Electronic Collogquium on Computational Complexity, Report No. 35 (2000)

Independent minimum length programs to translate between given

strings

Nikolai K. Vereshchagin
Moscow State University
ver@mccme.ru*

Abstract

A string p is called a program to compute y given
z if U(p,z) = y, where U denotes universal pro-
gramming language. Kolmogorov complexity K (y|z)
of y relative to z is defined as minimum length of
a program to compute y given z. Let K(z) de-
note K (z|empty string) (Kolmogorov complexity of
z) and let I(z : y) = K(z) + K(y) — K({z,y)) (the
amount of mutual information in z,y). In the present
paper we answer in negative the following question
posed in [1]: Is it true that for any strings z,y there
are independent minimum length programs p,q to
translate between z,y, that is, is it true that for any
x,y there are p, ¢ such that U(p,z) =y, U(q,y) = =z,
the length of p is K(y|z), the length of ¢ is K (z|y),
and I(p: q) = 0 (where the last three equalities hold
up to an additive O(log(K (z|y) + K (y|z))) term)?

1 Introduction

We write string to denote a finite binary string. Oth-
er finite objects, such as pairs of strings, may be en-
coded into strings in natural ways. The set of all
strings is denoted by {0, 1}* and the length of a string
z is denoted by I(x),

*Dept. of Mathematical Logic and Theory of Algorithm-
s, Moscow State University, Vorobjevy Gory, Moscow 119899,
Russia. The work was done while visiting L.I.P., Ecole Nor-
male Supérieure of Lyon.

fDept. of Mathematical Logic and Theory of Algorithms,
Moscow State University, Vorobjevy Gory, Moscow 119899,
Russia.

Michael V. Vyugin
Moscow State University
misha@vyugin.mccme.ruf

The Kolmogorov complexity, K (x) of a string x is
the length of a shortest program to compute z. We
assume that some universal programming language U
is fixed and we write U(p, z) = y if the program p on
input x computes y. Intuitively, K (z) represents the
minimal amount of information to generate z by an
effective process. The conditional Kolmogorov com-
plexity, K (x|y) of z relative to y is the length of the
shortest program that computes z given y as an in-
put. The mutual information between x and y is the
quantity

I(z:y) = K(z) + K(y) - K({z,9)).

Following [1] we define information distance be-
tween z,y as d(z,y) = max{K(z|y), K(y|z)}. An-
other natural notion of information distance between
z,y is the length of the shortest program that given
x computes y and, conversely, given y computes .
Let di(x,y) denote this value. Obviously,

d(z,y) < di(z,y) < K(zly) + K(y|z).

One may expect that in the worst case we have
di(z,y) = K(z|y) + K(y|z). However, one of the re-
sults of [1] states that for any z,y it holds dy (z,y) =
d(z,y) + O(logd(z,y)). This assertion is a direct
corollary of the following theorem.

Theorem 1 (Conversion theorem [1]). Let
K(y|z) > K(z|ly). There is a string d of length
K(y|z) — K(z|ly) ond a program r of length
K(z|ly) + 2K ((K (z|y), K (y|z))) + O(1) that given zd
computes y and conversely, given y computes xd.

ISSN 1433-8092

This theorem implies that there are minimum
length programs p,q to translate between =x,y
that overlap as much as possible. Indeed, given
p = {r,l(d)) and y we can compute z and given
g = {r,d) and x we can compute y.

The opposite question is whether p and ¢ can
always be made completely independent, that is,
I(p : ¢) = 0. That is, is it true that for every z,y
there are p,q such that U(p,z) = y, U(q,y) = =
and U(p) = K(ylo), U(q) = K(aly), I(p : q) =
(where the last three equalities hold up to an ad-
ditive O(log d(z,y)) term)? This question was posed
in [1]. In the present paper we answer it in nega-
tive. Moreover, we show that there are z,y for which
any minimum length p, ¢ to translate between z and
y have maximum overlap, that is K(p,q) = d(z,y)
(Corollary 8 in Section 5).

