF-proof of the formula (*). Hence the formula (*) is a tautol-
ogy in any extension N of M,«, by,...,b; determine an element of N outside
Rng(fn+) and N cannot violate WPHPZ ().

For the opposite direction assume that in all extensions of M, WPHP3,(f)
holds. This means that PV together with the open diagram Diag(M,+) proves
the following formula: 3y € {0, 1} *1Vz € {0,1}""; fn- (z) # v.

By the KPT witnessing theorem [17] there are k¥ > 1 and polynomial time
functions hy (z,%), ha(z,21,0), ..., he(2,21,. .., 2k—1,8) such that the following
universal formula

fre(®1) # ha(a®, @) V frx(22) # h2(a”, z1, W)V

..V fn*(l'k) 75 hk(a*,xl, .. .,xk,l,ﬁ)
with w some parameters from M,-, is provable in PV + Diag(M,-). Hence in
M, the propositional translation of this formula has an EF proof (propositional
translations of all sentences in Diag(M,+) have polynomial size EF proofs in
M-, cf. [14, 10]). The propositional translation is the formula (*) with circuits
b; computing h;(a*,z1,...,Ti—1,W)

q.e.d.

Let us consider an example: Let g be a one way permutation such that PV
proves that it is injective. Let G be a pseudo-random generator constructed
from g by adding to the value g(x) a hard bit of z. Then clearly PV proves
that for any y € {0,2}" at least one of by := (y,0), by := (y,1) is outside
Rng(G,). So for formulas 7, constructed from f := G, by property (1) , EF
admits polynomial size proofs of disjunctions 7, V 73,. Hence G is 2-restricted.
(This example was noticed by P. Pudldk and by A. Wigderson.) Note that we
can dispose of the disjunction by precomposing G with a suitable polynomial
time function (depending on the particular hard bit).

The notion of a function free for a general proof system () makes a perfect
sense and Theorem 4.2 holds for any @ that polynomially simulates EF, with
PV replaced by PV + Cong (Cong is the VII? sentence from Section 2). The
choice of the particular theory for @ (it is unique only up to VII? consequences)
is important. For example, system G5, a subsystem of quantified propositional
logic G, corresponds to theory T3 (cf. [15, 10]). That theory proves WPHPS,
for all polynomial time functions. However, that does not imply that every such
functions is k-restricted for G2, some k& > 1. The proof of Theorem 4.2 needs
that the theory has a Skolemization by polynomial time functions as apparently
only then do sentences from the open diagram have @-proofs in the model.
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