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Abstract

We consider tautologies formed from a pseudo-random number gen-
erator, defined in Kraji¢ek [16] and in Alekhnovich et al. [2]. We ex-
plain a strategy of proving their hardness for Extended Frege systems
via a conjecture about bounded arithmetic formulated in Kraji¢ek [16].
Further we give a purely finitary statement, in the form of a hardness
condition imposed on a function, equivalent to the conjecture.

This is accompanied by a brief explanation, aimed at non-specialists,
of the relation between propositional proof complexity and bounded
arithmetic.

It is a fundamental problem of mathematical logic to decide if tautologies
can be inferred in propositional calculus in substantially fewer steps than
it takes to check all possible truth assignments. This is closely related to
the famous P/NP problem of Cook [5]. By propositional calculus I mean
any text-book system based on a finite number of inference rules and axiom
schemes that is sound and complete. The qualification substantially fewer
means that the number can be bounded above by a polynomial in the size
of the tautology (unless the size is exponential in the number of variables
this is indeed smaller than the number of truth assignments).

The topic of this paper is a search for tautologies that make viable can-
didates for being hard for an Extended Frege proof system EF. Rather than

*Partially supported by grant # A 101 99 01 of the Academy of Sciences of the Czech
Republic and by project LN0O0A056 of The Ministry of Education of the Czech Republic.
Mathematics Subject Classification: Primary 03F20, 68Q15. Secondary 03F30.

t Also member of the Institute for Theoretical Computer Science of the Charles Univer-
sity. A part of this work was done while visiting the Mathematical Institute at Oxford.

ISSN 1433-8092



explaining what EF is now (see next section) let me only say that the min-
imum size (i.e. the number of symbols) of EF proofs is proportional to the
minimum number of inference steps in the usual calculus, cf. [7].

The tautologies considered are defined in a simple way from a pseudo-
random number generator. I arrived at them in [16] as a consequence of
work on forms of the weak pigeonhole principle in bounded arithmetic and
their relations to various cryptographic primitives, searching also for a gen-
eralization of prime tautologies from [20] (cf. Section 3) that would be more
generic and hopefully susceptible to forcing.

The same tautologies were recently rediscovered in [2] in a purely com-
binatorial language as a framework in which one can think of certain known
lower bound methods and try to generalize them to stronger systems. In
a sense both lines of thought have a common origin in Razborov’s [29]
which was the first paper to bring cryptography into bounded arithmetic
and propositional logic (via Razborov-Rudich’s notion of natural proofs [30];
paper [20] grew from trying to use [15, Thm.9.2] in a concrete situation and
that theorem originated from a remark in [29]).

The first aim of this note is to explain these tautologies to non-specialists,
as well as the relation of the problem of proving their hardness for EF
with the problem of constructing suitable models of the bounded arithmetic
theory PV. In order to do this I recapitulate briefly the development of
propositional proof complexity with an emphasis on the interplay between
complexity proper and bounded arithmetic. This is in Section 2 after few
basic definitions and facts are recalled in Section 1.

The rest of the paper is organized as follows. In Section 3 I recall two
known candidates for tautologies that might be hard for EF. The definition
of tautologies from a pseudo-random number generator is given in Section 4,
together with the conjecture from [16], and the implication of the conjecture
for the EF-hardness of the tautologies. A hardness condition on functions,
called free for EF, is defined in Section 5. It is based on a notion of counter-
example computation via a two player (Student/Teacher) communication.
In Section 6 I give a statement that is purely finitary and equivalent to the
main conjecture using the new hardness condition on functions. This is a
necessary step towards showing that some usual hardness assumption (e.g.
some cryptographic hardness) imposed on a function implies the conjecture
and hence a lower bound to the size of EF proofs of concrete tautologies. The
paper concludes with some examples and remarks on other proof systems.

Whenever paper [16] uses Buss’s theory S3 (cf. [3]) T use here Cook’s
PV (albeit in the formulation as PV, of [21, 14]). I also speak here about



polynomial sizes rather than sub-exponential sizes. This is all in order not
to exceed the self-imposed quota for new definitions and special notation.
From the point of view of properties (1) - (3) in Section 2 of the relation
of arithmetic to propositional proof complexity, theories PV and Sj are
essentially indistinguishable and they both relate in the same way to the
system EF. (This does not imply that all results transfer between PV and
S3; for example, Theorem 6.2 would have a different form for Si.) A few
words about PV here for readers not familiar with the theory: the language
has symbols for all polynomial time algorithms and the axioms are equations
that codify how the algorithms use one another, together with a form of
(binary search style) induction for polynomial time predicates. The reader
only needs to know that it is a theory suitable for formalizing polynomial
time constructions in the most natural way; a definition can be found in the
next section, more details can be found in [14].