However, if we require the equalities I(p) = K (y|z),
I(q) = K(z|y), I(p : ¢) = 0 to hold up to an addi-
tive O(log K ({x,y))) term (and not up to an additive
O(logd(z,y)) term), the situation changes drastical-
ly. In this case, there exist always independent p, q
(Section 3).

We study also two related questions: 1) For which
pairs (m,l) (m > 1) for any x of complexity m there
is a random string z of length [such that K(z|z) =
O(logl)? We prove that this is true if m is either
small or very large compared to [. For intermediate
values of m such z may not exist (Section 4). 2) Is it
true that for any z,y there is minimum length p to
translate from y to z that is simple relative to 7 We
obtain a negative answer to this question (Section 5).

Acknowledgements. We are sincerely grateful
to An. Muchnik for suggesting a new proof of Theo-
rem 7, which is used in the present paper, and to A.
Shen for writing Section 4.

2 Preliminaries

The length of a string z is denoted by I(z), A stands
for the empty string. Let Z denote the string

000...01z = 0'@ 14,
——-—

I(z) times

We shall use the string Zy to encode the pair (z,y);
the notation (z,y) will mean the same as Ty. Let
logn denote the binary logarithm of n.

A programming language is a partial computable
function F from {0,1}* x {0,1}* to {0,1}*. The first
argument of F' is called a program, the second ar-
gument is called the input, and F(p,z) is called the
output of program p on input z. A programming
language U is called universal if for any other pro-
gramming language F' there exists a string tr such
that U(tgp,x) = F(p,x) for any p,z. By Solomonoff
— Kolmogorov theorem (see e.g. [2]) universal pro-
gramming languages exist. We fix some universal
programming language U and define

o K(z|ly) = min{l(p) | U(p,y) = z} (conditional
Kolmogorov complexity of z relative to y),

e K(z) = K(z|A) (Kolmogorov complexity of),

e Iz : y) = K() + K(y) — K((z,y)) (mutual
information between z and y).

If U(p,y) = x, we say that p computes z given y. If
U(p,A) = z, we say that p computes z.

Instead of K ({z,y)) and K(z|(z,y)) we shall write
K(z,y) and K(z|z,y) respectively. We use the fol-
lowing well known facts (see [2]):

I(z) + O(1);
K(z) + O(1);

e for any computable function f(x) there is a con-
stant ¢ such that K(f(z)) < K(z) + ¢ for all z
in the domain of f;

. K@) <

* K(zly) <

e there is a constant ¢ such that K(z,y) < K(z)+
K(yls) + 2log K(y[z) + ¢, K(z,9) < K(z) +
K(y|z) + 2log K(z) + ¢ for all z,y (note that
the terms 2log K (y|z), 2log K(x) appear since
we have to encode a pair of programs by one

program);
* K(z,y) 2 K(z) + K(y|z) — O(log K (z,y)).
o I(z:y) > —O(log K (zly)),

I(z 1 y) > —O(log K (y|z))-

e Strings x and y are called independent if I(z : y)
is close to 0. A string z is called random, or
incompressible, if K (x) is close to I(x).

e If z is incompressible then so is any prefix 2’ of =
(I(z")—K(z') < l(z)—K(z)+2logl(z") +O(1)).

e If p is a minimum length program to compute y
given x, then p is incompressible (K (p) = I(p) +
0(1) = K(ylz) + O(1)).

3 Minimum overlap up to an
additive
O(log K (z,y)) term

Theorem 2. For any strings x,y there are p,q such
that U(p,z) = y, U(g,y) = =, I(p) = K(y|z),
I(q) = K(z|y), and I(p : q) =0 (where the last three
equalities hold up to an additive O(log K (z,y)) ter-

