Electronic Colloquium on Computational Complexity, Report No. 36 (2000)

The Complexity of Tensor Calculus

Carsten Damm*

Institut fiir Angewandte und Numerische Mathematik,
Georg-August-Universitat Gottingen,
D-37083 Gottingen, Germany
email: damm@math.uni-goettingen.de

Markus Holzer' and Pierre McKenzie
Département d’I.R.O., Université de Montréal, C.P. 6128,
succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada

email: {holzer,mckenzie}@iro.umontreal.ca

Abstract

Tensor calculus over semirings is shown relevant to complexity theory
in unexpected ways. First, evaluating well-formed tensor formulas with
explicit tensor entries is shown complete for @P, for NP, and for #P as the
semiring varies. Indeed the permanent of a matrix is shown expressible
as the value of a tensor formula in much the same way that Berkowitz’
theorem expresses its determinant. Second, restricted tensor formulas
are shown to capture the classes LOGCFL and NL, their parity counter-
parts @LOGCFL and @L, and several other counting classes. Finally, the
known inclusions NP /poly C &P /poly, LOGCFL/poly C @LOGCFL/poly,
and NL/poly C @L/poly, which have scattered proofs in the literature
[21, 39], are shown to follow from the new characterizations in a single
blow.

1 Introduction

Consider an algebraic structure S with certain operations. The following prob-
lem is sometimes called the word problem of S: given a reasonable encoding of a
well-formed expression T over S, and an “accepting” subset of S (given explic-
itly by enumeration or implicitly by a condition), decide whether T evaluates
to an element in the accepting set. Many special cases of this problem have
been studied. For example, intricate NC! upper bounds are known when S is
the Boolean [13] or a more general semiring [14], the case of groups was crucial

*Part of the work was done while the author was at Universitdt Trier, Germany, supported
by Deutsche Forschungsgemeinschaft grant Me 1077/14-1.
TSupported by the Québec FCAR and by the NSERC of Canada.

ISSN 1433-8092

to elucidating the power of bounded-width branching programs [6], the case of
groupoids was shown to capture LOGCFL [7], the case of Boolean and integer
matrices relates to NL and to the determinant [3, 10, 16, 24, 36, 41], the case
of F-matrices for various fields F captures linear algebra and counting classes
like ®L [11, 15], and the case of sets of natural numbers with union and sum as
operations captures NP [34].

In this paper we study the word problem generalized to multilinear algebra
expressed by tensors. This is interesting for two reasons. First, tensors have
many applications in physics, engineering, and computer science [18; 35], and it
is natural to investigate the complexity of their handling. Second, we show that
basic tensor calculus not only captures natural complexity classes in simple
ways, but it yields simpler unified proofs of non-uniform inclusions formerly
scattered in the literature.

Our results concern tensors over semirings, including the Boolean semir-
ing B = ({0,1},V,A), the fields of characteristic 2, and the natural numbers
N = ({0,1,...},+,-). Tensors are “multi-dimensional matrices,” i.e., cuboid-
like arrangements of semiring elements. Their algebraic interpretation, which
need not concern us here, gives rise to three natural operations: the sum (+)
of two tensors of identical dimensions, the product (®) of two arbitrary ten-
sors, and the junction of a tensor with suitable dimensions (see Appendix A
for details). Handling tensors numerically routinely requires the evaluation of
tensor expressions involving ordinary matrix operations as well as + and ®. A
special case of such an evaluation process occurs when the resulting tensor is
in fact a scalar and it is only required to determine whether this scalar equals
the zero of S. We call the latter problem the non-zero tensor problem 0#vals,
which is central to our study. Its complexity can be regarded as intrinsic for the
tensor calculus over the specified semiring. Our precise characterizations are as
follows:

e A polytime Turing machine exists which, given a matrix A over N, pro-
duces a tensor formula that evaluates to the permanent of A; this resembles
Berkowitz’ theorem giving a similar formula for the determinant.

e Evaluating a tensor formula over the natural numbers is #P-complete
under polytime Turing reductions.

e 0 # valg and 0 # valp, are respectively NP-complete and @P-complete
under polytime many-one reductions.

¢ By natural syntactic restrictions on the admissible formula types, we ob-
tain problems that are complete under many-one logspace reductions for
the classes LOGCFL and NL, and their parity counterparts @LOGCFL
and 6@L, respectively; similar statements hold for tensors over other rings
and the corresponding counting classes.

To illustrate the strength of our characterizations, we are able to give a very
intuitive and unified justification for non-uniform simulations of Boolean com-
putations by parity computations. The existence of such simulations had been

proved before in several papers. NP/poly C ®P/poly, is a corollary of a random-
ized reduction of NP to UP proved by Valiant and Vazirani [39]. Wigderson [43]
proved the logspace analogue on the basis of the Isolating Lemma of [29] and
shortly thereafter, by a similar technique, Gal [20] proved the corresponding
result for LOGCFL. In [9] a generalization and more efficient simulation for
NL/poly C @L/poly was given. Our completeness results allow extending ideas
from the latter paper to also cover the other simulations, basically using a single
proof.

The structure of the paper is as follows. In the next section we introduce the
terminology and basic parsing techniques for tensor formulas. We also introduce
the complexity classes needed in later sections. In Section 3 we give a polytime
algorithm to construct a tensor formula which evaluates to the permanent of a
square matrix. The structure of this formula is very regular and depends only on
the input size, not on the matrix itself. Then in Section 4 we introduce algebraic
Turing machines, a natural generalization of arithmetic branching programs as
introduced in [9], and use this model in Section 5 to prove our completeness
results. In Section 6 we give a unified and intuitive proof for the existence
of nonuniform simulations between Boolean and arithmetic complexity classes.
Finally, in the last section, we conclude and discuss related results.

To support intuition we strictly base all our formalism on matrices rather
than tensors. However, this is only a different terminology for the same thing.
The connection between the multi-index tensor notation and the two-index ma-
trix notation is well-known [18]. It is just a bijection between entries of tensors
and corresponding matrices and is explained in Appendix A.

2 Definitions, Notations, and Basic Techniques

We use standard notation from computational complexity, such as contained in,
e.g., [5, 42]. In particular we recall the inclusion chain: NL C LOGCFL C P C
NP. Here NL (NP, respectively) denotes the set of problems solvable by nonde-
terministic Turing machines in logspace (polytime, respectively), and LOGCFL
is the class of all languages accepted by nondeterministic auxiliary pushdown au-
tomata working in polytime and logspace. Moreover, P denotes the class of prob-
lems solvable by deterministic Turing machines in polytime. The corresponding
counting versions of NL, LOGCFL, and NP, denoted by #L, #LOGCFL, and
#P, are the classes of functions f, such that there is a machine M with the
same resources as the underlying base class, such that f(x) equals the number
of accepting computations of M on z (see [4, 38, 41]). Decision classes like NL,
LOGCFL, and NP are defined on Boolean computation models, in that they
rely on the mere existence of accepting computations. If existence is replaced
by the predicate “there is an odd number of accepting computations,” we ob-
tain the parity versions ®@L, ®LOGCFL, and &P introduced in [20, 27, 31].
More formally, @L is the class of sets of type {z | f(z) # 0 (mod 2)} for
some f € #L. The classes DLOGCFL and ®P are defined analogously. These
classes were intensively studied in the literature, see, e.g., [11, 21, 37]. The

classes MOD,-L, MOD,-LOGCFL, and MOD,-P are defined similarly with re-
spect to counting modulo ¢. Finally, consider the following complexity classes
GapP = {f—g| f,9 € #P}, GapLOGCFL = { f — g | f,9 € #LOGCFL},
and GapL = {f—g| f,g € #L}. For details on these classes we refer to [19].