1 EF and PV

The DeMorgan language for propositional logic consists of 0, 1, =, V and A.
A Frege proof system for propositional logic is given by finitely many axiom
schemes and inference rules that are sound and implicationally complete
(i.e., if 9 is true for all truth assignments making ¢1, ..., ¢y true then 1 can
be proved from the ¢;’s). For example, systems based on a few axioms and
modus ponens as the only rule are frequent text-book examples of so called
Hilbert-style systems. (The name Frege system comes from [7] and was
chosen mistakenly; however, [7] is an established taxonomy of propositional
calculi and it is a custom to follow its terminology.)

There are two natural measures of complexity of proofs; the size, which is
the total number of symbols in the proof, and the number of steps. The latter
measure is perhaps more natural from a logical (or proof-theoretical) point
of view but the former, the size, is the more important one in connection
with computational complexity theory. The reason is that the length of a
string encoding a proof (or a formula etc.) for a machine is proportional
to the size of the proof but may be much bigger than the number of steps
(even proofs with few steps may contain huge formulas). In particular, it is
easy to see that there is an algorithm verifying that a string is a proof in a
particular Frege system with polynomial (quadratic) running time relative
to the size. Such a simple algorithm constitutes, in fact, the main link of
lengths-of-proofs to the P/NP and NP/coNP problems. Namely, if there



were always a proof 7 for any tautology 7 of size polynomial in the size of
7 then the coNP-complete set TAUT of tautologies would be in the class
NP: simply guess a short proof and then verify its validity, and the class NP
would be closed under complement (i.e., NP = coNP). If, moreover, one
could find a suitable 7 in polynomial time, then similarly TAUT would be
in class P and P would equal NP.

This relation of Frege systems to computational complexity was, in fact,
taken by [7] as a definition of a general propositional proof system. A propo-
sitional proof system is a polynomial time relation R(z,y) (on binary strings)
such that the property of y: 3z € {0,1}*; R(x,y), defines exactly the set
TAUT. Any string 7 such that R(m, 7) holds is called an R-proof of 7. Then,
similarly to the case of Frege systems, NP = coNP iff there exists a proof
system admitting polynomial size proofs for all tautologies.

The main method of comparison between different proof systems is poly-
nomial simulation: P polynomially simulates @) iff there is a polynomial time
algorithm A that, given a @Q-proof = of 7, produces a P-proof A(w, ) of 7.
Proof systems that polynomially simulate each other are indistinguishable
from the lengths-of-proofs point of view and in their relation to the P/NP
and NP/coNP problems.

In this respect the definition of Frege systems is very robust. If we use
any complete language instead of the DeMorgan language, any particular
set of axioms and rules, and any usual format of proofs such as tree-like or
sequence-like (or even writing proofs in sequent calculus or natural deduc-
tion formalisms) we always get a system that is equivalent by polynomial
simulations to any other Frege system, cf. [7].

The idea of an Eztended Frege system, EF, is to rectify one obvious defect
of Frege systems: a Frege system cannot use abbreviations for formulas that
are used several times in the proof (as sub-formulas of other formulas).
Formally, the extension rule (which is not really a Hilbert-style schematic
rule) allows one to extend a sequence of formulas ¢1,...,¢; by a formula
¢r+1 of the form g = 7, provided atom ¢ occurs in none of ¢4, ..., ¢, nor
in 1, nor in the last formula we aim at proving. The new atom can be,
however, used in later steps ¢y, ... of the proof.

The definition of EF is equally robust as that of Frege systems and,
moreover, the minimal size and the minimal number of steps of EF-proofs
of a formula are proportional to each other. There is another extension of
F that allows the substitution rule: from ¢(p1,...,p,) infer in one step any
d(W1,-..,%n). This Substitution Frege SF is, in fact, equivalent to EF by
polynomial simulations, cf. [8, 17]. It is not known if F is also equivalent to



them.

The main problem of propositional proof complexity, the NP /coNP prob-
lem, thus asks to demonstrate superpolynomial lower bounds to the lengths-
of-proofs in all conceivable proof systems. At this point we do not have any
lower bound for EF and only a simple quadratic one for F (cf. [11]). How-
ever, there are several interesting systems, all weaker than F, for which
strong lower bounds are known. These systems naturally divide into three
types. Proof systems of the first type are various subsystems of F in the
DeMorgan language obtained by restricting the depth of formulas the sys-
tem may use; examples include the depth d Frege system F; or its extension
by instances of counting principles like PH Py or Countév . Those of the
second type are various linear geometric proof systems: the cutting planes
system working with linear inequalities and its extensions. Those of the
third type are algebraic proof systems: these are various proof systems for
ideal-membership in polynomial rings over fields. They are subsystems of
the equational logic in the language of polynomial rings, which is again just
a particular Frege system. References can be found in the expository articles
[27, 32].

