Electronic Collogquium on Computational Complexity, Report No. 34 (2000)

Efficiently Approximable Real-Valued Functions

Valentine Kabanets Charles Rackoff Stephen A. Cook
Department of Computer Science
University of Toronto
Toronto, Canada
{kabanets ,rackoff, sacook}@cs .toronto.edu

April 25, 2000

Abstract

We consider a class, denoted APP, of real-valued functions f : {0,1}" — [0, 1] such that
f can be approximated, to within any ¢ > 0, by a probabilistic Turing machine running in
time poly(n,1/¢). We argue that APP can be viewed as a generalization of BPP, and show
that APP contains a natural complete problem: computing the acceptance probability of a
given Boolean circuit; in contrast, no complete problems are known for BPP. We observe that
all known complexity-theoretic assumptions under which BPP is easy (i.e., can be efficiently
derandomized) imply that APP is easy; on the other hand, we show that BPP may be easy while
APP is not, by constructing an appropriate oracle.

1 Introduction

The complexity class BPP is traditionally considered a class of languages that can be efficiently
decided with the help of randomness. While it does contain some natural problems, the “semantic”
nature of its definition (on every input, a BPP machine must have either at least 3/4 or at most
1/4 of accepting computation paths) makes it quite difficult to study as a class. One of the main
obstacles for such a study is the lack of known complete problems for BPP. In fact, it is conjectured
that BPP does not have any complete problems; some evidence towards the truth of this conjecture
is provided by oracle constructions where BPP (and some other “semantic” complexity classes such
as NP N co-NP, RP, and UP) do not have complete sets [Sip82, HH86] (see also [HI85, HLYS86]).

Despite the difficulties, many researchers are trying to resolve various open questions regarding
BPP, the most important one being whether BPP = P. All currently known approaches towards
proving that BPP = P involve, explicitly or implicitly, constructing a polynomial-time algorithm for
approximating the acceptance probability of any given Boolean circuit to within a small additive
term ¢, say € < 1/4. The existence of such an algorithm would clearly suffice to show that BPP = P.
Indeed, for every input z to a BPP machine M, the acceptance probability of M (z) is either at
least 3/4 or at most 1/4, and we can easily construct a Boolean circuit Cys . simulating M (z) so
that C'ar has the same acceptance probability as M (z); here the inputs to Car, are random bits
used by M on the input z.

Thus, on the one hand, there is no known complete problem for BPP, while, on the other hand,
all efforts at showing that BPP is easy aim to show that the acceptance probability of any given
Boolean circuit can be efficiently approximated to within a small additive factor. Below, we define
a complexity class that is a natural generalization of BPP and prove that computing the acceptance
probability of a given Boolean circuit is a complete problem for our class.

ISSN 1433-8092

To generalize BPP, we observe that a language L accepted by a BPP machine M is defined
using an easily computable property of the acceptance probability of M (z): z € L iff M(z) accepts
on at least 3/4 of random strings; also note that the acceptance probability of a Boolean circuit C'
is easy to approximate to within any e > 0 in probabilistic time poly(|C|, 1/¢) by random sampling.
This suggests a definition of the class of real-valued functions f : {0,1}" — [0, 1] such that the
value f(z), for any z € {0,1}", can be approximated to within any ¢ > 0 in probabilistic time
poly(n,1/¢). The class of such real-valued functions Approximable in Probabilistic Polynomial time
will be denoted as APP, while the corresponding deterministic class as AP. It is worth pointing out
that our definition of APP is different from the definition of the class of efficiently computable real

functions f in [KF82, Ko91], where f is required to be approximable to within € in probabilistic
time poly(n, 1/ loge).

It is not hard to see that BPP corresponds exactly to the subclass of Boolean functions of APP.
It is also easy to see that the problem of computing the acceptance probability of a given Boolean
circuit is in APP. We will prove that, for an appropriate notion of reducibility, this problem is, in
fact, complete for APP. Since all known complexity assumptions that imply BPP = P actually imply
that approximating the acceptance probability of a Boolean circuit is easy, our completeness result
shows that every such complexity assumption implies that APP can be efficiently derandomized,
i.e., that APP = AP.

It is interesting to consider the effects on the real world if BPP = P on the one hand, and if
APP = AP on the other hand. If it turns out that BPP = P, then the effect would be minimal
since very little of the real-world use of the randomness is in solving BPP problems. However,
the effect of APP = AP, at least if this holds in an efficient way, would be quite pronounced. It
appears that in this case, all the common uses of randomness in scientific computation could be
removed (with only a polynomial loss of efficiency). The reason is that most uses of randomness in
scientific computation are in probabilistic simulations; the goal of such a simulation is to estimate
the probability of a certain event, or to estimate the value of a certain random variable. It is easy
to see that if APP = AP, then such programs can be made deterministic.

A natural question is how these two assumptions, BPP = P and APP = AP, are related to each
other. Obviously, if APP = AP, then BPP = P. Is the converse true? Probably not. At least, such
an implication is not provable by relativizable techniques: we construct an oracle where BPP = P
but approximating the acceptance probability of a Boolean circuit to within 1/4 cannot be done in
deterministic polynomial time.

Finally, we consider the question whether our two classes are recursively enumerable (r.e.). We
show that AP is r.e., but leave it open whether the same holds for APP; it appears that APP may
not be r.e., even though it contains a complete problem.

The remainder of the paper. In Section 2, we give formal definitions of our classes of efficiently
approximable real-valued functions, APP and AP, and prove some of their properties. In Section 3,
we exhibit the problems complete for these classes. We discuss the problem of derandomizing APP
in Section 4. In Section 5, we construct an oracle world where BPP = P but APP # AP. In
Section 6, we show that the class AP is recursively enumerable. We conclude with Section 7.

2 Preliminaries

2.1 Definitions and Basic Properties of AP and APP

The class P can be thought of as the class of all polynomial-time computable uniform families
J = {fa}nzo of Boolean functions f, : {0,1}” — {0,1}; i.e., f € P iff there is a polynomial-time
Turing machine M such that, for all n € N, we have M (z1,...,2,) = fu(z1,...,2,). Similarly,
BPP is the class of all uniform families of Boolean functions computable in probabilistic polynomial
time. We would like to define a more general class of (not necessarily Boolean) function families.
Let us consider real-valued functions g, : {0,1}" — [0, 1]. Since we cannot represent real numbers
in the standard Turing-machine model of computation, we can try to approximate the real values
of g, by rational numbers. The following definitions are then natural.