Proof. To demonstrate the idea let us present the s-
ketch of the proof assuming K (y|z) = K(z|y) = k.
By Conversion theorem there is a program r of length
about k to translate from z to y and vice versa (that
is, U(r,z) = y,U(r,y) = z). Assume first that z is
incompressible, that is, K(x) is close to I(z). Let z’
consist of the first k bits of z (note that the length of
x is greater than k, since k = K (z|y) < K(z) < l(z);
we omit additive O(1) terms and even O(log K (z,y))
terms). Let p = r @ ' (bitwise sum modulo 2) and
q = r. Then p may be used to find y given z as well
as r: find r as p® z' and use r to find y given z. It
remains to show that strings 7@z’ and r are indepen-
dent, that is K (r@z',r) is close to K (r®z')+ K(r) <
2k. We have K (r@z',r) = K(z',r). But ' and r are
independent, as so are z and r (recall that 7 is a min-
imum length program to compute y given x). There-
fore K(z',7) = K(z') + K(r) = k + k = 2k (since z
is incompressible, so is z', thus K(z') = l(z') = k).
Note that p is not a program to compute y given z in
formal sense. We know only that K (y|z,p) = O(1).
We will fix this later.

Recall that we assumed that z is incompressible.
If = is compressible, let 2" be the minimum length

program to compute z that halts in fewest num-
ber of steps (if there are several programs that halt
in fewest number of steps then take the first one
in the lexicographical order). Then z" is incom-
pressible, and equivalent to x in the following sense:
K(z|z") = O(1), K(z"|z) = log K (z) + O(1) (given
K(z) and z we can find " by running all programs
of length K (z)). As our equalities hold up to addi-
tive O(log K (z,y)) term, we can replace z by z' in
the above arguments.

Consider now the general case. Without loss of
generality assume that K(z|y) < K(y|z). Then
the above argument is modified as follows. Let
r,d be strings which exist by Conversion theorem.
That is, I(d) = K(y|lz) — K(zly), I(r) = K(z|y) +
O(log K (y|z)), U(r,zd) = y, and U(r,y) = zd. Let
2" be defined as earlier and let z' be the prefix of z'
of length K (z|y). (It may happen that the length of
z'" is less than K (z|y). In this case K (z|y) —l(z") =
0(1), as l(z") = K(z) > K(z|y) — O(1) and we let
' =2z2".) Let p = (&' ®r)d and ¢ = r. Obviosly
p,q have proper lengths. And p,q are independent,
as K(p,q) = K(z',r,d) and 2',r,d are independent,
hence K(p,q) = K(z') + K(r) + K(d) = K(z|y) +
K(zly) + (K(ylz) — K(zly)) = K(zly) + K(y|lz) =
K(g) + K ().

Now we have to convert p,q in real programs to
translate between z and y. Given ' ® r, d, z, and
K (x) we can find y (first run in parallel all programs
of length K (z) to find z", then compute z' and r and
apply U to r,zd). On the other hand, given r, I(d),
and y we can find z. Therefore, there are computable
functions f, g such that

f@dr,y) ==z, g(K(@)l(d)(z' ®r)d,z) =y.

By universality of U there are strings ts,t, such that

U(tsl(d)r,y) = =,
Ut,K(2)l(d)(z' ®r)d,z) =y.

Thus let

We have
I(q) = I(r) = K(zly),
lp) =1 ®r)+1(d)
= K(zly) + (K(ylz) — K(z|y)) = K (y|z)
(recall that we omit additive O(log K (x,y)) terms).

So it remains to prove that p and ¢ are independent.
We have

K(p,q) = K(z' ®r,r,d) = K(z',r,d).
and
K(z) + K(ylz) = K(z,y)
K(z',r,d) + K(z|z")
K(z',r,d) + K(z) — l(z')
=K(z',r,d) > K(y|lz) + l(z) = K(y|z) + K (z]y).
Therefore we have

Ip:q) = K(p)+K(g)—-K(pq)

<
<

4 Condensing information

Let x be an arbitrary string. Trying to “compress” it,
we may consider the shortest program z’ to compute
z. Then K (z|z') = O(1) and K (2'|z) = O(log K (z)).
(Indeed, z can be reconstructed from z' without ad-
ditional information; to get z' from z it is enough
to know the length of z', i.e., K(z) which requires
O(log K(x)) bits.) It is easy to see also that z' is
incompressible (“random”), its complexity is close to
its length: K (z') = I(z") + O(1). Therefore, for each
x there exists a random string z' such that K (z'|z)
is small and length of z' is K (x).