The reader may wonder why one should try to prove lower bounds for
EF rather than aim first at the apparently weaker F. Well, some researchers
do the latter. For me the reasons to aim at EF are perhaps more informal
than strictly technical. First, all known lower bounds for subsystems of F
(and for most of other systems too) actually apply directly to the number of
steps, and the number of steps in F is, by the remark above, just the size in
EF. A second reason is that I believe that the relation of proof systems to
bounded arithmetic will continue to be instrumental in devising new lower
bound methods, and EF corresponds to a much nicer and more transparent
theory than F does.

As we shall see in the next section, a key property of proof systems is
their relation to weak fragments of Peano Arithmetic, so called bounded
arithmetic theories. A prototype of this relation is given by EF and Cook’s
theory PV. I shall explain the main idea of PV but I leave the somewhat
tedious details of the definition for reader to read in [6] or [14], if desired.

Cobham [4] characterized the class of polynomial time functions operat-
ing on binary strings in a machine independent way. A function f is defined
from functions gg, g1, g2, g3 by limited recursion on notation if:

(1) f(z,0) = g2(=),



(2) f(fa Sl(y)) = gi(jayaf(§7 y))7 fori=0,1,
(3) f(jay) < 93(55 y)a

where so(y) and s1(y) are the two functions adding 0 resp. 1 to the right of
the binary representation of y. Cobham proved that the class of polynomial
time functions is the smallest class of functions containing the constant
0, functions s¢(y),s1(y) and z#y (|y| copies of = concatenated one after
another), and closed under:

1. permutation and renaming of variables
2. composition of functions
3. limited recursion on notation

Building on this characterization Cook [6] defined an equational theory
PV (for Polynomially Verifiable). I shall give a slightly modified definition of
an equivalent universal theory. The theory has symbols for the initial func-
tions and for a few other basic functions useful for manipulating strings (like
truncation of the last bit T'r, concatenation —~, and ordering Less(z,y)), and
for all functions introduced consecutively by applying Cobham’s operations
arbitrarily many times. Axioms are universal formulas that for each func-
tion f produced by limited recursion on notation from functions gy, ..., g3
and all possible choices of functions f’ and f* for f and ¢, and g; for g;’s say,
that if all g = g7 and if conditions of the operation are satisfied for g, and
g;’s respectively and if both f’ and f* were introduced by the operation,
then f' = f*. For example, let Ef,..., E} and E7,..., Ej be the equations
(1 — 3) from the definition of the limited recursion for on notation g;’s and
g!’s: three for f’ and three for f* in place of f. Then:

9o = 9o NGy =9I NGy = G5 NGy = G3ANENEyNEsANENESNE; — f' = f*

The theory also contains a form of induction. For any polynomial time pred-
icate P(z) (given by its characteristic function) there is a function symbol A
(constructed by simulating binary search via limited recursion on notation)
such that we have:

(P(0) A=P(a)) = (h(a) Sc a A=P(h(a)) A P(Tr(h(a))))

with  C, y denoting that z is an initial subword of y.



2 Proof complexity and bounded arithmetic

Propositional proof complexity starts with Cook’s 1971 and 1975 papers
[5, 6]. The former is the famous paper stating the P/NP problem and its
relation to propositional logic, and the latter is another pioneering work un-
covering a tight relation of proof complexity to formal arithmetic theories.
That paper introduced Cook’s theory PV, gave the translation of arithmetic
formulas and proofs into propositional ones, and proved a relation of PV to
Extended Frege system EF (the same relation was rediscovered by Paris
and Wilkie [24] in the context of different but closely related systems). This
was in my opinion the birth of proof complexity proper, although even ear-
lier there were results and ideas about lengths of propositional proofs that
are still very interesting and important. Most notable is work of Tseitin
[31] about resolution that was inspired by problems about formal linguis-
tics. Then came Cook and Reckhow’s [7] systematic classification of various
usual calculi for propositional logic and the definition of the right notion of
reducibility (polynomial simulation).

The beginning of contemporary research in lower bounds for proposi-
tional proof systems starts with Ajtai’s lower bound for constant depth
Frege proofs of pigeonhole principle PHP [1]. This is in my view the most
important propositional lower bound paper ever written as it opened the
relation to boolean complexity and freed the research from a narrowly com-
binatorial approach. This is not to diminish other important achievements,
notably Haken’s exponential resolution lower bound [9].