Definition 1. We say that a deterministic Turing machine M approzimates a family g = {gn}n>0
of real-valued functions g, : {0,1}"* — [0, 1] if, for all k,n € N, we have |M (1%, 2) — g.(z)| < 1/k.
We call such a family g polynomial-time approzimable if g is approximable by a polynomial-time
Turing machine. Let AP (for Approzimable in Polynomial time) consist of all polynomial-time
approximable families g of real-valued functions g, : {0,1}" — [0, 1].

The class of Boolean functions f, : {0,1}" — {0, 1} can be viewed as a subclass of the class of
all [0, 1]-valued functions. Clearly, we have P C AP. In fact, the following is true.

Theorem 2. The class P is exactly the subset of all Boolean function families in AP.

Proof. As we observed above, P is contained in the subset of all Boolean function families in AP.
For the other direction, consider any Boolean function family g = {g,}n>0 in AP. By definition,
there is a polynomial-time Turing machine M that can approximate g¢,(z) to within 1/k for any
k € N. Let us choose £ = 3. Then we can use M to distinguish between the case where g, (z) =0
and the case where g,,(z) = 1, and hence we can compute g,(z) exactly. O

Now we define the probabilistic analogue of AP, denoted by APP (for Approzimable in Proba-
bilistic Polynomial time), as the class of all families g of real-valued functions g, : {0,1}" — [0, 1]
that are approximable in polynomial time by probabilistic Turing machines. More precisely, we
have the following.

Definition 3. A family g = {gn}n>0 of real-valued function g, : {0,1}" — [0,1] is in APP if
there exists a probabilistic polynomial-time Turing machine M such that, for all k,n € N, we have
Pr[[M (1%, 2) — gu(z)| < 1/k] > 3/4, where the probability is taken over all random bits used by
M.

Remark 4. The constant 3/4 in the above definition is quite arbitrary, and, similarly to the case
of BPP, it can be replaced by any pg, > 1/2+ 1/poly(k + n), or pi, < 1 — 9= poly(k+n) (see
Theorem 12).

We have the following analogue of Theorem 2 for BPP and APP.
Theorem 5. The class BPP is exactly the subset of all Boolean function families in APP.
Proof. The proof is very similar to that of Theorem 2. O

An important question is whether APP = AP; this is analogous to the long-standing open
question whether BPP = P. The following easy theorem relates the two questions.

Theorem 6. If APP = AP, then BPP = P.

Proof. If APP C AP, then BPP C AP. Since BPP is a class of Boolean function families, we
conclude by Theorem 2 that BPP C P. O

Remark 7. Theorem 20 below gives evidence against the converse of Theorem 6.

We would like to talk about hard problems in AP and APP. To this end, we define appropriate
reductions.

Definition 8. We say that a family f of real-valued functions f, : {0,1}" — [0, 1] is polynomial-
time many-one reducible to a family g of real-valued functions g, : {0,1}" — [0, 1], denoted f <%, g,
if there is a polynomial-time computable family r of transformations r, : {0,1}" — {0,1}™, for
some m = m(n) € poly(n), such that, for all n € N,

fa(®) = g (ra(2)).

We say that f is polynomial-time many-one approximately reducible to g, denoted f <5, g, if there

is a polynomial-time computable family r of transformations r,x : {1}* x {0,1}" N {0,1}™, for
some m = m(n, k) € poly(n, k), such that, for all k,n € N,

|fa(2) = g (ra (1%, 2))| < 1/k.

Theorem 9. Let f = {fu}ns0 and g = {gn}n>0 be any Boolean function families. Then f <}, g
iff f S g-

Proof. Clearly, if f <7, g, then f . g. For the converse, assume that f <P ¢ via a fam-

ily of transformations r, x(1%,21,...,2,). It is easy to see that the family of transformations
rt(z1,...,2n) = rp2(1%,21,...,2,) will define a polynomial-time many-one reduction from f to
g.]

It is also easy to see that AP and APP are closed under the two kinds of reductions defined
above.

Theorem 10. Let f and g be any [0, 1]-valued function families such that f <p g. We have the
following implications:

1. if g € AP, then f € AP, and
2. if g € APP, then f € APP.

Proof. Straightforward. O

2.2 Reducing the Error Probability for APP-Functions

Here we will justify Remark 4 that the class APP is robust with respect to the allowed probability
of error. First, we recall the following Chernoff bound (see, e.g., [MR95] for a proof).

Lemma 11 (Chernoff). Let X, Xq,..., X,, be independent Bernoulli variables with Pr[X; =
1 =pi, let X =37 | X;, and let p = E[X]. Then, for any § € (0, 1], we have Pr[X < (1—98)u] <
e /2,

Now we can prove the following.

Theorem 12. Let g = {gn}n30 be any family of real-valued function g, : {0,1}" — [0, 1] for which
there exist a probabilistic polynomial-time Turing machine M and a constant ¢ € N such that, for

all k,n € N,
Pr[|M(1%,2) — gu(2)| < 1/K] > 1/2+ (k +n)~°, (1)

where the probability is taken over all random strings used by M. Then, for any d € N, there is a
probabilistic polynomial-time Turing machine M’ such that, for all k,n € N,

Prl|M'(1*,2) — go(x)| < 1/k] > 1 — 27+,
where the probability is taken over all random strings used by M’'.

Proof. Fix any k € Nand z € {0,1}". Let N = k+n and let ¢ = 1/(3k). Consider an experiment in
which M (13*,z) is run m times, using independent random strings. Let ay, ..., a,, be the outputs
of M(1%* z) in the corresponding runs. We define random variables X;, 1 < i < m, as follows:
X; = 1if oy — gn(2)| < ¢, and X; = 0 otherwise. Obviously, X1, ..., X,, are independent Bernoulli
variables such that, by (1), Pr[X; = 1] =p > 1/2+ N7¢, for all i. Let X = 37" X; and let
p=E[X]=mp.

The idea is to choose m large enough so that, with high probability, the majority of X,’s are
equal to 1, i.e., the majority of a;’s are at most ¢ away from g, (z). Once we have more than a half
of good a;’s, we will be able to find a value § € Q which is at most 3¢ = 1/k away from g,(z).
This will be the output of our new probabilistic machine M’(1*, z).