If we need a shorter random string that is simple
relative to x, we can take a prefix of ' and come to
the following

Proposition 3. For any string x and for any | <
K (x) there is a string z of length | such that |K(2) —
I| <2logl+0O(1) and K(z|z) < log K(z) + 2logl +

< U(p) +1Ug) — (K(ylz) + K(z]y)) = 0. O O(1).

We shall show that the statement of the theo-
rem becomes false if we require the equalities I(p) =
K(y|z), l(g) = K(zly), and I(p : ¢) = 0 hold up
to an additive O(logd(z,y)) term. To do this let us
look why the above argument does not prove this.
There are two reasons for that. First we have I(p) >
K (y|x) + 2log K(z). Second we used the inequality
that does not hold up to an additive O(logd(z,y))
term (at least we do not know it to hold up to an ad-
ditive O(log d(z,y)) term): K (z)+K (y|z) < K(z,y).

To overcome the first obstacle we have to show that
there is a string z' of length K (z|y) + O(logd(z,y))
such that K(z|z') < K(z) — K(z|y) + O(logd(z,y))
and K (z'|z) = O(logd(z,y)). Note that the require-
ments on z’ imply that ' is random: K(z') > K(z)—
K (z|2")—O(log d(z,y)) > K (z|y)—O(logd(z,y)). In
the next section we prove that sometimes such 2’ does
not exist: there are strings x for which any z' that
is simple conditional to z is unconditionally simple
and hence is not random. It turns out that a mod-
ification of the arguments used in the construction
of such x proves that it is impossible to strengthen
Theorem 2 by requiring the equalities I(p) = K (y|z),
I(q) = K(z|y), and I(p : g) = 0 to hold up to an addi-
tive O(logd(z,y)) term (we prove this in Section 5).

However, the bound for K (z|z) in this proposition
is rather weak (especially if K (x) is much bigger than
1); we would prefer to have O(logl) instead. Let us
fix some constant d. We want to know for which pairs
(m,1) the following holds: for any x of complexity m
there exists z of length [such that K(z|z) < dlogl
and K(z) > 1 — dlogl.

Proposition 3 shows that the pair (m,l) has this
property if m is bounded by a polynomial in [. (More
precisely, if d > 2 we need m = O(1%2) to guarantee
that K (z|z) is bounded by dlogl.)

Such z exists also for very big m. Let m be so large
that the equality K(z) = m implies that z is bigger
than the maximum time to compute U(p,A) for all
p of length at most ! (we identify here z with its
number in some computable enumeration of strings).
Then given z and | we can find the list of all strings
having complexity less than [and take any string z
of length [that is not in the list.

Theorem 4 says that for intermediate values of m
the existence of z is not guaranteed. The theorem
shows that for some m (for some z) any string that
is simple relative to = is unconditionally simple and
therefore cannot be random.

Theorem 4. There exists a constant ¢ such that for
any k, I, m there is a string x with the following
properties:

m < K(x), I(z) =m+2¥1+1)
and each z with 1(z) < 1, K(z|z) < k is uncondition-
ally simple: K(z) < k+2K(m,l|k) + c.

Proof. We are looking for a string « of length N =
m + 2%(1 + 1) such that all k-simple (relative to x)
strings z of length less than ! are (unconditionally)
simple.

Consider a bipartite graph whose left-side vertices
are strings of length less than [and right-side vertices
are strings of length N. String 2z on the left is adja-
cent to x on the right if K(z|z) < k. Each vertex z
on the right has degree less than 2*.

It is convenient to use the following metaphor: Ad-
versary enumerates edges, i.e., pairs (z,z) such that
K(z|z) < k. We may declare some z as “simple”,
assigning short encoding for it. Of course, only lim-
ited number of 2’s could be declared as simple (this
number will be 2%).

Our goal is to guarantee that some z is “good”
in the following sense: all 2’s declared by Adversary
as simple relative to x are declared by us as (uncon-
ditionally) simple. To prove the theorem, we need
many good strings x: if we have 2™ of them, then
some good x has complexity at least m (as required
by the statement of theorem).