The relation between proof systems and theories, present in the field
from its beginning, can be summarized as follows. Let A(z) be a coNP
definition of a set of numbers. Assume A(z) has the form Vy; |y| < |z|* —
B(z,y) with B(z,y) a polynomial time predicate. Fix length n to bound
|z|’s and construct a propositional formula ||A(z)||" as in the proof of the

NP-completeness of satisfiability: the formula has n atoms pi,...,p, for
bits of an z, m = nF atoms ¢i,..., ¢, for bits of a potential y, and also
atoms 71,...,r, for s = n2) bits of values on nodes of a fixed circuit C,,

computing from p, g the truth value of predicate B(z,y). Formula ||A(z)||"
says, in a DNF form, that if 7 are correctly computed by circuit C,, from
inputs p, ¢ then the output of the computation is 1. Having any b of length
at most n with bits b(1),...,b(n) denote by ||A(z)||"(b) the propositional
formula with b(7) substituted for p;, and with the remaining atoms g and 7
left unsubstituted. Clearly then b satisfies A(z) iff ||A(x)||™ () is a tautology.

The relation between proof systems and theories is as follows: The sys-



tems/theories come in pairs P/T such that:

(1) If T proves Vz; A(x) then tautologies ||A(x)||™(b) have polynomial size
proofs in P.

(2) T proves the soundness of P and for any another proof system @, if T’
proves also the soundness of () then P polynomially simulates Q).

One prominent such pair is formed by Extended Frege system EF and by
Cook’s PV.

The first property has also a converse (used first explicitly by Paris and
Wilkie [24] and also in Ajtai’s famous paper [1]) that is slightly more complex
to state (and cannot be done in a logic-free combinatorial set-up only). It
is a simple instance of compactness of first order logic though. Assume that
b1,b9,... is a sequence of numbers of lengths n; < ng < ... such that the
formulas ||A(z)||™ (b;) are tautologies and have P-proofs of size < n;*. Let
M be any countable non-standard model of true arithmetic. Then there will
be a non-standard n* € M and an element b* € M of length n* such that the
formula (in M) ||A(z)||™ (b*) is a tautology and has (in M) a P-proof m* of
size < n*¥. Moreover, if all original elements b; satisfy some property U(z)
from the polynomial hierarchy (and thus expressible by a bounded formula
in the language of PV) then also b* will satisfy in M the same property.

Now comes the idea from item (1) above. Take an initial substructure
M- of M consisting of all elements that have lengths bounded by some n*¢,
¢ a standard natural number. In particular, b* as well as 7* are in Mp«,
and both A(b*) and U(b*) hold in My«. Let N DO My« be any extension of
My~ that is a model of theory T and preserves polynomial time predicates
(in particular, the predicate “to be a P-proof”). Then the element b* must
have property A(z) also in N: Otherwise take any ¢ € N witnessing the
existential quantifier in —=A(b*) = Jy; Jy| < n** A =B(b*,y). The bits of ¢
define a truth evaluation (in N) of the atoms g of || A(z)||™ (b*) that together
with evaluation of atoms 7 by the actual bits that occur in the computation
of Cp+ on b, c yield a truth assignment falsifying the formula ||A(z)||™" (b%).
However, the formula has a P proof 7* in N (as 7* was already in M)
and the system P is sound in N (as the soundness is provable in 7" and N
is a model of T'); hence the existence of such a truth assignment and of ¢ is
impossible and consequently b* must satisfy A(z) also in N.

Thus we have the suitable inverse to the first property:

(3) Consider M, an arbitrary countable model of true arithmetic and
b* € M an arbitrary non-standard element satisfying a property U(z).



Assume that for any such M and b* we can find an extension of the
substructure M« to a model N of T' that preserves polynomial time
predicates and in which —A(b*) holds.

Then there are no k < w and infinite sequence by, bo, . . . of numbers of
lengths n; < my < ... having all property U(z) such that all formulas
|[A(z)||™ (b;), i = 1,2, ... are tautologies with P - proofs of size < n;F.

(In fact, the opposite implication also holds.)

All these three properties are very well established and fruitfully used,
and they earned for bounded arithmetic the name of “uniform proof com-
plexity”, having a relation to boolean proof complexity analogous to the
relation of Turing machines to circuit complexity. Here are some examples.

Property (1): Quasi-polynomial proofs of the weak pigeonhole principle
(WPHP) in constant-depth Frege were obtained via (1) from Paris-Wilkie-
Woods [25], or the construction of polynomial size EF-proofs of disjointness
of two NP-sets related to the RSA cryptosystem from [20], an important
link of proof complexity and cryptography. There are many such examples
and I regret that the beautiful new proof of WPHP by Maciel-Pitassi-Woods
[23] is not presented in this way as the combinatorics used is the same as
the one used in establishing the appropriate correspondence P/T (cf. [12])
and the presentation may be done on one page'.