Now we provide the details. Let v = 2¢. We divide the interval [0, 1] into [1/7] contiguous
subintervals of length at most v each. Let 0 = yo,y1,...,4 = 1 be the end points of these intervals,
where [= [1/4]. We define the output of M'(1*, z) to be

112121{y]| the interval [y; — 2¢,y; 4+ 2¢] N [0, 1] contains more than m/2 of a;’s} (2)
VS
if such a j exists, and 0 otherwise.

An easy calculation shows that, for § = N=¢ we get (1-6)u > m(1/2+1/(3N°)). By Lemma 11,
choosing m > 4N?**4 guarantees that X > (1 — &) with probability at least 1 — 2-N*, Obviously,
it suffices to prove the correctness of M’ only for the case where X > (1—6)u. So, we assume below
that at least m(1/241/(3N°)) > m/2 of a;’s are good, i.e., the interval I = [g,,(z)—¢, g,,(2)+€]N[0, 1]
contains more than m/2 of o;’s.

Clearly, there is at least one point y* = y;« such that |y* — g,(z)| < v/2 = ¢. Then, by our
assumption above, the interval [y* — 2¢, y* 4 2¢] N [0, 1] contains more than m/2 of «;’s, since it
contains I as a subinterval. Hence, M’ will always output the value satisfying Equation (2).

On the other hand, let y = y;, for some 1 < j < [, be such that the interval J = [y — 2¢,y +
2¢] N[0, 1] contains more than m/2 of a;’s. Then J must intersect I, since otherwise I would have
fewer than m/2 of a;’s, contradicting our assumption above. Thus, we have |y — g, (2)] < 3¢ = 1/k.

We conclude that, with probability at least 1 — 2_Nd, the output produced by M'(1%,z) will be
at most 1/k away from g, (z). It should be also clear that M’ runs in time poly(k,n). O

2.3 Largeness of APP

In addition to the real-valued functions that result from the use of randomness in scientific compu-
tation, the class APP also contains all “properly normalized” #P functions. Recall that a family
of functions f, : {0,1}” — N is in #P if there is a polynomial-time computable relation R(z,y),

where |y| = p(|z|) for some fixed polynomial p, such that f,(z) = card({y|R(z,y)}). We can
normalize each such function family f = {f,}n>0 by defining a new family g = {gn}n>0 so that
gn(2) = fo(z)/2P(). Then g is in APP using a straightforward sampling algorithm, which can be
analyzed using Chernoff’s bound.

3 A Complete Function for APP

Below we exhibit a natural function family that is APP-complete under polynomial-time many-one
approximate reductions. In contrast, no problem is known to be BPP-complete under polynomial-
time many-one reductions, and hence, by Theorem 9, under polynomial-time many-one approximate
reductions.

Circuit Acceptance Probability Problem (CAPP)
Given: A Boolean circuit C' with n inputs.
Output: Pr.c(o112[C(7) = 1].

Clearly, CAPP gives rise to the well-defined family of [0, 1]-valued functions. We will denote
this function family by fcapp.

Theorem 13. The function family foapp is APP-complete under polynomial-time many-one ap-
proximate reductions.

Proof. 1t is quite easy to see that fcapp is in APP, since we can approximate the acceptance
probability of a given circuit by random sampling; the correctness of such an estimate will follow
from appropriate Chernoft’s bounds.

To prove that foapp is APP-hard, we show that the problem of approximating any given real-
valued function in APP can be reduced to CAPP. Let g = {g5}n30, Wwhere g,, : {0,1}" — [0, 1], be
an arbitrary function family in APP, and let M be a probabilistic polynomial-time Turing machine
that approximates g. Without loss of generality, we may assume that M (1%, zy,...,2,) uses the
same number r(k,n) € poly(k + n) of random coin flips on every computation path, and that it
produces an output 1/k-close to g, (z) with probability at least 1 — 27Pol(k+n),

Given z € {0,1}" and k£ € N, we will construct a Boolean circuit C;, 5(w) such that |g,(z) —
Pr,[Cy k(w) = 1]| < 1/k. To this end, we define a new, Boolean-valued, probabilistic machine M’
such that M'(1%,z) first computes an output « € [0, 1] of M(1%*,z) by simulating M, and then
accepts with probability a or rejects with probability 1 — a.

We transform M’(1*,z) into a probabilistic circuit Cy . The crucial observation is that the
acceptance probability of C is exactly the average value of M(l%,m) taken over all random
strings of length r(k,n). That is,

Pr,cio1ytem [Cop(w) =1] = E[M (1%, 2)].

The theorem now follows by observing that E[M (1%,)] is within 2/(2k) = 1/k of g,(z), provided
that M computes a good output with probability at least 1 — 1/(4k). O

For any € = ¢(n) > 0, let us denote by e-CAPP the problem of approximating, to within ¢(n),
the acceptance probability of a given n-input Boolean circuit. We have the following robustness

result for CAPP.

Theorem 14. foapp € AP iff, for some c € N, (1/2 — n=%)-CAPP can be solved in deterministic
polynomial time.

Proof Sketch. =. Obvious.
<. Let C be a given n-input Boolean circuit, and let ¢ > 0 be arbitrary. Consider [+ 1 points
Po,P1y-- -, D1, where [= [1/€] and py = 0, p; = ie for 0 < ¢ < [, and p; = 1. We associate with

k
C
each p; a Boolean circuit 1; on kn inputs such that D;(zy,...,2;) = 1 iff ‘M —pi| < €,
where each z; € {0,1}”. Let o; be an approximation of the acceptance probability of each D; to
within 1/2 — (kn)~¢, computable in deterministic polynomial time by assumption. Our algorithm
will output the least p; such that «; > 1/2.
By applying Chernoff’s bounds, one can show that, for an appropriate k& € poly(|C], 1/€), the

described algorithm approximates the acceptance probability of C' to within 2e. O

4 APP vs. AP

Here we consider the problem of derandomizing the class APP. It appears that every known method
for derandomizing the related class, BPP, yields a deterministic polynomial-time algorithm for
approximating the APP-complete function foapp. Hence, every such method for showing BPP = P
can actually be used to show that APP = AP.

Indeed, all general methods for derandomizing BPP are constructive in the sense that they
provide, under certain complexity assumptions, an efficient deterministic algorithm that decides
the same language as a given BPP machine R. Moreover, such a deterministic algorithm on input
x works by approximating the acceptance probability of a Boolean circuit that is obtained from
R(z); the inputs to this circuit are the random strings used by R on z.