A semiring is a tuple (S,+,-) with {0,1} C S and binary operations +, - :
S x 8 = 8 (sum and product), such that (S,+,0) is a commutative monoid,
(S,-,1) is a monoid, multiplication distributes over sum, and 0-a =a-0 =0
for every a in S (see, e.g., [26]). A semiring is commutative if and only if
a-b=b-a for every a and b, and it is finitely generated if there is a finite
set G C S generating all of § by summation. The special choice of G has no
influence on the complexity of problems we study in this paper. Throughout the
paper we consider the following semirings: the Booleans (B, V, A), finite fields
Fya of characteristic 2 (although all our considerations can be generalized to any
finite field), residue class rings (Zg, +, -), the naturals (N, +,-), or the integers
Z= (Z7 +7)

Let Mg denote the set of all matrices over S, and define MZ’Z C Mg to be
the set of all matrices of order k x £. For a matrix A in M";’e let T(A) = [k] x[4],
where [k] denotes the set {1,2,...,k}. The (i, j)th entry of A is denoted by a;,;
or (A);;. Addition and multiplication of matrices in Mg are defined in the
usual way. Additionally we consider the tensor product ® : Mg x Mg — My of
matrices, also known as Kronecker product, outer product, or direct product,
which is defined as follows: for A € M’;’[and Be€ M¢" let A® B € Mfgm’l” be

a171-B al,g'B
A® B := .
akyl-B akvg-B

Hence (A® B);j = (A)g,r - (B)s;: wherei =k-(g—1)+sand j =£-(r—1)+t.

The following notation is heavily used: let I,, be the order n identity matrix,
e the ith unit row vector of length n, D the n x n “dot matrix” having one
in position (i,4) and zeros elsewhere, and let A®" stand for the n-fold iteration
AR A®---® A. Further, we will make use of the following identities:

Proposition 1. The following hold when the expressions are defined [33]:
1. A®B)@(C=A® (B®C().
2.(A+B)®(C+D)=AC+A®D+B®C+B®D.
3. (A®B)-(C®D)=(A-C)® (B-D).

4. (A-B)®" = A®". B®" for gnyn > 1.

Now we are ready to define tensor formulas over semirings.

Definition 2. The tensor formulas over a semiring S and their order are re-
cursively defined as follows:

1. Every matriz F from Mg’e with entries from S is a (atomic) tensor for-
mula of order k x £.

2. If F and G are tensor formulas of order k x £ and m X n, respectively,
then

(a) (F + Q) is a tensor formula of order is k x £ if k =m and £ =n.
(b) (F-QG) is a tensor formula of order k x n if £ =m.
(¢) (F®Q) is a tensor formula of order km x {n.

3. Nothing else is a tensor formula.

For a tensor formula F of order k x £ let I(F) = [k] x [£] be its “set of indices.”

Let Tg denote the set of all tensor formulas over S, and define Tg’l C Tg to be
the set of all tensor formulas of order k x £.

In this paper we only consider finitely generated S, and we assume that
atomic tensor formula entries are from G U {0}, where G is a generating set
of §. Hence, atomic tensor formulas, i.e., matrices, can be string-encoded using
list notation such as “[[001][101]].” Non-atomic tensor formulas can be encoded
over the alphabet ¥ = {0} UG U{[,],(,),-,+,®}. Strings over ¥ which do not
encode valid formulas are deemed to represent the trivial tensor formula 0 of
order 1 x 1.

Let F be a tensor formula of order m x n. Its size, denoted |F|, is max{m,n}
and its length L(F') is the number of symbols in its string representation. It is
easy to show that |F| < 20(Z(F))_ The upper bound is attained when F is an
iterated tensor product.

We also consider two restrictions on tensor formulas. A formula F is called
tame, if for each of its subformulas F”, |F'| < 2 - mp, where mp denotes the
maximal size of F’s atomic subformulas. Moreover, F is called simple if it
does not contain the tensor product. Simple tensors are tame, since the only
size-increasing operation is omitted.

The inductive definition of a tensor formula F' associates with F' a binary
parse tree. The root of this tree subtends F', and each other node subtends a
unique subformula of F. By a collection of subformulas of F', we formally mean
a set of nodes in the parse tree of F'. Observe that two subformulas F; and F3
occurring as distinct subtrees within the parse tree of F' are distinct regardless
of what the individual string encodings of F; and F, might be.

Proposition 3. 1. Testing whether a string encodes a valid tensor formula
and if so, computing its order, can be done in deterministic polytime.

2. Testing the validity and computing the order of tame tensor formulas can
be performed by a deterministic auxiliary pushdown automaton in logspace
and polytime.

3. Testing the validity and computing the order of simple formulas can be
done in deterministic logspace.

Proof. (1) Let M be the Turing machine which, on an input string w, rejects
and halts if the bracketing or operator structure of w are illegal. This can be
tested in logspace. If w is legal, then M continues by running the function order
described by the following pseudo-code:

function order (tensor F) : (nat, nat);
var k, £, m, n : nat;
begin case F in:
atomic: determine order of F' and store it in (k, £);
return (k,0);
(G+ H): (k,£) := order(GQ); (m,n) := order(H);
if £ #m or £ # n then halt and reject fi;
return (k,0);
(G-H): (k,£):= order(G); (m,n) := order(H);
if £ # m then halt and reject fi;
return (k,n);
(G® H): (k,0) := order(G); (m,n) := order(H);
return (kf,mn);
esac;
end.

The order function may be implemented on M, using a tape in a pushdown
like fashion to handle the recursive calls. Hence M operates in polytime, since
M performs a depth-first search of the formula, and since polynomial space is
sufficient to keep track of the orders in binary notation. The initial call order(F')
thus returns the order of F.

(2) We proceed as in (1) but before calling order we determine mpg, the
maximal size of F’s atomic subformulas, and during the recursive calls, we
control that for each visited subformula G we find |G| < 2 - mp. If this is not
the case, then M halts and rejects. Since O(log |F'|) bits now suffice to compute
and store orders of subformulas, the complete algorithm may be implemented on
a deterministic auxiliary logspace and polytime bounded pushdown automaton.