Property (2): The polynomial simulation of system SF (Frege system
with the substitution rule) by EF was first proved in this way, while the
explicit construction is quite involved, cf. [8, 17]. Property (2) is currently
totally ignored, although various recent polynomial (non)simulation results
between tree-like/non-tree-like systems, or between constant-depth subsys-
tems of Frege system and algebraic systems are immediate corollaries of
(2), often even stated in print as the corresponding soundness properties or
explicitly as lower bound criteria.

Property (3): The most famous instance is Ajtai’s proof of a super-
polynomial lower bound for constant-depth Frege proofs of PHP. Another
instance is Wilkie’s proof of Cook’s simulation results from [6] as generalized
in [13].

1Cf. seminar notes http://www.math.cas.cz/ krajicek/mpw.ps



3 Earlier tautologies possibly hard for EF

Let me recall two types of tautologies possibly hard for EF. The first type
is simply the property (2) of the relation of soundness to polynomial simu-
lation. Let P and T be a pair as earlier and take a proof system () that you
believe to be impossible to polynomially simulate by P. The soundness of )
can be expressed as Cong := Vz,Cong(z) where Cong(z) says that there
is no @-proof w of size |w| < |z| of a formula v, and a truth assignment
u satisfying the negation of v (clearly |u| and |v| are also bounded by |z|).
Then one expects that tautologies ||Cong(z)||" do not have polynomial size
P-proofs. This is because by (1) the existence of polynomial P-proofs is
close to provability in T and provability of the soundness of @) in T' would
imply the polynomial simulation. These candidates go back to [6].

In fact, a bit stronger assumption about P and @) is equivalent to the
non-existence of polynomial size P-proofs of ||Cong(z)||". The assumption
is that the minimal size of P-proofs cannot be bounded by a polynomial in
minimal sizes of Q-proofs. See [17] or [14] for details.

The second example is from [20], a part of a work showing that the
method of feasible interpolation (cf. [15] for explanation) cannot be applied
to EF. The tautologies express that a number is a prime. Namely, take
formula A(z) of the form Vy,z < z;y-2z # z. Then for a prime p of length n
the formula ||A(x)||™(p) is a tautology. The question what is the minimum
size of EF-proofs of these tautologies was posed in [20] and it was proved
there that the tautologies do have polynomial EF-proofs iff there is an NP-
definition E(z) of primes such that PV proves that the definition is sound:
Vz, E(x) — A(z). All such definitions seem to use at some point or another
the Little Fermat Theorem that is a notorious example of a number-theoretic
statement which is unknown to be provable in PV. In fact, it is not provable
assuming the RSA is secure, see [20].

Note that tautologies of this second sort are of the form ||z ¢ Rng(f)||"
for a conjectured one-way function.

Let us also mention one non-example. It has been suggested repeatedly
that various finitary combinatorial principles independent from PA or ZFC
could yield tautologies hard for many ordinary proof systems. However,
this suggestion is somewhat flawed, at least when it is interpreted in the
straightforward way.

All such principles, be they the Paris-Harrington version of Ramsey the-
orem, Kruskal’s theorem or some other, are (at least) IIJ - statements of the
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form Vn3aN, ¢(n, N), with ¢ bounded. Their unprovability stems solely from
the enormously rapid growth of the function giving the minimal witness N
for parameter n, but otherwise - once given N - the proofs of ¢(n, N) are
based on counting of or induction on substructures inside N. To turn such
a principle into a propositional tautology one needs to take N itself as a
parameter. The formula speaks about the finite structure with the universe
[0, N] (see e.g. formalization of Ramsey theorem by formulas RAM,, in [16])
which makes the formula huge and its proof, based on counting or induction
that are both easily simulated in EF, short compared to its size.

4 Tautologies from pseudo-random generators

Denote by WPHP$, the statement that f : a — 2a cannot be onto. 1
shall call it dual WPHP, similarly as [2]. This has been first considered by
Wilkie and his witnessing theorem (see [14, 16]) is the best result about the
principle. A question about provability of the principle for a concrete poly-
nomial time function was posed also in [28, Append.C]. It is explained in
[16] that proof-theoretic properties of (dual) WPHP are related to the exis-
tence of strong pseudo-random number generators and other cryptographic
primitives in several ways. The problem whether PV proves WPHP$, for
all polynomial time functions [16, Sec.7] seems to me to be the right av-
enue towards other main problems; it has bigger quantifier complexity (33)
than ordinary (W)PHP while still having implications for propositional proof
complexity, and it also relates to the famous problem on finite axiomatiz-
ability of bounded arithmetic, cf. [14]. One may note here that the ordinary
weak pigeonhole principle WPHP2%, saying that f cannot injectively map 2a
into a, is not provable in PV or S for a particular polynomial time function
(exponentiation modulo a prime) unless the cryptosystem RSA is insecure,
cf. [20].