All known methods for showing BPP = P are conditional on some complexity assumptions.
Below we list several such assumptions, pointing where they have been shown to imply BPP = P.

Al. P = NP [Sip83].
A2. Thereis an L € DTIME(QO(”)) that almost everywhere requires circuit size 2% [IW97].

A3. There is a poly(n)-time algorithm D : {0,1}°0g") — {0,1}* (called a Discrepancy Set
Generator) such that, for every Boolean circuit C), of size n on n inputs, [Prye(,132[Cn(2z) =

1] = Pr g 130008m [Cn(D(y)) = 1]| < 1/4 [folklore].

A4. There is a poly(n)-time algorithm # : {0,1}9008?) — {0, 1}" (called a Hitting Set Generator)
such that, for every Boolean circuit C\, of size n on n inputs, if Pryc(o13#[Cn(z) = 1] > 1/2,
then C,,(#(u)) = 1 for at least one u € {0,1}°0°8") [ACR9S)].

Ab. fCAPP € AP [fOlklOI‘e].

Theorem 15. Al = A2 & A3 & A4 = A5.

Proof Sketch. A1 = A2. It is easy to see that Ezi, for some constant £ € N, contains a language
of maximum circuit complexity. If P = NP, then PH = P, and hence E¥k CEP CE.

A2 = A3. This is proved in [IW97].

A3 = A4. Trivial.

A4 = A2. See, e.g., [ISW99, Theorem 9].

A4 = A5. This is proved in [ACRIS8] (see also [ACRT99, BF99, GW99)]). O

We would like to point out another complexity assumption that appears weaker than assump-
tion A4 above, and yet it also implies A5. This assumption says that a promise version of Circuit
SAT is easy.

A6. There is a deterministic polynomial-time algorithm that, given a Boolean circuit C' on n
inputs, outputs 0 if Proc(o132[C(z) = 1] =0, and 1 if Prycig3n[C(z) = 1] > 1~ 2=V,

Obviously, we have A5 = A6. More interestingly, the converse also holds.

Theorem 16. A6 = A5.

The proof of Theorem 16 can be extracted from [ACRT99], and is implicit in [BF99]. In the
latter, a different assumption is used, namely that, for every probabilistic polynomial-time Turing
machine M, there is a deterministic polynomial-time Turing machine A with the following property:
for any input z, A accepts z if Pr[M accepts 2] > 1/2, and A rejects z if Pr[M accepts z] = 0.
It is not hard to see that this assumption is equivalent to our assumption A6. For the sake of
completeness, we prove Theorem 16 in Appendix A.

Since fcapp is APP-complete, we obtain the following.

Corollary 17. If any of assumptions A1-A6 above is true, then APP = AP.

We conclude this section with an easy theorem that demonstrates the “constructive nature” of
the assumption APP = AP.

Theorem 18. [f APP = AP, then there is a deterministic polynomial-time Turing machine which,
given a circuit C' that accepts at least half of its inputs, outputs an input which C accepts.

Proof Idea. We can find a good input to C, bit by bit, using an algorithm for CAPP to guide our
search. Starting with the empty input, at each step we fix the next bit so that the acceptance
probability of C' over the remaining bits does not decrease too much. O

As a corollary, if APP = AP, then any probabilistic polynomial-time algorithm for solving an
NP search problem can be made deterministic.

5 APP vs. BPP

We know from Theorem 6 that if APP is easy, then so is BPP. Is the converse true? This question is
particularly interesting since, as observed above, every known approach towards proving BPP = P
does yield APP = AP, and so it would be nice to prove that BPP = P implies APP = AP.

Below we show that such an implication (if indeed true) cannot be proved using relativizable
techniques: we construct an oracle A such that BPP* = P4, but APP# # AP#. Moreover, we
show that, with respect to our oracle A, there is no polynomial-time algorithm for approximating,
to within 1/4, the acceptance probability of a given Boolean circuit. Thus, it is plausible that
approximating the function foapp may not be necessary for concluding that BPP = P, while it is
necessary for concluding that APP = AP.

Remark 19. We observe that Theorems 15 and 16 relativize. Hence, with respect to the oracle A
that we construct in this section, none of the assumptions A1 — A6 holds, even though BPP# = P4,

The main theorem of this section is the following.

Theorem 20. There is an oracle A such that BPP? = PA| but APP# £ AP,

For the proof, we need the notion of an oracle circuit as defined in [Wil85]. An oracle circuit is
a standard circuit which may also contain oracle gates, where a k-input oracle gate outputs 1 on
input 2 if x belongs to the given oracle, and outputs 0 otherwise. The size of an oracle circuit is
defined as the number of edges in its graph representation.

We define the relativized version of CAPP in the obvious way: for any oracle O, CAPP? is
the problem of computing the acceptance probability of a given oracle circuit relative to O. Let
[e-CAPP]? denote the relativized version of e<CAPP.

For an oracle O, we say that a probabilistic polynomial-time oracle machine R is a BPP machine
with respect to O if the acceptance probability of R” on any input z € {0,1}* is either at most 1/4
or at least 3/4.

Theorem 21. There is an oracle A such that BPPA = PA, but [1/4-CAPP]* is not solvable by
any deterministic polynomial-time oracle Turing machine DA,

For our oracle construction, we use standard techniques, as found, e.g., in [BGS75, Rac82, Sip82,
HH87, BI87, IN88, MV96]. A complete proof of Theorem 21 is given in Appendix B.

6 R.E. or Not R.E.

In this section, we consider the problem of recursively enumerating classes AP and APP. We say
that AP is recursively enumerable (r.e.) if there is a deterministic Turing machine M (z, 1¥,y) such
that, for every fixed z, M,(1%,y) = M(x,1%,y) runs in time poly(k, |y|), every M, approximates
some AP function, and every AP function is approximated by some M,. The recursive enumerability
of APP is defined similarly.

For any standard complexity class of languages, the existence of a complete problem under
many-one polynomial-time reductions implies the recursive enumerability of this class: we can
enumerate exactly all languages in such a class by enumerating all polynomial-time reductions. In
contrast, it is not immediately clear whether the existence of complete functions for AP and APP
should imply that these two classes are r.e. However, we can show that AP is r.e.

Theorem 22. The class AP is r.e.