(3) Although simple formulas don’t contain Kronecker products, a direct
implementation of the algorithm described in (2) without the case G ® H would
still lead to an algorithm running on an auxiliary pushdown automaton. But we
can do better. The main difficulty is to check that the tensor operands in a sum
have the same order. Indeed observe that if no sum is involved, i.e., if the input
formula F' only involves nodes of the form G - H, then a depth-first search of F'
can check that the orders of the tensor subformulas involved match properly.
This can be done by a logspace-bounded deterministic Turing machine. If the
input is an arbitrary simple formula F', i.e., a formula containing “+”-nodes and
“.”_nodes, then the following strategy, first explained informally, applies. Each
leaf Fj; in the parse tree of F' will be considered in turn. Pick the unique path p
from Fj to the root F'. Then, at each “-”-node G along p, attach just enough of
the subtree rooted at G to be able to deduce the order of the subformula G (any
included “-”-node forces the inclusion of both its children, while choosing left
descendants whenever a choice arises; thus only the left child of any included

“+”-node outside p gets included). There results a unique “Fj-subtree,” having
a unique order (if it has an order at all) computable in logspace just as if the
F;-subtree only contained “-”-nodes. An induction shows that F' is valid and
has order k£ x £ if and only if each leaf F; of F' yields a F;-subtree of order k x £.

To formalize this strategy and to justify its logspace implementation, fix an
atomic subformula F; of the input. Then let F be an arbitrary subformula of
the input—hence F' does not necessarily subtend F;. Now define the collection
Cr, (F) of subformulas of F recursively as follows (leaving out the F; subscript
momentarily):

1. if F' is an atomic formula, then C(F) = {F'}.
2. if F = (G + H), then

O(F) = C(G)U{F} if F; € C(G)or F, ¢ C(G)UC(H),
| C(H)U{F} if F, € C(H).

3. if F = (G- H), then C(F) = C(G) UC(H) U {F}.

When F is the input formula, the collection Cp, (F) defines the unique “Fj-
subtree” alluded to in our earlier informal description. But now, it should be
clear that a logspace Turing machine can test whether a subformula belongs to
Cr, (F). Such a test can guide a depth-first search of Cp, (F'). Since Cp, (F)
includes precisely one child of each “+”-node and both children of each “”-
node, it is indeed easy to test validity and to compute the order of Cr, (F), by
treating it as a formula with “-”-nodes alone. Now combining the validity tests
and the order computations of Cp, (F') for each atomic formula F; results in an
algorithm to test validity and to compute the order of F'. O

Definition 4. For each semiring S and each k and each £ we define valg’z :

Tg,z — MZ’Z, that is, we associate with each tensor formula F of order k x £ its
k x £ matriz “value,” as follows:

F if F is atomic
valts! (F) = vall!(G) + val* (H) if F = (G+H)
S vals™(G) - valg (H) if F=(G-H) and G € TH™

val/ ""(G) @ valf™(H) if F = (G ® H) and H € TZ™.

The corresponding mappings t—valg’l and s—valg’e are defined by restricting the

domain of Valg’e to the set of all tame and simple tensor formulas over S, re-
spectively. Tensor formulas of order 1 x 1 are called scalar tensor formulas, and
we simply write valg for the val}.;’1 function. We do the same in case of t—val};’l
and s—val}.;’1 by omitting the superscripts.

The non-zero tensor problem is defined as follows:

Definition 5. Let S be a semiring. The non-zero tensor formula problem
over semiring S is the set 0 # vals of all scalar tensor formulas F for which
vals(F) # 0. The corresponding evaluation problems for tame and simple ten-
sors are defined in the analogous way, and are written 0#t-vals and 0#s-valg,
respectively.

The next proposition shows that considering scalar tensor formulas for the
non-zero problem is no restriction at all.

Proposition 6. The non-zero tensor formula problem 0 # vals is polytime
many-one equivalent to the general non-zero tensor formula problem which is
defined as follows:

o Given a tensor formula F over S of order k x £ and two integers i and j
expressed in binary, such that (i,7) € [k] x [€], is (valg’e(F))i,j #07

The corresponding evaluation problems for tame and simple tensor formulas are
logspace many-one equivalent to the general problem if restricted accordingly.

Proof. Since the non-zero tensor problem 0 # vals trivially reduces by F +—
(F,1,1) to an instance of the general problem, it remains to show that the
latter reduces to 0 # vals. Let (F,i,j) be an instance of the general non-zero
tensor problem and assume I(F) = [k] x [£]. First we check with the help of the
algorithm described in Proposition 3 whether (i, j) € [k] x [£], and if so proceed
as follows.

In case F' is tame or simple we output

.
Fij=(ef)-F-(ef) »

where ej* is the ith unit row vector of length m. Obviously, the formula F; ;
satisfies (val’f;’l(F))i,j = valg(F; ;), and it is easily seen that it is logspace con-
structible from F. If F is an unrestricted tensor formula the vectors e} and e}
may be of exponential length. Hence, we can not directly write F; ;. To over-
come this, note that k can be expressed in polytime as k = my -ms - - - my, where
each m, is the row dimension of some atomic subformula of F. Expressibility
of k in this way is readily verified by induction on F. But then, for 1 <i < k,
k

— ma2 my
€ =e; ®ei2 ® ®eit s

where i, for 1 < r <, is defined by

T

i=1= > (1 - 1) M;

. =1
=1+ 2)

Mr+1

for Mr =My -Mpy1 "My and /L'O = Mt+1 =1.
An analogous formula expresses ef using the column dimensions of atomic

subformulas of F'. O

3 A Tensor Formula for the Permanent

In this section we show how to use the copying feature of the Kronecker oper-
ation to “parallelize” certain computations in a controlled way. A first direct
application of Lemma 7 will be the construction of a tensor formula for the per-
manent of a matrix A. This resembles Berkowitz’ theorem [10] giving a simple
tensor formula for the determinant. Further applications are given in the next
section.

To understand the statement of Lemma 7 below, keep in mind a situa-
tion in which it is required to compute, say (A + B)(C + D + E)(F), where
A, B,C,D,E and F are k x k matrices. Lemma 7 describes a preliminary
step which uses tensors to produce a large block matrix having the expansion
products ACF,ADF,AEF, BCF,BDF, and BEF as diagonal blocks. This
particular application of Lemma 7 would require the parameters n = 3, m; = 2,
me = 3, and mgz = 1.

Lemma 7. Let my,... ,m, be natural numbers, and write N =[]\, m;. Let
a sequence A = (A;;,), with 1 <i <n and 1 < j; <m;, of k x k matrices over
a semiring be given. Consider the k x k matriz

n

A+ + Aim) = D AvjiAsg, - Ay, (1)
i=1 1<j1<m
1<in'<mp

There is a polytime Turing machine which computes, on input A, a tensor
formula F,(A) evaluating to a kN x kN matriz having each k x k summand
Ay j Aoy .. Ay, occurring in Equation (1) as a kx k block along its diagonal,
and zero elsewhere.

Proof. The statement is proved by induction on n. Obviously,

mi

Fi(A) =) (D" ® Au)

Jj=1

has the required form for n = 1, where D" is m x m “dot matrix” having one
in position (i,%) and zeros elsewhere. Then, for n > 1 assume that we already
have a matrix F,,_1(A) of the appropriate form representing the summands of
[T (Aiy +---+ Aim,). In order to obtain F,,(A) we have yet to multiply by
the factor (A,;1 + -+ + An,m,)- This is done recursively as follows:

Fn(A) = <Im” ®Fn_1(A)> mz ((D;"" ®7®Imi> ®An,j) :

j=1 i=1

which satisfies our requirements. O

As a first application we construct a tensor formula for the permanent of an
n X n matrix A, which is defined by

perm(A) = Z Haia(i) = Z A1g(1) ~ G20(2) *~~ Cno(n)>

0ES, i=1 oES,

where S,, denotes the symmetric group on n elements.
Recall, that a function A is polytime many-one reducible to a function g if
there is a mapping f such that for all z, h(z) = g(f(z)).