A strong pseudo-random generator (a concept introduced by Yao [33])
is a polynomial time function G that stretches the inputs by (at least) one
bit and has exponential hardness. That is: there is € > 0 such that for any
n and any circuit C(y1,...,Yny1) of size less than 2 it holds that

Prob,[C(G(z)) = 1] — Prob,[C(y) =1] <2™™

where z is chosen uniformly at random from {0,1}" and y from {0,1}"*!.
The intuition behind the definition is that although G cannot be onto
{0,1}™*1 ] it’s range is hard to distinguish from {0,1}"*! in the sense that

11



any sub-exponential size circuit does not distinguish a random element y of
{0,1}™*! from a pseudo-random element G(z) of Rng(G) with more than a
negligible probability.

For explaining Conjecture 7.9 of [16] I shall use the same set-up as for
property (3) in Section 2. Denote by f,, the restriction of a function f to
inputs of length n.

Conjecture 4.1 ([16, 7.9]) Assume that a strong pseudo-random genera-
tor G exists. Then there is a polynomial time computable function f such
that any countable model My of the form as earlier, a* = 2" in M, has an
extension to a model N of PV that violates WPHPS,.(f).

In particular, if strong pseudo-random number generators exist then PV
does not prove WPHP;,, for all polynomial time functions.

The reference to G seems redundant. However, I conjectured in [16] that
there is a construction of f from G uniform in G and that there are even G
for which one can take f := G. (This cannot be true for all G; e.g. G can
have the form 1+ H. For other examples see Section 7.) The qualification
uniform is used informally; it could mean, for example, pre-composing G
with a simple polynomial time function depending on G.

As noted in [16] the conjecture has also implications for Extended Frege
system EF. This is via property (3) from Section 2. To simplify notation
denote by 7, the propositional formula |y ¢ Rng(f,)||" T (b), b € {0,1}"+1,
and n € N. The following statement is an obvious instance of property (3).

Corollary 4.2 Assume that G is a strong pseudo-random generator and f
s a function with properties guaranteed by the conjecture.

Then tautologies Ty, for b ¢ Rng(fn), n = 1,2,..., require superpolyno-
mial EF-proofs.

Alekhnovich et al. [2] consider various propositional encodings of the
statement b ¢ Rng(Gy) and prove several lower bounds for systems like res-
olution, polynomial calculus and their combination, and for concrete pseudo-
random generators inspired by the Nisan-Wigderson generator. They also
offer a view of Tseitin’s tautologies [31] that sees them as tautologies of the
same form.
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5 Counter-example computations

In the next section we link the conjecture with a new notion of hardness of
a function, so that the conjecture holds with a function f iff f is hard in this
new sense. To illustrate the definition of the hardness notion we shall discuss
first in this section the notion of counter-example computation, stemming
from [21, 26] and studied in [22].

Let ®(x) := Jy(ly| < |2[*)Vz(l2| < |2|°);¢(z,y,2) be a property of z
with ¢ polynomial time decidable, and with z the only free parameter. A
general computational task is to, given z, find y witnessing the property.
The particular computation of y is performed by Student, a polynomial
time algorithm, and by all-powerful Teacher.

Student first computes some y; (tacitly of the appropriate length) know-
ing only z. If it is not a valid witness Teacher provides him with a counter-
example: some z; (again tacitly of the appropriate length) such that ¢(z, y1, 21)
fails. In the second round Student computes another candidate yo but now
using not only z but also z;. If it is not a witness then he gets a counter-
example from Teacher, and so on.

An example of interesting properties ® are various optimization prob-
lems. For example, a property may say that a graph = has a maximal clique
y. Important results in bounded arithmetic follow from proving that, un-
less the polynomial time hierarchy collapses, Student cannot find a maximal
clique in a constant number of rounds, cf.[21].