Proof. We will describe a rational-valued computable function F(z,y,1*) that is “universal” for
the class of AP functions. That is, every z describes an AP function f.(y) approximated by
F,(1*y) = F(z,y,1%), and, for every AP function f(y), there is a string = such that f(y) is
approximated by F, (1%,).

Let the index z include a description of a Turing machine M, and a polynomial time bound
p(n, k) to be imposed on M. The actual machine computing F,.(1*,y) is a modification M’ of M.
Here is a recursive description of the action of M’. On input (1°,y), M’ outputs 1/2. On input
(1%, y), where k& > 0, M’ simulates M on input (16]‘“2, y) for the alloted time p(n,6k*) and comes
up with a tentative output r. If r is outside the interval [0, 1], then M’ outputs 0. Otherwise, M’
recursively calls itself on input (1¥=',y), obtaining an output r’. If [r —r/| < 1/k?, then M’ outputs
r; otherwise, M’ outputs r’.

The machine M’ is designed so that it runs in polynomial time, and for each fixed input y,
there exists the limit of its outputs as k& approaches infinity. Hence, M’ is approximating a well-
defined AP function f.. On the other hand, our choice of parameters also ensures that, for every
AP function f(y) computable by a Turing machine M with a description z, the machine M’ on
input (1%,) always outputs the value M (16%”y), and hence F,(1%,y) is approximating f(y). O

It is not clear, on the other hand, whether APP is r.e., even though it has a complete function.

7 Final Remarks

It is interesting to contemplate which uses of randomness would still be important, even if APP =
AP. We would certainly still need randomness to choose keys in cryptographic applications. Ran-
domness would also be necessary in order to “break symmetry” in many distributed computing
applications. A third (less convincing) example is provided by some online algorithms, where we
use randomness to defeat a certain class of offline adversaries. An especially interesting use of
randomness is in the construction of certain combinatorial objects; if we have an efficient test for
such an object, then “APP = AP” can be used for a deterministic construction (recall Theorem 18),
but otherwise randomness seems necessary.

Lastly, we mention an example from science again. Consider a physicist who wants to do a
probabilistic simulation; he doesn’t know why, or what he wants to measure — he just wants to
sit back and watch the simulation unfold, and look for something interesting. Unless we know how
to model the physicist as a Turing Machine (and we don’t), we will need randomness here as well.
We invite the reader to think of other examples. (Hint: Anyone up for poker?)

References

[ACR98] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandomization
method. Journal of the Association for Computing Machinery, 45(1):179-213, 1998.
(preliminary version in ICALP’96).

[ACRT99] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Weak random sources,
hitting sets, and BPP simulations. STAM Journal on Computing, 28(6):2103-2116, 1999.
(preliminary version in FOCS’97).

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic computa-
tion. In C. Meinel and S. Tison, editors, Proceedings of the Sizteenth Annual Symposium
on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes in Computer
Science, pages 100-109. Springer Verlag, 1999.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. STAM Journal
on Computing, 4(4):431-442, 1975.

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the
Twenty-Fighth Annual IEEE Symposium on Foundations of Computer Science, pages
118-126, 1987.

[GW99] O. Goldreich and A. Wigderson. Improved derandomization of BPP using a hitting set
generator. In D. Hochbaum, K. Jansen, J.D.P. Rolim, and A. Sinclair, editors, Random-
ization, Approximation, and Combinatorial Optimization, volume 1671 of Lecture Notes

in Computer Science, pages 131-137. Springer Verlag, 1999. (RANDOM-APPROX’99).

[HHS6] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete
languages for UP. In L. Kott, editor, Proceedings of the Thirteenth International Col-
loquium on Automata, Languages, and Programming, volume 226 of Lecture Notes in
Computer Science, pages 123-135. Springer Verlag, 1986.

10

[HHS7]

[HI85]

[HLYS86]

[IN8S]

[ISW99]

[TW97]

[KEFS2]

[Ko91]

[MRO5]

[MV96]

[Rac82]

[Sip82]

[Sip83]

[Wil85]

J. Hartmanis and L.A. Hemachandra. One-way functions, robustness, and the non-
isomorphism of NP-complete sets. In Proceedings of the Second Annual IEKFE Conference
on Structure in Complexity Theory, pages 160—-174, 1987.

J. Hartmanis and N. Immerman. On complete problems for NP N CoNP. In W. Brauer,
editor, Proceedings of the Twelfth International Colloguium on Automata, Languages,
and Programming, volume 194 of Lecture Notes in Computer Science, pages 250-259.
Springer Verlag, 1985.

J. Hartmanis, M. Li, and Y. Yesha. Containment, separation, complete sets, and immu-
nity of complexity classes. In L. Kott, editor, Proceedings of the Thirteenth International
Collogquium on Automata, Languages, and Programming, volume 226 of Lecture Notes
in Computer Science, pages 136-1145. Springer Verlag, 1986.

R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proceedings of
the Third Annual IEEE Conference on Structure in Complexity Theory, pages 29-38,
1988.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness
into pseudo-randomness. In Proceedings of the Fortieth Annual IFEE Symposium on
Foundations of Computer Science, pages 181-190, 1999.

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandom-
izing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pages 220-229, 1997.

K. Ko and H. Friedman. Computational complexity of real functions. Theoretical
Computer Science, 20:323-352, 1982.

K. Ko. Complezity Theory of Real Functions. Birkhduser, Boston, 1991.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, 1995.

A.A. Muchnik and N.K. Vereshchagin. A general method to construct oracles realizing
given relationships between complexity classes. Theoretical Computer Science, 157:227—
258, 1996.

C. Rackoff. Relativized questions involving probabilistic algorithms. Journal of the
Association for Computing Machinery, 29(1):261-268, 1982.

M. Sipser. On relativization and the existence of complete sets. In Proceedings of the
Ninth International Colloquium on Automata, Languages, and Programming, volume
140 of Lecture Notes in Computer Science, pages 523—-531. Springer Verlag, 1982.

M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, pages 330-335, 1983.

C.B. Wilson. Relativized circuit complexity. Journal of Computer and System Sciences,
31:169-181, 1985.

11

A Proof of Theorem 16

First, for every € = ¢(n) > 0, we define the following promise problem.

€(n)-SAT
Given: An n-input Boolean circuit C.
Output: 0 if Procqo132[C(7) = 1] =0, and 1 if Pryoeio132[C(2) = 1] > €(n).