Theorem 8. There is a polytime computable function f which, given ann xn
matriz A over a semiring S, computes a scalar tensor formula f(A) such that
vals(f(A)) = perm(A).

Proof. Write P, for the n x n permutation matrix associated with o from the
symmetric group S,, writing T} ; instead of P, when o is the transposition
(¢,7) and setting each T;; to I,,. First, we use Lemma 7 to construct a tensor
formula F;, evaluating to a square matrix of order n!-n", which has each of the n!
blocks P®™ of size n™ on its diagonal, and zeros elsewhere. It is well known that
each P, is uniquely expressible as T4 j, - 1% j, - - - T, j, for some ¢ < j; < n, in
which case Proposition 1 implies P" = T¢% - TR --- T2 . Thus, applying
Lemma, 7 to the sequence T = (Tl%-’:) with 1 <4 < n and i < j; < n yields the
desired tensor formula F,, = F,(T).

Next, let M(A) = (Qj—, I;)) ® A®™) - F,,. This matrix has the n! blocks
(AP,)®™ of size n™ along its diagonal, and zeros elsewhere. Note that the
diagonal elements of AP, are a;,(1),@24(2),- - - , Gno(n)- Some diagonal entry in
(AP,)®™ therefore is the coveted element [];_; ;s (7). A crucial observation is
that the relative position of this entry within (AP,)®" does not depend on o,
and that this relative position is precisely the relative position of the single
non-zero entry in another matrix, namely ®?:1 D?. Pre-multiplying and post-
multiplying M(A) by the symmetric matrix (Q;; I;) ® (R, D) therefore
results in a square matrix of order n!-n™ having zeros everywhere, except at n!
diagonal positions holding the values [];-_, aiq (i) for each o € Sy,.

It remains to sum up the diagonal entries into a scalar tensor. This is done
by pre- and post-multiplying further by (1)n1.,» and its transpose, respectively,
where (1) denotes the all-ones row vector of length k. The partial product to
the left of M(A), namely

(@) (@2 @2). ®

in fact simplifies to (1) ® (Qi—, €), where el is the ith length-n unit row
vector. Since the partial product to the right of M (A) is the transpose of (2),

and since (1)n1 = @ (1)s, the complete formula reads as

perm(A) = ((1)n! ® ée?) : ((é I ®A®"> Fn) : ((1)71,! ® ét??) .

10

This completes the construction. O

Corollary 9. There is a polytime computable function f which, given ann X n
matriz A over N, computes a scalar tensor formula f(A) such that valn(f(A)) =
perm(A).

Observe that a tensor formula for the determinant would result from insert-
ing a factor —1 before every non-identity permutation 7} j; in the above proof,
i.e., applying Lemma 7 to T = ((—1)1+%i: . TB")

Since computing the permanent of 0/1-matrices is #P-complete under poly-

time Turing reduction [38] and N is embedded in every infinite field, we conclude:

Corollary 10. For any infinite field F, valg is #P-hard under polytime Turing
reductions. O

4 Algebraic Turing Machines

We introduce an algebraic computation model which is very useful for proving
upper bounds for the evaluation problem of unrestricted, tame, and simple
tensor formulas.

Arithmetic or algebraic models have received much attention in computer
science during the last decade. In [9] Beimel and G&l introduced algebraic
branching programs—a very natural algebraic generalization of nondeterminis-
tic branching programs. In this section we define algebraic Turing machines in
a similar way. The difference with ordinary nondeterministic Turing machines
is that now every transition has a weight taken from a semiring §. The weight
of a computation path then is defined as the product of the weights of the
transitions taken by the Turing machine along that path. An algebraic Turing
machine has two uses, namely computing a function fj; : ¥* — S and accept-
ing a language L. For w € ¥*, the function fjs is defined as the sum of the
weights of the accepting computations of M on input w (where the product and
the sum are taken in §). Obviously, this is a generalization of a #P Turing
machine, which counts the number of accepting paths. The language Ly is
defined as {w € £* | fpr(w) # 0}. More formally, the definition of an algebraic
Turing machine reads as follows:

Definition 11. An algebraic Turing machine over a semiring S is a tuple M =
(Q,%,T,0,q0, B, F), where @, X CT', T, g € Q, BET, and F C Q are defined
as for ordinary Turing machines and § is the transition relation taking the form

0CQxT'x@QxTx{L,S,R} xS§.

Let the configurations, the next move relation ks, and its reflexive tran-
sitive closure 3, be defined as for ordinary Turing machines. A move from
configuration C to C', i.e., C Fpr C', using the transition (p,a,q,b,m,s) € 9,
gets assigned o weight s. In this way, o weight may be associated with any pair

11

of configurations (C,C"), where we define the weight to be 0 whenever C' is not
reachable from C in a single transition.

The weight of a particular computation Cy Fps --- Far Cp of M is the prod-
uct of the weights of the successive moves in the computation. For completeness,
we define the weight of the computation to be 1 ift = 1. On input w machine M
computes the value fnr(w), which is defined as the sum of the weights of all ac-
cepting computations Co(w) Fi, Cr(w), where Co(w) is the initial configuration
on input w and Cy(w) is a final configuration.

The above definition is adapted in a straightforward way to define algebraic
polytime Turing machines, algebraic logspace bounded Turing machines, and
algebraic auxiliary space (and time) bounded pushdown automata. Note that
Allender et al. [2] have introduced an auxiliary pushdown model similar to ours,
called the generalized LOGCFL machine.

Definition 12. 1. We define the generalized counting class S-#P as the set
of all functions f : ¥* — S such that there is a a polytime algebraic Turing
machine M over S which computes f.

2. The generalized language class S-P is the set of all languages L C X* such
that there is a polytime Turing machine M over S for which w € L if and

only if fu(w) # 0.
The corresponding generalized counting and languages classes for algebraic
auziliary logspace polytime bounded pushdown automata and algebraic logspace
bounded Turing machines are defined in the obvious way, and are denoted by

S-#LOGCFL, S-#L and S-LOGCFL, S-L, respectively.
We state the following special cases without proof:
Proposition 13. 1. B-P =NP.
2. Z4-P = MOD,-P.

3. Fy-P = oP.
4. N-#P = #P and N-P = NP.
5. Z-#P = GapP. O

Statements similar to Proposition 13 also hold for the generalized count-
ing and languages classes obtained from algebraic auxiliary logspace polytime
bounded pushdown automata and logspace Turing machines.

5 The Complexity of Tensor Evaluation Prob-
lems
This section contains completeness results on the computational complexity of

the tensor formula evaluation problem over certain semirings. We need some
preliminaries.