What we shall consider is ®(z) := WPHP3,, the dual weak pigeonhole
principle (for a fixed f). Witnesses to it are exactly elements of {0,1}/2/+1
outside of the range of f|;. In the previous example an important restriction
on Student’s capabilities comes from the fact that it is a polynomial time
algorithm that should work for all z’s. We shall abolish this restriction and
we allow Student to compute with (non-uniform) polynomial size circuits.
This means, equivalently, that Student can use a different polynomial time
algorithm for each length n of 2’s. However, this itself would trivialise things:
a circuit can simply output directly some fixed witness without computing
anything. But we shall restrict Student in another way: we will require
that he can solve the problem in constantly many rounds and that it can be
proved by polynomial size EF proofs that his strategy works. This is a non-
trivial restriction because if you simply have a witness y you may still not
be able to prove that it is a witness as the proof may, in principle, have to go
through exponentially many (in the length of z) possible counter-examples
z. We define this formally in the next section.
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6 Functions free for EF

We continue using the abbreviation 7, defined before Corollary 4.2 but as
we shall substitute into the formulas we shall use a notation showing ex-
plicitly occurrences of atoms. The formula ||y ¢ Rng(f,)||"! has atoms
P1,---,Pn+1 for bits of y, atoms ¢y, ..., g, for bits of possible z, and atoms
T1,T2,- .. for bits of computation of f(z). We shall neglect atoms r; as they
are unique for any particular g. (One may also think of EF as operating
with circuits in which case atoms r; can be replaced by the corresponding
circuits.)

For b € {0,1}"*! the formula 74(q) is ||y ¢ Rng(f.)||" ' (p/b). However,
assume that b is not a string of bits but a string of single output circuits with
inputs (atoms) @ = (uq,...,ur). The formula 7,(q, %) makes a perfect sense
and it is a tautology iff the range of the function b : {0,1}¢ — {0,1}"*+! is
disjoint with Rng(f,)-

Our hardness condition on f will have a similar form. We shall denote
by Circuit”™!(@) the set of circuits computing n 4 1 output bits from atoms
@. In particular, Circuit”*! (@) is a circuit without inputs computing n + 1
constants.

Definition 6.1 Let k > 1. Function [ is k-restricted for EF iff there is a

polynomial p(n) such that there are arbitrarily large n and circuits by, . .. , b,
by € Circuit™1(0), by € Circuit"(g'), by € Circuit" 1 (g', %), ..., by €
Circuit®™(g",...,g*"), § disjoint n-tuples of atoms, of size at most p(n)

such that the formula
*) T (@) V... V(@ T)

has an EF-proof of size at most p(n). Function f is k-free for EF iff it is
not k-restricted, and it is free for EF iff it is k-free for all k > 1.

If the formula (*) is a tautology then either by € {0,1}"! is outside
Rng(fy), or if f(a;) = by for some a; € {0,1}" then by(g'/a1) € {0,1}F!
is outside Rng(fy) etc. So, Student’s strategy given by circuits by, ..., by
leads him in at most k steps to an element outside Rng(f,); in particular,
such an element exists in a model of PV if (*) has an EF-proof there, as
then it is a tautology by property (2) of Section 2.

Note that the formula implies that the range of the map

b: {0,136~ 5 fo, 1}k(+1)
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given by by, ..., by is not included in the range of @%_, f,, (k-fold direct sum).
In fact, provability of any similar non-inclusion in PV yields an analogous
interactive computation (this is proved analogously as the next theorem).

Theorem 6.2 Conjecture 4.1 is satisfied with function f iff f is free for
EF.

Proof : The conjecture obviously implies that f must be free. Otherwise,
by compactness, there would model M,» of the form as earlier containing
circuits by, ..., b for some non-standard n* (with appropriate inputs as in
Definition 6.1) and an EF-proof of the formula (*). Hence the formula (*)
is a tautology in any model N of PV extending M,~, b1, ..., b, determine
an element of N outside Rng(f,-) and N cannot violate WPHP$ (f).

For the opposite direction assume that in all extensions of M« WPHP$(f)
holds. This means that PV together with the open diagram Diag(M,~)
proves the following formula: 3y € {0,1}" Tz € {0,1}""; fux(z) # ¥.

By the KPT witnessing theorem [21] there are ¥ > 1 and polynomial
time functions hi(z, %), ho(z,21,4), ..., hi(2,21,...,Tk—_1,%) such that the
following universal formula

fre(x1) # hi(a®, @) V frr(22) # ho(a®, z1, W)V

coo Vo frr (k) # he(a®,z1, ..., Tp—1,W)

with W some parameters from M, , is provable in PV + Diag(M,~). Hence
in My~ the propositional translation of this formula has an EF proof (propo-
sitional translations of all sentences in Diag(M,~) have polynomial size EF
proofs in My, cf. [18, 14]). The propositional translation is the formula (*)
with circuits b; computing h;(a*,z1,...,T;—1,W)

q.e.d.