The following lemma shows the robustness of ¢-SAT; a version of this lemma for the case of
Hitting Set Generators was proved in [ACR9S].

Lemma 23. If(1— Q_ﬁ)-SAT is solvable in deterministic polynomial time, then there is a deter-
ministic polynomial-time algorithm A such that A(1%,C) solves 1/k-SAT for all circuits C and all
k€ N.

Proof. We describe a reduction from ¢(n)-SAT to (1 — 27V?)-SAT, which runs in time polynomial
in the size of the input circuit and 1/¢(n). For any given Boolean circuit C : {0,1}" — {0, 1} with
Pr,c0,132[C(2) = 1] > € = €(n), define C'(zy,...,2;) = \/;:1 C(z;), where each z; € {0,1}".
Then Prycio=[C*(z) = 0] < (1- e(n))" < e, which is at most 2=V for t > n/e? and
sufficiently large n. O

Thus, in our proof of Theorem 16, we can assume that we are given a deterministic algorithm
A for solving ¢(n)-SAT on an n-input Boolean circuit C' in time poly(|C/|, 1/¢(n)).
We will need the notion of a discrepant set for a Boolean function (circuit).

Definition 24. For a Boolean n-input circuit C' and any 0 < ¢ < 1, we say that a set @ # 5 C
{0, 1}™ is e-discrepant for C'if [Pryc(g132[C(2) = 1] = Pryes[C(y) = 1]| < e

For S C {0,1}" and a € {0,1}", we define the set S @ a = {s@ a| s € S}, where s @ a is the
result of XORing s and a bitwise; in other words, Sda is an affine translation of S by @ in the
Boolean vector space.

Definition 25. For a Boolean n-input circuit C' and any 0 < € < 1, we say that a set @ # 5 C
{0,1}" is e-concentrated with respect to C' if |pmin(C,S) — pmax(C, S)| < €, where pmin(C,S) =
min,e 132 { Prresga[C() = 1]} and pmax(C, S) is defined similarly.

An interesting relationship between discrepancy and concentration is provided by the following

lemma, which is implicit in [ACR98, ACRT99].

Lemma 26. For a Boolean n-input circuit C and any 0 < ¢ < 1, if a set @ # S C {0,1}" is
e-concentrated with respect to C', then S is e-discrepant for C'.

Proof. 1t is not difficult to see that, for any S # @, we have
1
> Y PricsalC(z) = 1] = Pryg(o,3-[C(2) = 1]. (3)
a€{0,1}m

Since the average value of any function over a finite set is contained between its minimum and
its maximum over this set, we conclude that both Pr,c(g13»[C'(z) = 1] and Pryes[C(z) = 1] are
contained between puin(C,S) and pmax(C,S), and hence, S is e-discrepant for C. O

Next we show that, for any Boolean circuit C, there exist small sets that are concentrated with
respect to C'.

12

Lemma 27. For any n-input Boolean circuit C' and any 0 < € < 1, there exists an m € poly(n, 1/¢)
such that at least a half of all sets S C {0,1}" of size m are e-concentrated with respect to C'.

Proof. As in [ACR98], we prove the following two claims, which will imply our lemma.

Claim 28. For any n-input Boolean circuit C' and any 0 < ¢ < 1, there exists an m € poly(n, 1/¢)
such that, for at least a half of sets S C {0,1}" of size m, the following holds: S®a is e-discrepant
for C, for every a € {0,1}".

Proof of Claim 28. Fix any a € {0,1}". Let S be a set of m vectors from {0,1}"” chosen indepen-
dently and uniformly at random. Clearly, the vectors in S@a are also uniformly distributed and
independent.

By Chernoff’s bound, the probability that S&@ea is not e-discrepant for C' can be made smaller
than 27"~1 by choosing m € poly(n, 1/¢). Thus, the probability that, for a random S of size m, there
exists an a € {0,1}" such that S@a is not e-discrepant for C'is smaller than 272-"=1 =1/2. O

Claim 29. For any n-input Boolean circuit C', set @ # S C {0,1}", and 0 < € < 1, if SPa is
e-discrepant for C for every a € {0,1}", then S is 2e-concentrated with respect to C.

Proof of Claim 29. Let Gmin, @max € {0,1}" be such that pmin(C,S) = Pr cgeay, [C(z) = 1] and
Pmax(C} S) = Procsoamax [C(2) = 1]. Since S®amin is e-discrepant for C', we get that

pmin(Cv S) = Prl’ES@amin [C(Z) = 1]
2 Procionn[C(z) = 1] — ¢

and, similarly, since S@®amax is e-discrepant for C', we get that pmax(C, S) < Pryego13-[C(z) = 1]+e.
Hence, pmax(cy S) - pmin(ca S) < 2e. O

This finishes the proof of Lemma 27. O

For a given n-input Boolean circuit C' and 0 < € < 1, consider the algorithm D-TEsT¢ . given
in Figure 1. Note that the running time of D-TEsT¢, is polynomial in |C| and 1/¢, assuming
the existence of a polynomial-time algorithm A for promise SAT. We shall argue that every set S
accepted by D-TEST¢ . is 2e-discrepant for €', and that D-TEST¢ . accepts many sets S.

Theorem 30 (Soundness of Discrepancy Test). If D-TEST¢ . accepts a set S, then S is 2¢-
discrepant for C.

Proof. Let S be any set accepted by D-TESTg .. It follows that there exist 0 < pq,ps < 1 such
that, for all but at most ¢ fraction of vectors a € {0,1}", we have p; < Pr,cge.[C(2) = 1] < po.
Using Identity (3), we obtain that p; —e < Pryc(g13n[C'(z) = 1] < p2 +e¢. The theorem follows. [

Theorem 31 (Richness of Discrepancy Test). At least a half of all input sets S C {0, 1}" will
be accepted by D-TESTc ..