12

We require the notion of a certificate of a tensor formula index. Intuitively, a
certificate is to a tensor formula entry what a proof tree is to a Boolean formula.
Certificates and their weights will be defined in such a way that the entry at
index (i,5) € [k] x [£] in vall*(F) is equal to the sum of the weights of all the
certificates of F' at (i,7). We now make this precise.

Given a collection C = {Fi,... , F;} of subformulas of a formula F, a weight
function for C is a mapping w that assigns to each F; an element of S, and
an entry selector for C' is a mapping ¢ that assigns to each F; a unique index
e(F;) = (k,£) € I(F;). We say that “c selects the entry (k,£) from F;.” Let Cy
and C> be disjoint collections. Given the entry selectors €1 for Cy and g5 for Cs,
we simply write € = €1 Ues to specify the entry selector € : (Cy UCs) — S with
e(F):=e1(F)if FeCy and e(F) :=e2(F) if F € Cs.

Definition 14. Let F' be a tensor formula over a semiring S and let (i,j) €
I(F). A certificate for (F,i,5) is a pair (C,), where C is a collection of subfor-
mulas of F' weighted by a function w and € is an entry selector for C, subject
to the following inductive conditions:

1. If F is an atomic formula, then C = {F'}, entry selector e(F) = (i,j),
and w(F) = (F);,;, where (F); ; is the (i, j)th entry of matriz F.

2. If F=(G+ H) and (Cg,eq) is a certificate for (G,i,7) and (Cm,em) is
a certificate for (H,i,j), then either
(a) C=CgU{F},e=eqgU{Fw (i,5)}, and w(F) = w(G) or
(b) C=CrU{F},e=eqgU{F (i,5)}, and w(F) = w(H).

3. If F = (G- H) and (Cg,eq) is a certificate for (G,i, k) and (Cu,en)

is a certificate for (H,k,j) for some k, then C = Coa UCg U {F}, ¢ =
egUeg U{F — (i,5)}, and w(F) = w(G) - w(H).

4. If F = (G® H) with I(G) = [p] x [g], (Ca,ec) is a certificate for (G, k,£)
and (Ch,en) is a certificate for (H,m,n), i =p-(k—1)+m, and j =
g-({—1)+n, then C = CqUCHU{F}, the entry selector e = egUegU{F —
(i,7)}, and the weight w(F) = w(QG) - w(H).

The weight w(C,e) of this certificate (C,e) for (F,i,j) is defined as w(F).
Finally, for a tensor formula F and (i,j) € I(F) let Cert(F,i,j) denote the

set of all certificates for (F,4,5). For scalar tensor formulas we simply write
Cert(F) instead of Cert(F,1,1).

By induction one obtains:

Lemma 15. Let F' be a scalar tensor formula over a semiring S. Then

valg(F) = Z w(C,e).
(C,e)eCert(F)

13

Proof. Let F be a tensor formula of order k x £. We prove the more general
statement

(val(F))i,; = Y w(Ce) (3)
(C,e)eCert(F,i,5)

for each (¢,7) € I(F'). Recall that (vals(F'));,; is the (¢, j)th entry of the matrix
Valg (F) .

If F is atomic, there is a unique certificate ({F},¢) with e(F) = (4,j) for
(F,i,7) having weight (Vallg’e(F))i,j. Hence (3) holds. Now, assume that (3)
holds for formulas G and H of order less than F', at all indices. We distinguish
three cases:

1. If F € T%" and F = (G + H), then for each (i, j) € I(F) by definition and
induction hypothesis,

(valg“(F))i; = (val§“(G +H))y;
= (valg(@))i; + (val‘(H))s

= > w(C,e) + > w(C,e)

(C,e)eCert(G,i,j) (C,e)eCert(H,i,5)

= Z w(C,)

(C,e)€Cert(G+H,i,5)

= > w(Ce),

(C,e)eCert(F,i,5)

because a certificate for (F,4,j) ensures that either subformula G or H is
selected, but not both. Thus, from a certificate for (G,1i,j) or (H,4,) it
is obvious how to construct one for (F,i,j), and the weights are preserved
by definition.

2. If FeTE™ F = (G-H),and G € T%, then for each (i,j) € I(F) by
definition and induction hypothesis,

= (valb™@G - H))i;
4
=) (valg (@))in - (valg™ (H))n,j

n=1

= i (Z w(C,s)) . (Z w(C,e))

n=1 \(C,e)€eCert(G,i,n) (C,e)eCert(H,n,j)

= Z w(C,e)

(C,e)€eCert(G-H,i,5)

= Y. w(Ce),
(C,e)€eCert(F\,i,5)

14

where the next to last equality follows because each of the certificates
“created at node G - H” by the local choices 1,2,...,¢ gets assigned as
weight the product of the weights of the children of the node at the entries
selected by this local choice.

3. The remaining case F' = (G ® H) is treated analogously.
This proves (3), and in particular the case of scalar tensor formulas. O

Next we prove upper bounds on the complexity of tensor evaluation. For
the unrestricted, tame, and simple tensor evaluation problem we obtain the
following upper bounds:

Lemma 16. For any finitely generated semiring S,
1. vals € S-#P,
2. t-vals € S-#LOGCFL, and
3. s-vals € S-#L.

Proof. (1) Let M be the following Turing machine: given a scalar tensor for-
mula F'; the machine M guesses a string and verifies that it encodes a certificate
for F. If it is a certificate, the weight of this particular computation equals the
weight of the certificate. In the other case M rejects. More precisely, M runs
a recursive procedure verify, on a tensor formula F' and (i,j) € I(F'), checking
the requirements of Definition 14. All transition weights in M are assigned 1,
if not explicitly specified. The pseudo-code of verify reads as follows:

procedure verify (tensor F, nat i, nat j);
var k, £, m, n, p, q : nat;
begin if (i,j) ¢ I(F) then halt and reject fi;
case F in:
atomic: read (7, j)th entry of F;
take transition having weight equal to that value;
(G + H): nondeterministically guess either
call verify(G,i,j) or call verify(H,i,j);
(G-H): (p,q):=order(G);
guess index 1 < k < g;
call verify(G, i, k); call verify(H, k, j);
(G® H): (p,q):=order(G);
deterministically compute indices (k,£) and (m,n)
suchthati=k-(p—1)+mandj=2-(g—1)+n;
call verify(G, k, £); call verify(H,m,n);
esac;
end.

Obviously, M guesses a certificate (C,¢) during a computation and the
weight of this computation equals w(C,e). The procedure verify may be imple-
mented on M by using a tape in a pushdown like fashion to handle the recursive

15

calls to verify, operating in polytime because it performs a depth-first search of
the formula. Hence, calling verify(F,1,1) on input F' gives the desired result
vals(F') by Lemma 15.

(2) First we check whether the input is tame. This can be done on a deter-
ministic auxiliary pushdown automaton in logspace and polytime by Proposi-
tion 3. Then we proceed as in (1), now implementing the verify procedure on
an algebraic auxiliary pushdown automaton. Since on tame input F', O(log |F|)
bits are sufficient to store orders of subformulas and thus to control the recur-
sive calls in the computation, verify actually runs on a logspace and polytime
bounded algebraic auxiliary pushdown automaton.