7 Examples and remarks

Let g be a one way permutation such that PV proves that it is injective. Let
G be a pseudo-random generator constructed from g by appending to the
value g(z) a hard bit of z. Then clearly PV proves that for any y € {0,1}"
at least one of by := (y,0), by := (y, 1) is outside Rng(G,). So for formulas
Ty constructed from f := G, by property (1) , EF admits polynomial size

15



proofs of disjunctions 74, V 75,. (This example was noticed by P. Pudlik
and by A. Wigderson.) However, clearly one of by or b; is in the range of
G; say G(ag) = bp. Then substituting bits of ag together with bits of the
computation of G(ag) into the proof of 7, V 7, collapses 73, to 0 and yields
a proof of 7,,. Hence G is 1l-restricted. Note that we can rectify this by
pre-composing G with a suitable polynomial time function (depending on
the particular hard bit).

Let us modify the example a bit. Assume that we have two (provably
in PV) one-to-one functions g, go for which the corresponding 7-formulas
are hard to prove. Define f(z) to be (g1(z),0) if z contains an even number
of ones, and (g2(x),1) otherwise. The 7-formulas for f are hard to prove
unless the restriction to inputs with even or odd number of ones respectively
helps to prove the 7-formulas for g, or go respectively. But f is 2-restricted;
namely, let b; have the form (b,0) for b ¢ Rng(g1) and b2(Z1), a circuit, have
the form (g2(Z1),1). Then 73,(q;) V 7b,(g1,72) is easily provable.

The notion of a function free for a general proof system () makes perfect
sense and Theorem 6.2 holds for any ) that polynomially simulates EF,
with PV replaced by PV + Cong (Cong is the VII? sentence from Sec-
tion 3). The choice of the particular theory for @ (it is unique only up to
VII® consequences) is important. For example, system G2, a subsystem of
quantified propositional logic G, corresponds to theory T% (cf. [3, 19, 14]).
That theory proves WPHPS, for all polynomial time functions. However,
that does not imply that every such function is k-restricted for Ga, some
k > 1. The proof of Theorem 6.2 needs that the theory has a Skolemization
by polynomial time functions as apparently only then do sentences from the
open diagram have @-proofs in the model.

One may also look at proof systems for which we already have good
lower bounds and some lower bound methods. For example, very interesting
is the case of constant depth Frege systems. A depth d Frege system Fjy
operates with formulas of the depth at most d in the DeMorgan language
with unbounded arity V, A. In this case we would look for an AC? function
(i.e., computable by polynomial size, constant depth formulas) that would
be free for all F;, meaning that no strategy of Student given itself by AC?
circuits can be proved to be winning by polynomial size F,; proofs.

A simpler problem, to prove that it is consistent with PV or S5 that a
concrete polynomial time function f violates WPHPS, leads to the task to
show that EF has no short proof that a uniform polynomial time Student
(one algorithm for all input lengths) finds an element outside the range of
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the function in constantly many (for PV) or polynomially many (for S3)
rounds.

The EF provability is now important (for the S5 case) even if we have a
uniform Student instead of a circuit Student. Namely, it follows from results
of Impagliazzo and Wigderson [10] (proved under a plausible complexity-
theoretic assumption) that there is a polynomial time Student winning in
polynomially many rounds. Let f be computable in time nF. Impagli-
azzo and Wigderson [10] construct a polynomial time function g that takes
O(log(n)) input bits and computes n + 1 bits, and such that no NP algo-
rithm running in time O(n*) can distinguish a random element of {0, 1}"*!
from a pseudo-random element g(x). This implies that Rng(g) € Rng(f) as
otherwise the property to belong into Rng(f) would distinguish the random
and pseudo-random strings with probability at least 1/2. Hence Student
can simply consecutively list as candidates all n(!) elements of Rng(g), not
using Teacher’s counter-examples at all. The assumption their construction
uses is, in this case, that there is an exponential time function that cannot
be computed by a sub-exponential size circuit querying an NP property.
This is true if, for example, the sub-exponential time hierarchy is properly
included in EXP.

However, EF provability of the fact that such Student wins depends
on formalizability of the construction in S3. That is unlikely as its many
counting arguments seem to presuppose some form of pigeonhole principle.

Finally, note that if f is itself a pseudo-random generator then PV does
not disprove the statement that for an a and some b < 2a not in the range of
f, the tautology 7, has no EF proof. Otherwise, by Herbrand’s theorem as
PV is a universal theory, there would be a polynomial time algorithm decid-

ing the membership in the range of f, contradicting the pseudo-randomness
of f.

Acknowledgement: I am very much indebted to the editor Andreas Blass
for making numerous and detailed suggestions how to improve the paper.
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