Proof. Tt follows from Lemma 27 that at least a half of all sets S of size m are such that pmax(C,.5)—
Pmin(C, S) < €. Since, for p; = pmin(C, 5) and py = pmax(C, 9), Prae{o’l}n[Cbad(a) =1] =0, we
conclude that each such set S will pass the test. O

13

D-TEST¢ ((S5)
Input: a set S C {0,1}" of size m, where m is as in the proof of Lemma 27.
begin
for all 7,7:0<:<j< mdo
p1i=1/m; py = j/my;
CP2d :=an n-input Boolean circuit such that C*2d(a) = 0 iff
P1 < Preesga[C(z) = 1] < po
if (1 < Procs[C(z) = 1] < pa) and (p2 — p1 < ¢) and (A1, ¢ = o)
then return 1
end if
end for
return 0
end

Figure 1: Discrepancy test

To finish the proof of Theorem 16, we will show how to approximate the acceptance probability
of a given Boolean circuit €, using the algorithm A for promise SAT and the algorithm D-TEsT
described above. Observe that each set S passing the discrepancy test yields a correct estimate
p(C, S) of the acceptance probability of C', where p(C, S) = i/m for some 0 < i < m. Let us map
each set S passing the test to the value p(C,S). Since there are at most m + 1 different values
for p(C,.9), there is an i, 0 < i < m, that gets at least 1/(2(m + 1)) fraction of all sets S passing
the discrepancy test, which is at least 1/(4(m + 1)) of all sets S of size m by Theorem 31. This
suggests the algorithm ESTIMATOR given in Figure 2.

EsSTIMATOR(C €)

Input: an n-input Boolean circuit C' and 0 < € < 1.

begin
for all 7::0<2<mdo
pi=ifm;

Cdtest . —an mn-input Boolean circuit such that C4t°st(S) = 1 iff
D-TEST¢,(S) =1 and p = Pryes[C(z) = 1]
if (A(1[(A(m+1))71 Cd-test) — 1) then return p
end if
end for
end

Figure 2: Estimator

The algorithm EsSTIMATOR(C, €) approximates the acceptance probability of C' to within 2e.
Indeed, the soundness of ESTIMATOR follows from that of D-TEST (Theorem 30); its completeness
follows from the existence of p = i/m, 0 < i < m, for which C'4tst has the acceptance probability
at least 1/(4(m+ 1)), and therefore it will be accepted by A. It is easy to check that the running
time of ESTIMATOR(C €) is polynomial in |C] and 1/e.

14

B Proof of Theorem 21

Define S = {n;| i € N} to be the set of lengths n;, where ny = 1 and n;.; = 22", Our oracle A will
be of the form B & QBF, where QBF is the PSPACE-complete language of true quantified Boolean
formulas; here, for sets B and C', B@ C' = {0u| v € B} U {1v| v € C'}. The set B will not contain
any words of length [€ N\ S.

Define ¢, to be the oracle circuit on n inputs that accepts z € {0,1}” iff 0z belongs to the
oracle. Observe that Prxe{oil}n[cfeac(ac) = 1] is exactly the fraction of n-bit strings in B. Let
e, = Enc(c,) be a binary encoding of the circuit ¢,, using any fixed encoding function Enc. Let
Dqg, Dy, Dy, ... and Ry, Ry, Ro, ... be enumerations of deterministic and probabilistic polynomial-
time oracle Turing machines, respectively.

CONSTRUCTION. We define the set B in stages; at each stage, B is defined for a finite set of
lengths. First, B is undefined for all lengths. At stage i = 2k 4+ 1, we extend the definition of B
so that Dy fails to solve 1/4-CAPP with respect to this extension. At stage i = 2k + 2, we extend,
if possible, the definition of B so that Ry is not a BPP machine with respect to this extension.
Note that, everywhere below, whenever we talk about an extension of an oracle defined for finitely
many lengths to a completely defined oracle, we consider only those extensions that are empty for
all lengths [€ N\ S. In more detail, the construction of B is given in Figure 3.

Stage 0: B is undefined for all lengths [€ N.
Stage i: Let B;_; be defined for all lengths < m.

Case 7 = 2k + 1: Choose the smallest n € S such that n > m and Dy on input e, runs in
time less than 2”~!. Let C be the extension of B,_; that is empty on all lengths > m, and let
Dg®QBF(6n) = a € Q. Denote by Y the set of all oracle queries made by Dj(e,) to C; by the
above, |Y| < 277!, There are two subcases.

1. @ > 1/4. Then extend the definition of B;_; so that B; is empty on lengths m <[< n.

2. a < 1/4. Then extend the definition of B;_; by adding any 27~1 4 1 strings of length n that
are not in Y; make B; empty on all lengths m <[< n.

Case 1 = 2k 4 2: There are two subcases.

1. There is an extension C' of B;_; such that R,?@QBF is not a BPP machine with respect to

C & QBF, i.e., there is an input = € {0,1}* such that PI'[R](:@QBF(m) = 1] € (1/4;3/4).
Let Y be the set of all queries made by Ri(z) to C, over all random choices of Ry, and let
n = maxyey |y|. Then extend the definition of B;_; to all lengths m < I < n so that y € B;
iff ye C, forallyeY.

2. For every extension C' of B;_;, Ry is a BPP machine with respect to C'® QBF. Then leave
the definition of B; the same as that of B;_;.

Figure 3: Defining the set B.

CORRECTNESS. The correctness of our construction follows from the next two claims.

Claim 32. [1/4-CAPP]BERBY cannot be solved by any deterministic polynomial-time machine us-
ing B & QBF as an oracle.

Proof of Claim 32. Note that, at stage ¢ = 2k+1, the kth polynomial-time machine Dy, is defeated:

15

the set B; is defined so that DE@QBF(en) = «, where « is more than 1/4 away from the correct
answer for e, with respect to B. O

Claim 33. BPPB®QBF — pBoQBF,

Proof of Claim 33. Our proof is very similar to the proof of a related result in [MV96, Lemma 4.2].

Let R = Rj be any probabilistic polynomial-time oracle machine that was not defeated at stage
1 = 2k + 2 of our oracle construction, i.e., for any oracle C extending B;_, the machine R is a BPP
machine with respect to C' @ QBF. It suffices to show that there is a deterministic oracle machine
M such that

1. MB(z) = RBOPBF () for all 2 € {0, 1}*, and
2. on input 2, M runs within poly(|z|) space and makes at most poly(|z|) oracle queries.

Using the PSPACE-completeness of QBF, such a machine M can then be easily converted into a
deterministic polynomial-time oracle machine MB®RBF jccepting the same language as M5B (see,
e.g., [MV96, Lemma 1.3] for a proof of this).

The algorithm for M is as follows. On input z, we first find the smallest n = n; € S such that
logon < |z] < 2. Without loss of generality, we may assume that z is sufficiently long so that
R on z cannot query strings of length > n;4;, and that n is bigger than the maximum length for
which B; was defined.