(3) Observe that the pushdown is only necessary to handle the recursive
calls to wverify in the case of tensor products. This is because the logspace
depth-first search algorithm used in Proposition 3 to compute the order of a
sum-free formula can be adapted to mimic the recursive calls verify(G,i, k)
and wverify(H,k,j). Since a simple formula doesn’t contain tensor products,
verify may actually be implemented on an algebraic Turing machine running in
logspace. O

5.1 Unrestricted Tensor Formulas

We prove completeness properties of the evaluation problem for unrestricted
tensor formulas. At first we complete our considerations, started in Section 3,
on tensor formulas over the natural numbers. An immediate consequence of
Theorem 8, Lemma 16, and Valiant’s result [38] is:

Theorem 17. valy is #P-complete under polytime Turing-reductions. O

Obviously, this also implies that evaluating tensor formulas over the Booleans
or over Z, are Turing-complete for NP and MOD,-P, respectively, but in both
cases we can do better as stated in the next theorem.

Theorem 18. The following problems are complete under polytime many-one
reductions:

1. 0#valg is NP-complete.
2. 0#valz, is MODy-P-complete.

Proof. The containment in NP and MOD,-P follows from Lemma 16 and Propo-
sition 13. For the hardness we use reductions from 3SAT and from MOD,-3SAT.
We start with the Boolean case.

Let f =C1 ACyA---AC), be a Boolean formula with m clauses and n vari-
ables in 3CNF, i.e., each clause C;, for 1 < i < m, is the disjunction of three vari-
ables z; or negated variables z;, with 1 < j <n. Let a = (a1, ... ,a,) € {0,1}"
be an assignment and define d, = (a1,... ,an,81,--. ,a,) as its encoding. We
encode C; by a length 2n column vector ¢; as follows:

¢ = Z (el ® e?) + Z (e3® e;-‘) ,

z; is in Cj z; is in C}

16

where e’ is the ¢th unit row vector of length n. Note that

T a; ifi=1
dy-(el®e?) =4’ ’
DGR {aj otherwise.

Obviously, clause C; is satisfied by a if and only if d, - ¢;7 = 1. Moreover,
formula f is satisfied by a if and only if a satisfies all clauses C;, for 1 < i < m,
if and only if

i=1 i=1

m T m m
dem . <®c,> =®(da-c,~T) =®1 =1. 4)

Obviously, every encoding d, of an assignment a € {0,1}" can be generated
starting from (e? ® (1)), where (1), is the all-ones row vector of length n,
by appropriately applying transposition (¢,n + ¢) or the identity for 1 < ¢ <
n. Let T; 4 be the 2n x 2n matrix realizing transposition (i,n + i) for 1 <
i < n. Now we proceed as in the construction of the tensor formula for the
permanent, applying Lemma 7 to the sequence A = (4;;,), with 1 < i < n
and 1 < j; < 2, where A;; = I3 and A;p = T, This results in a tensor
formula F,, = F,(A) evaluating to a square matrix of order 2" - (2n)™ with 2"
blocks of size (2n)™ along the main diagonal and zeros elsewhere, such that
the non-zero blocks are the mth tensor powers of 2n x 2n permutation matrices
Ay - Asj, - Ay, for some 1 < j; < 2. Let M be equal to

agm
® dz;"
a2
(15" 2 (@ 1).)°") - Fu =) : (5)
g
where a;,a; € {0,1}" and a; # a; if i # j. This matrix is of order 2" x 2™-(2n)™,
it contains the mth power of every possible boolean assignment to n variables,
in a brick like fashion, from its upper left corner to its lower right corner, and
it vanishes everywhere else. Thus, by Equations (4) and (5),

f(ay)
f(a) 0

m T
M-@“@(Q@g) =
- faz)

To decide 3SAT it remains to sum up these entries by pre- and post multiplying
by the appropriate vector (1)2» and its transpose, respectively. Since (1)an
equals (1)$™ this results in

®m m T
(135" - z;@”®<e%®<1>n) .F,- fs®"®<®ci) (g,
=1

17

which equals)~ 1o 13+ f(a). Finally, observe that the resulting tensor formula
is deterministic polytime computable from f. This completes the construction
in the Boolean case.

The difficulty in the MOD,-3SAT reduction to 0#valz_ is that when S = Z,
it is no longer true that “(C; is satisfied by a) = (d, - ¢;' = 1 € S)” and that
“(C; is not satisfied by a) = (d, - ¢;T =0 € S).” This held in the Boolean case
because the sum z +y + z in B is precisely z Vy V z. But summing {0, 1}-truth
values in this way over Z4 no longer works. To get around this problem, instead
of + y + z, we employ the polynomial

P+ + 22+ (- 1)(2%y +2°2 +y%2) + zyz mod ¢

as the basis for the encoding of a clause x V y V z. Observe that when z,y,z €
{0,1}, this polynomial evaluates to 0 € Z, if x = y = z = 0 and it evaluates
to 1 € Z, otherwise. This suggests encoding a Boolean assignment a as (d,)®?,
and defining the encoding ¢; of a clause C; in such a way that (d,)®® - ¢;T
yields the result of evaluating the above polynomial on the truth values z,y
and z induced by a on the literals of C;. In more detail, suppose that C is
the clause (2; V Z; V x). Then the encoding of C' (or of any 3-SAT clause for
that matter) is the sum of seven terms, arising from the seven monomials in
the above polynomial. For example, the summand arising from the monomial
(¢ —1)z7z; is the (¢ — 1)-fold iterated sum of (e ® e}') ® (] ® e) ® (€3 ® 7).
This should suffice to clarify the idea. The rest of the MOD,-3SAT proof follows
with minor changes to the lines of the proof in the Boolean case. O

Corollary 19. 0 # valg, is ®@P-complete under polytime many-one reduction.
O

In the remainder of this subsection we consider the scalar tensor evaluation
problem over the integers.

Theorem 20. valy is GapP-complete under polytime many-one reductions.

Proof. By Lemma 16, valy € Z-#P, and the latter equals GapP by Proposi-
tion 13. For the hardness, let f € GapP. Then f is the difference of two #P
functions, so by Proposition 13, f = far, — fm, where M; and M» are algebraic
polytime Turing machine over N. Now observe that #-3SAT reduces to valz
using a construction similar to that in the proof of Theorem 18, employing the
polynomial

2347 + 2+ (1) (2%y + 222 + y?2) + 7Yz

as the basis for the coding of a clause z Vy V 2. Thus, fu, and fa, polytime
many-one reduce to evaluating scalar tensor formulas F; and Fy over Z, re-
spectively, and therefore f reduces to evaluating the scalar tensor formula F; +
((=1) - F») over Z. O

18

5.2 Restricted Tensor Formulas

We consider the 0 # valg problem for tame and simple tensor formulas. For
proving hardness we use a characterization of S-#LOGCFL in terms of logspace
uniform sequences of semi-unbounded circuits over S of polynomial size and log-
arithmic depth. Such circuits are similar to semi-unbounded AND-OR-circuits
except that AND- and OR-gates are replaced by product and sum gates, re-
spectively(hence the sums have unbounded fan-in). Note that negations are
allowed only at input gates. The uniformity notion carries over to this type of
circuits: a circuit sequence C' = (C),) is called uniform, if there is a logspace
bounded deterministic Turing machine that given an input of length n produces
a description of the nth circuit in the sequence. We prove the following char-
acterization of S-#LOGCFL in terms of arithmetic semi-unbounded circuits.
Note that Allender et al. [2] proved a similar result for height bounded auxiliary
pushdown automata.