Let us describe our strategy. At the first step we
wait until at least 2V — 2™ right-side vertices are
connected to some left-side vertex. (If this never hap-
pens, we are done, because remaining 2™ vertices are
good.) After that we choose string z; of length less
than [that is adjacent to at least (2% —2m)/2! dif-
ferent strings x.

After z; appears, we declare it as “simple”, and
consider only right-side vertices adjacent to z; at this
moment and call them 1-vertices. We have at least
(2N —2m) /2! > 2N~ (+1) 1_vertices. Now we wait un-
til at least 2V~ (41 —2™ 1_vertices are connected (by
Adversary) to some left-side vertex different from z;.
Then we take some vertex zo # z; that is connected
with at least (2V—(+1) — 2m) /2! 1_vertices.

After that we declare z; as simple and consider
only vertices adjacent to 22, calling them 2-vertices.
There are at least (2NV-(+1) — 2m)/9l > oN-2(+1)
2-vertices.

After this procedure is used s times, vertices
Z1,...,2s are declared as simple and there are
at least 2N—s(+D) s vertices (we assume that
N — s(l +1) > 0); each s-vertex is adjacent to
21,--.,%5. But it is possible that for some some s
there are less than 2V—5(+1) _2m & vertices that are
adjacent to something except 21, ..., 2. In this case
we are done, as we have at least 2™ good vertices.
It remains to note that since N = m + 2(I + 1),
then this must happen for some s < 2%, otherwise
we get a 2F-vertex connected to zi,...,2yx which
contradicts our assumption.

It remains to explain why we have upper bound
K(z) < k+2K (m,l|k)+c for any z declared as simple.
Indeed, the process described above is an algorithmic
process determined by m, k,[; the only additional in-
formation we need to specify z; is the value of ¢ which
does not exceed 2* and thus may be specified by a
string of length exactly k. Given that string we find
both ¢ and k and then find m,! applying to k a pro-
gram to compute m, [given k. (Factor 2 is needed for
pairs encoding: K (u,v) < K(u)+2K(v)+0(1).) O

Recall the point we started from. We wanted to
show that for intermediate values of m there are z’s
with K (z) = m for which there are no random z that
are simple relative to . To make this goal precise
fix d and call a string of length | random if K(z) >
I—dlogl. Call a string simple relative to = if K (z|z) <
dlogl. Letting in the above theorem k = dlogl we
obtain

Corollary 5. There exists a constant ¢ such that for
any d, m andl with K(m,l,d) <1/2—dlogl—c there
exists a word x such that m < K(x) < m+1%(1+2)+c
and there is no random z of length | that is simple
relative to x.

5 Minimum overlap up to an
additive
O(logd(z,y)) term

Recall that the question on minimum overlap (up to
an additive O(logd(z,y)) term) asks: Is it true that
for every z,y there are p,q such that U(p,z) = y,
Ulg,y) = = and I(p) = K(yl), i(a) = K(aly),
I(p : q) = 0 (where the last three inequalities hold
up to an additive O(log d(z,y)) term)? We first ob-
tain, as a direct corollary of Theorem 4, a negative
answer to a stronger version of this question whether
for every x,y there is p to transform y to x that is
simple relative to z. That is, is it true that for every
x,y there is p such that U(p,z) = y, K(ply) = 0,
I(p) = K(y|r) (where the last two equalities hold
up to an additive O(logd(z,y)) term)? Note that a
positive answer to the latter question would imply a
positive answer to the former one. Indeed, assume
that for any z,y such p exists. Then for any ¢ with
K(z|q,y) =0 and I(q) = K (z|y) we have

Uq) = K(zly) < K(ply) + K(q|p) + K (z|q,y)
< K(glp) < (),
I(p:q) = K(q) + K(p) — K(p,q)
= K(q) — K(q|p) < 1(q) — K(q|p) =0

(all inequalities hold up to an additive O(logd(z,y))
term). That is, p is independent of every minimum
length program to transform y to z.

The following theorem shows that for some z,y
there is no such p.