Let t € poly(|z|) be the running time of R on input z, and let » < ¢ be the number of random
bits used by R on any single computation path. For an oracle O, we associate with each of 2"
possible random strings o; used by ROPRBF (2) the set Q; of n-bit strings for which R queries O,
when using a; as a random string. For a string y € {0,1}"”, we denote by wo(y) the fraction of
@1’s containing y. Clearly,

Z wo (y) < t, (4)

yE{O,l}"

for any oracle O, since each of the 2" random strings contributes at most ¢ different y’s. Let
Wo = {y € {0,1}"| wo(y) > 1/(8t)}. Inequality (4) immediately yields that [Wo| < 8t2. The
following lemma is an adaptation of a claim in [MV96, Claim, p. 240].

Lemma 34. Let B’ be any extension of B;_y, and let C' be any oracle that agrees with B’ on all
words from W = Wpg: and all words of length less than n.

1. If Pr[RB'®QBY (3) = 1] > 3/4, then Pr[RCBRBY (2) = 1] > 3/4.
2. If Pr[RP'®PF (1) = 1] < 1/4, then Pr[RCEPF () = 1] < 1/4.

Proof of Lemma 8. Statement 1. Suppose that there is an oracle C' that agrees with B’ on all
words from W and all words of length less than n, but Pr[RE®PF (2) = 1] < 3/4. Since Ris a
BPP machine with respect to C & QBF, this implies that Pr[RC®PBF (2) = 1] < 1/4. Let us choose
such an oracle C' that differs from B’ on the smallest number of strings. Denote by U the set of
those n-bit strings where B’ and C differ.

By a counting argument, we show that wc(y) > 1/2 for each y € U. Indeed, for any y € U,
let C'y be obtained from C' by adding y to C'if y € ', or removing y from C' if y € C. Since
UNW = @, the set Cy still agrees with B’ on all words from W and all words of length less
than n, but it differs from B’ on fewer words than C' does. The minimality of C' implies that

16

Pr[RCv®RBY () = 1] > 3/4. Thus, changing C on a single string y resulted in a jump of at least
1/2 in the acceptance probability of R on z, which is possible only if w¢(y) > 1/2.

Now, Inequality (4) implies that |[U| < 2¢. Since U NW = &, we get that wg/(y) < 1/(8¢) for
eachy € U, and so 3, .y wp/(y) < 2t/(8t) = 1/4. Thus, changing B’ on strings in U can affect the
acceptance probability of R on z by less than 1/4, but Pr[RBl@QBF(m) = 1] — Pr[RO®BF (3) =
1] > 3/4 —1/4 = 1/2, which is a contradiction.

Statement 2. The proof is analogous to that of Statement 1 above. O

For any oracle O and any set U C {0,1}", we denote by Q(O, U) the set of all oracles C' such
that C agrees with O on all words in U and all words of length less than n, and C' contains at most
8t* words from {0,1}"\ U. As in [MV96], we obtain the following,.

Lemma 35. Let B’ be any extension of B;_.

1. Pr[RP'®RBF () = 1] > 3/4 iff there is a set U C {0,1}" of size at most 8t*> such that
Pr[RCOQBE (1) = 1] > 3/4 for every oracle C € Q(B',U).

2. Pr[RP'®RPF () = 1] < 1/4 iff there is a set U C {0,1}" of size at most 8t such that
Pr[REORBY (3} = 1] < 1/4 for every oracle C € Q(B',U).

Proof of Lemma 35. Statement 1. =. This follows from Statement 1 of Lemma 34 by choosing
U=Wg.

<. Suppose that there is a set U C {0,1}" of size at most 8¢? such that Pr[RE®PF (z) =
1] > 3/4 for every oracle C' € Q(B',U). Let W = Wpg/, and let D be the oracle that agrees with
B’ on all words of length less than n and all words in U U W, and that contains no words from
{0,1}"\ (U UW). Then Pr[RPOPB¥(z) = 1] > 3/4, and hence, by Statement 2 of Lemma 34, we
should have Pr[RP'®QPBF (z) = 1] > 3/4.

Statement 2. The proof is analogous to that of Statement 1 above. O

Let B’ be any extension of B;_;. Observe that each set U containing at most 8¢ € poly(|z|)
binary strings can be specified with at most poly(|z|) bits. Also, for every such U, each oracle
C € Q(B',U) can be completely specified with only poly(|z|) bits: there are at most poly(|z|)
binary strings of length less than n, and C' may contain at most 162 strings of length n. Hence,
for such C’s, we can compute Pr[R¢®R@BF (z) = 1] in polynomial space, querying B’ on at most
poly(|z|) strings.

To conclude the proof, we use the techniques from [BI87, HH87]. Our polynomial-space algo-
rithm for deciding the language of RPPIBY that uses at most poly(|z|) queries to B is sketched
below.

On input z, repeat the next step for [= 1,...,8¢%. Find a set U(l) C {0,1}" of size at most
8t% and an extension B'(/) of B,_; such that B’(/) agrees with B on all strings queried so far, and
Pr[ROPBF (z) = 1] > 3/4 for every oracle C € Q(B'(l),U(l)). Query B on all strings in U(/). If
no such U(l) and B’(l) can be found, then reject.

If z was not rejected in the loop above, try to find a set U C {0, 1}" of size at most 82 such that
B was already queried on each y € U and Pr[RE®PBY (2) = 1] < 1/4 for every oracle C € Q(B, U).
If such a U can be found, then reject; otherwise, accept.

To see why the described algorithm is correct, consider any set U C {0,1}" of size at most
8t2 such that Pr[RY®QBF (2) = 1] < 1/4 for every oracle C' € Q(B,U). Suppose that = was not
rejected in iteration / for any [< 8¢2. Then U must intersect each U(l), 1 <[< 8t?, at some string
y; such that B’(l) and B disagree on y;. Otherwise, there would exist an extension B’ of B;_; that

17

agrees with both B'(/) on U(l) and B on U, but this is impossible by Lemma 35. All such y’s
must be distinct, since B/(l) agrees with B on every z € U(l) N U(m) for m < [. Thus, after 8t
iterations, the value of B is known for every y € U, and so z will be rejected. O

The proof of Theorem 21 is now complete.

ECCC ISSN 1433-8092
18 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