Theorem 21. Let S be any finitely generated commutative semiring. The class
of functions computed by logspace polytime algebraic auziliary pushdown au-
tomata over S is equal to the class of functions computed by logspace uniform
polynomial size and logarithmic depth semi-unbounded circuits over S.

Proof. In the case of the Boolean semiring and the naturals the relationship
between semi-unbounded circuits and auxiliary pushdown machines was eluci-
dated by Venkatesvaran [40] and Vinay [41]. Obviously, the simulation of a
semi-unbounded circuit by an auxiliary pushdown automaton extends to the
general setting of arbitrary finitely generated (not necessarily commutative)
semirings—at +-gates guess one of the children, and at x-gates proceed with
the left child followed by the right one. For the other way around, we use a
result of Niedermeier and Rossmanith [30]. They showed how to decompose a
computation path represented by realizable pairs of surface configurations of an
auxiliary pushdown automaton in a unique way to construct a semi-unbounded
circuit which preserves the number of accepting computation paths. Following
the lines of their proof it is easy to see that this simulation is still valid for
finitely generated commutative semirings. O

Now our hardness result reads as follows:

Lemma 22. Let (Cy,) be a logspace-computable sequence of semi-unbounded log-
arithmic depth algebraic circuits over a finitely generated commutative semir-
ing S. There is a logspace computable function f that on a length n input com-
putes a tame scalar tensor formula F,, such that for each © = (x1,... ,%,) €
{0,1)7,

Cp(z) = vals(F,, - dz),

where dy = (T1,-.. ,Tn, T1,--- ,Tn)-

Proof. By a deterministic logspace algorithm C), can be transformed into the
following normal form circuit of depth 2d:

19

1. The gates are partitioned into levels VO U --- U V24, Inputs to gates in
level V7t are in level V7. Here VO is the set of input gates of C,,.

2. Gates in levels V7 are +-gates, denoted by letters h, gates in levels V2/—1
are x-gates, denoted by letters g.

3. For some m > 0 let |V¥| = 2m for j = 0,... ,d and |[V%~1| = m for
j=1,....d

4. +-gates have out-degree 1.

Further we assume that the gates are numbered within the levels in such a
way that for j = 1,... ,d and i = 1,... ,m the gate g; ' € V%! has inputs
R332 h2% € V%2 (see Figure 1). This is possible by item 4. Now we fix

% » itm

2m +-gates 9
m X-gates

2m +-gates SN0 e}

left half right half

Figure 1: Three consecutive levels in the circuit (values propagate upward).

an input assignment z € {0,1}" and denote the values computed at the gates
simply by the gate names. Let L% = (hi’,... ,h2%), R¥ = (h}¥ ,... , h3l),
and H% = (L% R%). Observe that L2/ = H% . LT and R¥ = H* - RT, where
L = (I, Op) and R = (0, I,). Here I, and 0y, resp., are the identity and
the all-zero matrix of order m x m, respectively.

Clearly, h? = z, or hY = %, according to whether h? is labeled with z, or

%¢. Hence, (hY,... hY,,) =P 2dz for an approzprilate 0/1—2ma,1trix P.
Now, consider some gate h;’ with inputs g,’"",... ,g;”" . Then
2j 2j—1 2j—1 _ p2j—1
hiJ = Z 'r] = Z h‘r] : h'r]—i-m'
TE{l1,... lr} TE{l1,... .0}

T

Denote by Tizj the (m x m) diagonal matrix 3
is the m x m dot-matrix having one in position (¢,¢) and zeros elsewhere. The
above equation can be expressed as

o} DT, where DI?

hf] — L2j—2 A TZ2] i (R2j—2)T
— (H2j72 . LT)) TZ2] . (H2j72) RT)T-

The whole level H%/ can be expressed as

H? = H%-2 (L7 -T% . B) - (o ® (H¥~2)T),

20

where T2 is the order m x 2m? matrix (T77,... ,T27) and (1)ay, is the all-ones
row vector of length 2m.

After d iterations the output level is represented as a tensor formula F,.
Since the D27 depend only on the gate interconnections, the construction of F},
is not harder than that of C,,. Formula F,, is tame, since sizes of subformulas
never exceeds 2m?. O

By Lemma 16 and 22 we obtain:

Corollary 23. t-vals is S-#LOGCFL-complete under logspace many-one re-
duction for any finitely generated commutative semiring S. O

In case of naturals and integers we conclude:

Corollary 24. The following functions are complete under logspace many-one
reductions:

1. t-valy is #LOGCFL-complete.
2. t-valz is GapLOGCFL-complete. O
In particular for the non-zero tensor problem we find:

Corollary 25. The following problems are complete under logspace many-one
reductions:

1. 0#t-valg is LOGCFL-complete.
2. 0#t-valz, is MOD,-LOGCFL-complete.
3. 0#t-valg, is BLOGCFL-complete. O

In the remainder of this section we consider simple tensor formulas. As a
complement to Lemma 16, we state the following without proof:

Theorem 26. s-valg is S-#L-complete under logspace many-one reductions for
any finitely generated semiring. O

In the case of naturals and integers we conclude:

Corollary 27. The following functions are complete under logspace many-one
reductions:

1. s-valy is #L-complete.
2. s-valz is GapL-complete. O
As an immediate consequence of Theorem 26 we conclude:

Corollary 28. The following problems are complete under logspace many-one
reductions:

1. 0+#s-valg is NL-complete.

21

2. 0#s-valz, is MOD-L-complete.
3. 0#s-valg, is @L-complete. O

Proof. We only sketch the proof. It is known that computing iterated matrix
products over B and Z, is hard for NL and MOD/L, respectively (see [15, 24]).
Hence, the above problems are hard for the classes mentioned, as they include in
particular computing iterated matrix products. On the other hand, 0 #s-valg €
NL and 0#s-valz, € ©L are easy to see. O

6 An Application: Non-uniform Simulations

In this section we prove that the Boolean variants of the tensor formula eval-
uation problems non-uniformly reduce to their counterparts over Fy. For the
proof of the main theorem we need the following well-known result due to Zip-
pel [44] and Schwartz [32] and some basic facts on algebraic Turing machine
and auxiliary pushdown automata.

Lemma 29. Let K be a field. Let p € K[z1,...,2] be a polynomial of total
degree D and let S C K be a finite set. If ry,...,r; are chosen independently
and uniformly at random from S, then

D
Pr[p(rl,... ,Tt) :0|p7£0] < EJ

where 0 is the zero polynomial.