Theorem 6. There exists a constant ¢ such that for
any d > 1 and n the following holds: there exist
strings x and y such that

I(z) < nin+dlogn+2),
K(zly) < n+g, (1)
K(ylz) < dlogn+log(n+dlogn)+c (2)

and there is no p of length less than n + dlogn such
that

K (p|z)
K(z|p,y)

< dlogn,
< n—(d+4)logn—3logd— O(1).

Proof. Let in Theorem 4 k = dlogn, l =n + dlogn,
and m = n. Let z a string which exists by Theorem 4.
There is a prefix y of z satisfying (1), (2) and the in-
equality K(zly) > n. Indeed, K(z|A) = K(z) > n
and K(z|z) = O(1). When we remove the last letter
from y the complexity of y changes by O(1), there-
fore, there is a prefix y of z such that n < K(z|y) <
n + O(1). Obviously, K (y|z) < logl(z) + O(1), the
inequality (2) follows.

By Theorem 4 for any p of length less than n +
dlogn with K(p|z) < dlogn we have

K(p) < dlogn+2K(n) +2K(d) + O(1)
< (d+2)logn + 2logd + O(1)
n < K(oly) < K(zlp,y) + K(p) + 2log K(p) + O(1)
< K(z|p,y) + (d+ 2)logn + 2logd
+2log K (p) + O(1)
< K(z|p,y) + (d+4)logn + 3logd+ O(1). O

Let us show now that minimum overlap is impos-
sible for some z,y (up to an additive O(logd(z,y))
term).

Theorem 7. For any integer n, f and g there are
strings , y such that n < K(z|y),K(y|z) < n +
2K(f,g,K(n, f,g)|n) + O(1) and the the following
holds. For any p, q of lengths less than n + f such
that K (y|p,z) < g, K(z|q,y) < g it holds

K(p,q) Sn+2f+29+7K(n, f,9) +0(1).
The lengths of z, y are (n+ f)2"n+2/+29+5K(n.f,9)+0(1),

Proof. Our plan is as follows. Theorem 4 shows that
for any k,m there is z such with high complexity
(K(z) > m) such that any z that is simple con-
ditional to = (K(z|z) < k) is unconditionally sim-
ple (K(z) < k; we neglect additive terms of order
O(K(n, f,g))). Apply Theorem 4 for k = n+2f+2g,
m=mn,l =n+ 2f. Assume first that there is y such
that both relative complexities K (z|y), K (y|z) are
close to n. Then x,y satisfy the statement of the the-
orem. Why? Let p, g be as in the condition of the the-
orem, that is, [(p), l(q) < n+f, K(y|p, z), K (z|q,y) <
g- We have to show that K(p,q) <n + 2f + 2g. By
the choice of z it suffices to prove that K(p,q|z) <

n + 2f + 2g. To prove the latter fact it suffices to
show that K(q|p,z) < f + 2g, or (recalling that
K(ylp,z) < g) to show that K(q|z,y) < f +g. To
prove the inequality K(g|z,y) < f + g consider the
set @ ={q¢' | l{¢") <n+ f,K(z|y,q") < g}. It has at
most 2719 elements. Indeed, the number of ' such
that the set Q, = {¢' | I(¢) < n+ f, K(z'|y,q') < g}
has significantly more than 2/19 elements is signifi-
cantly less than 2" (it is less than the number of
pairs (g, z') such that I(¢') < n + f, K(z'|y,¢') < g
(2nt+/+9) divided by 2/19). All such 2’ are enumer-
able given y, hence their complexity relative to y is
significantly less than n. As K(z|y) is close to n we
conclude that |Q| < 2/19. Since @ is enumerable giv-
en z,y and g € @, we derive that K(g|z,y) < f+g
(to enumerate) we need also n + f and g; these
numbers can be specified by K(n, f, g) bits).

To finish this argument we need the following as-
sertion

e for any n with K(z) > n thereis y such that both
relative complexities K (z|y), K (y|z) are close to
n (say K(z|y), K(y|lz) = n + O(logn)).

This assertion is true, however the proof is rather
complicated (it will be published elsewhere). We will
not use it, instead we will modify the argument of
Theorem 4 to construct z as in Theorem 4 together
with y such that K(z|y), K (y|z) = n + O(logn).

So we start with the following

Lemma 1. For any parameters I, k and n (k > n)
there exist strings x and y such that

I(z) =1(y) = 2" +1),
n < K(zly), K(ylz) <n+2K(1 kn) + 0(1),

and for any z of length less than 1 such that K (z|z) <
k it holds K(z) < k + 2K(l,n|k) + O(1).

Proof. Modify the proof of Theorem 4 as follows.
Strings of length less than [are considered as left-
side nodes and strings of length N = 2%(2] + 1) as
right-side nodes. The Adversary draws a directed
edge from a right-side node z to a left-side node
z if K(z|z) < k and draws a directed edge from
a right-side node z to another right-side node y if
K(y|z) < n. We may declare at most 2* left-side

nodes as simple. And we may connect two right-side
nodes by an (undirected) edge so that any node is
connected with at most 2" right-side nodes.

Our goal is to guarantee that some pair (z,y) of
right-side nodes is “good” in the following sense: 1)
we have connected z and y, 2) Adversary has not
connected z and y (by a directed edge), and 3) all
left-side nodes connected to z have been declared as
simple.

Let us describe our strategy. Arrange all right-side
vertices into pairs (21,91),...,(Zk,yKx) (where
K = 2N-1), For all i < K connect z; to y;.
Call all right-side nodes O-vertices, and call all
pairs (z1,y1),...,(TK,yKx) O-pairs. Repeat for
s=1,2,...,2* the following.

1. Wait until for any (s — 1)-pair (x;,y;) at least
one of the conditions holds: Adversary has connected
x; and y;, or Adversary has connected both z; and y;
to some left-side nodes that has not been declared as
simple. (If for some z;,y; neither of two conditions
holds then either (z;,y;) or (y;, ;) is good and we
are done.)

2. By Pigeon Hole Principle we can choose left-
side nodes u, v that have not been declared as simple
such that for a fraction at least 272 of (s — 1)-pairs
either x; is connected to v and y; is connected to
v, or Adversary has connected z; to y;- Remove all
other (s — 1)-pairs and declare both u and v simple.
If there is a directed edge from z; to y; remove y; and
call x; alone. If there is a directed edge from y; to x;
remove x; and call y; alone. Call all the remaining
nodes s-vertices.

3. Arrange all alone strings in pairs and connect
each alone string to the other string from the same
pair. Call remaining pairs s-pairs.

On step s we have at least 2V—1-5+1) > 1 g_pairs
and from each s-vertex at least s directed edges go
to nodes that are not s-vertices. But it is possible
that for some some s we will wait infinitely long in
item 1. In this case we are done, as some pair is
good. And for some s < 2F this should happen, as
otherwise we get a 2¥-vertex connected by Adversary
to 2% different nodes.

Let (z,y) be any good pair. Note that we connect-
ed a right-side node to a new node only when so did
Adversary. Therefore we have connected every node

to at most 2™ nodes. As our strategy is computable,
this implies

K(aly), K(ylz) < n+ 2K (1, kn) + O(1).

Any right-side node connected to z has been declared
as simple and we have declared no more than 2F — 1
nodes as simple. Therefore we have

K(z) <k+2K(l,nlk) + O(1)

for any z with I(2) < I, K(2|z) < k. Ttem 2)
from the definition of a good pair implies that
K(zly), K(y|z) = n. O

According to our plan we apply this lemma for [=
2(n+ f)+1 and for some k being close to n+2f + 2g.
To find the exact value of k¥ we have to compute an
upper bound for K(q|z,y) more accurately (we used
f + g as such bound).

Lemma 2. There is a constant ¢ such that
for any z,y,q,n,f,9g with K(z|y) > n,
e < n + f, K(zlg,y) < g it holds
K(qlz,y,n, f,9) < f+9+3K(n, f,g9) +c.

Proof. Let ¢’ be a constant to be specified later. Let
X be the set of all 2’ such that the set

Qe ={q|l(qg) <n+ f,K(z'|y,q) < g}
has more than 2/+9+3K(n.f,.9)+¢" elements. Then

|X| g 2nH+9 ol +o+3K (n.f.)te — gn—3K(n.f.)=¢',

The set X is enumerable given y, n, f, g, K(n, f,9)
and ¢'. Therefore complexity of all z' € X relative to
y is less than

(n—3K(n,f,g) _Cl) +2K(naf:g)+210gK(nafug)
+2logcd +c’" <n—-c +2logd +c" <n

(we choose ¢’ so large that ¢ > 2logc’ + ¢”’). As
K(zly) > n, we have |Q,| < 2/t9t3K(nfo)+e’ Ag
() is enumerable given z, y, n, f, and g, we have

K(qlz,y,n, f,9) < f+9+3K(n, f,g9)+¢

for any such q. O

Assume that I(p),l(q) < n+ f and K(y|z,p) < g,
K(zly,q) < g- To apply the statement of Lem-
ma 1 to z = (p,q) we have to encode the pair (p,q)
in less than I = 2(n + f) + 1 bits. Let [p,q] =
o=l -1+ ~Ua)~114 be such encoding.

Assume that K(z|ly) > n. To find [p,q] given
x,n, f, g it suffices to know: 1) p, which has less than
n + f bits, 2) a string r of length less than g that
identifies y given p, z, and 3) a string s of length less
than f + g + 3K (n, f,g) + ¢ that identifies ¢ given
z,y,n, f,g (such s exists by Lemma 2). This infor-
mation can be encoded into string

0n+f—l(p)—1 log—l(r)—l 1prs

of length (n + f) + g+ (f + 9+ 3K(n,f,9) +¢) =
n+2f+ 29+ 3K(n, f,9) + ¢, which identifies p,r, s
provided n, f, g are known. Hence

K([p,dl|z,n, f,9)
K([p, ql|»)

Thus we see that we can apply Lemma 1 for [=
2(n+ f)+landk=n+2f+29+5K(n, f,g)+c".
The pair (x,y) which exists by Lemma 1 satisfies our
theorem. Indeed, for any strings p, g with I(p),1(q) <
n+ f and K(y|z,p) < g and K(z|y,q) < g we have
K([p,q]|x) < k hence

<n+2f+29+3K(n,f,g)+c,
<n+2f+29+5K(n,f,g) +c".

K([p,q)) < k+2K(l,nlk) + O(1)
<n+2f+29+5K(n,f,g)
+2K(I,nlk) + O(1)
<n+2f+29+5K(n,f,9)
+2K(n, f,g9) + O(1).
The last inequality holds, as given f,n,g and k we

can find K(f,n,g) (recall that k = n + 2f + 29 +
5K(n, f,g) + ¢"). Therefore,

K(p,q) < K([p,q]) + 0(1)
<n+2f+29+T7K(n, f,g)+0(1).

It remains to note that

n < K(zly), K(ylz) <n+2K(1 kn) + O(1)
<n+2K(f,9,K(n, f,9)ln) +0(1). O

Corollary 8. For any d there is ¢ such that for al-
I n the following holds. There are x,y such that
n < K(z|y), K(y|z) < n+ 2loglogn + ¢ and for any
p,q of lengths less than n + dlogn with U(p,x) =y,
Ulq,y) = z it holds

K(p,q) <n+(2d+7)logn +c.

Proof. Let in the above theorem f = dlogn, g =
O(1) and note that

K(n, f,g) = K(n) + 0(1) <logn + O(1),
K(f,9,K(n, f,g)In) = K(K(n, f,g)In)) + O(1)
<logK(n, f,9) + O(1) < loglogn + O(1)

(the constants O(1) depend on d). O

References

[1] C.H. Bennett, P. G4cs, M. Li, P.M.B. Vitanyi,
and W.H. Zurek. “Information Distance”, IEEE
Trans. on Information Theory 44 (1998), No 4,
1407-1423.

[2] M. Li, P. Vitdnyi. An Introduction to Kolmogorov
Complexity and its Applications. Springer Verlag,
1997.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