Concerning algebraic Turing machines basics, we show how to efficiently
simulate algebraic machines over Fya by machines over the smaller semiring .
The proof follows the lines of Beimel and G4l [9], where a similar result was
shown for arithmetic branching programs. We start with an easy lemma (where
the meaning of the OR is as expected, i.e., it is the Boolean OR on {0,1}
although the latter come from Fy):

Lemma 30. Letd be a natural number. If far, € Fo-#P (fur, € Fo-#LOGCFL,
fu, € By -#L, respectively) for 0 <i < d, then

d—1
f=\ fu
i=0

belongs to Fo-#P (Fy-#LOGCFL, Fy-#L, respectively). The description of
an algebraic machine M computing f can be constructed by a logspace Turing
machine given My,... , Mg_;.

Proof. The OR of all fy,’s equals 1 + H?:_Ol(l + fu;) (mod 2). In order to
obtain M first introduce in every M; a new final state which is reachable by
a single weight 1 nondeterministic step from the initial state, hence computing
1+ fu,. Let M] be this new machine. The product H;.izo(l + fu;) is computed

22

by connecting the M| in sequence, i.e., if M/ reaches a final state, then the
computation is continued with M, ; for 0 <4 < d. Finally, it remains to add 1 to
obtain the desired result, which is done as above. Observe that the machine M
constructed in this way is logspace computable from the M;’s, and that the
function computed by M belongs to the same class as that of the fas,’s. O

The next lemma gives the simulation of an algebraic Turing machine over Fya
by an equivalent machine over F,.

Lemma 31. Let function far € Foa -#P (far € Foa -#LOGCFL, fyr € Foa -#L,
respectively). Then there is a farr € Fo-#P (farr € Fo-#LOGCFL, fy €
Fy -#L, respectively) for which

faur(w) #0 if and only if far(w) # 0.

There is a logspace Turing machine which computes, given the algebraic ma-
chine M, a description of machine M' over .

Proof. Recall, that Foa = Fa[z]/p(x), where F;[z] denotes the ring of polyno-
mials in z with coefficients from F;, the polynomial p(z) € Fa[z] is irreducible
over Fy and of degree d, and F[z]/p(z) denotes the ring of polynomials in z
of degree at most d — 1, where addition and multiplication are of polynomials
modulo the polynomial p(z).

We simulate M = (Q,%,T,0,q, B, F) with an algebraic Turing machine
over Fy exploiting the fact that the weights are polynomials in x of degree at
most d — 1. First we construct d algebraic Turing machines My, My,... ,Mg_1
over F». To obtain M;, each state of M is duplicated d times, where the ith copy
of ¢ € @ is denoted by (q,%). The state (g,%), for 0 < i < d, is “responsible”
for the coefficient of x?. The initial state is (go,0) and the final states of M; are
all (g,7), where g € F. Let (g,a,q',b,m,p'(x)) € § be a transition of M, where
4,4 € Q,a,bel,me{L,S, R}, and p'(x) € Fa2[z]/p(x). For every 0 < j < d
let

d
Zaj,k -ab =p'(z) 27 (mod p()).
k=0

In M; we add the d? transitions ((g, j),a, (¢',k),b,m,a;) for 0 < j,k < d with
weight a; x € Fs.

By induction, for every input w, the sum of the weights of accepting compu-
tations starting in (qo, 0) to state (g, j) in M; is equal to the coefficient of 27 in
the sum of weights of the accepting computations starting from gy and leading
to ¢ in M. On input w the Turing machine M computes 0, i.e., is equal to
the zero polynomial, if and only if for every 0 < i < d the sum of all accepting
computations on input w in M; over F, is zero. Thus, fur(w) # 0 if and only if
i, (w) # 0 for some 4, with 0 <4 < d.

It remains to compute the OR of all the M;’s, which is done with Lemma, 30,
resulting in a polytime algebraic machine M'. By the discussion above, fyr(w) #
0 if and only if far(w) # 0. Observe that M’ is logspace computable from M.

23

Obviously, the proof carries over to algebraic auxiliary logspace polytime
bounded pushdown automata and logspace bounded Turing machines, respec-
tively. O

Now we are ready to state the main theorem of this section. As usual, the
nonuniform versions of complexity classes are denoted with a trailing /poly. For
further details we refer to [25].

Theorem 32. 1. NP/poly C ®P/poly,
2. LOGCFL/poly C ®LOGCFL/poly, and
3. NL/poly C ®L/poly.

Proof. Consider L € NP/poly. By Theorem 18, an input w together with its
polynomial-length advice can be transformed in polytime into a scalar tensor
formula F' over B, of length n = poly(|w|), such that

valg(F) =1 if and only if w € L.

Let s = [logM(F)], where M(F) = max{|G|?> | G is a subformula of F }.
Clearly, s < 2n if F' has length n. Hence, for any subformula G there ex-
ists an s-bit binary encoding of the set I(G). For fixed G let bing(i,5) denote
the ¢th bit of the string encoding (i,7) € I(G).

For each subformula G consider a set {2, ..., 2%} of variables. Let
m(g,i,j) (Z) = H zé
bing (i,5)=1

For a certificate (C,¢) of F'let M(c)(2) = [[geg™(,e(q))- Finally, let

pr(z) = Z M(C@)(z).

(C,e)ECert(F)
w(C,e)#0
Let t < 2n? be the total number of variables. Obviously, deg pr(z) <t. The
binary encoding ensures that monomials in pr cannot cancel each other out.
Thus, valg(F) = 1 if and only if pr(z) # 0 (the zero polynomial) by Lemma 15.
Consider a field K = Fya such that |K| > 2c - n?, where c is the cardinality of
the input alphabet ¥. From Lemma 29 we conclude that

valg(F) =1 implies Pr[pr(r) =0]<1/c

and

valg(F) =0 implies Prlpp(r) =0] =1,
for r = (r1,...,r) chosen uniformly at random from K*®. For n independent
trials r',... ,r™ we obtain

Prlpp(r') = =pp(r") = 0] < 1/c",

24

if valg(F) = 1. As there are at most ¢” tensor formulas of length n a well-known
counting argument (see, e.g., [1]) shows that there are assignments r!,...,r"
such that for every tensor formula F' of length n,

valg(F) =0 if and only if pp(r') =--- =pp(r™) =0,

where pr(z) € K|[z1,... , 2] is the polynomial assigned to F'.

The key observation is that pr(r) = valg(F,) for each r € K?, where
F,. = (F,w,) is a weighted version of F, obtained from F' by multiplying entries
(i,7) of any subformula G of F' by the value w,(G,1i,j) := mg,; ;) (r). Similar
constructions were used in [9, 17].

To be precise, the value of a weighted tensor formula (F,w) over a semiring S,
where w : (Jgeg G X I(G) = S is a weight function and S is the collection of

all subformulas of F, is defined by recursively setting (valg’e (F,w));,; equal to:

w(F,i,j) - (valy* (F)); ; if F is atomic

w(F,i,5) - (valk* (G, w) + valst (H,w))s ; if F=(G+ H)

w(F,i,j) - (valy™ (G, w) - valg ' (H,w))s 5 if F=(G-H)and GeTH™
w(F,i,5) - (valg/m’l/"(G,w) @valg""(H,w));; if F=(G®H)and H € Tg".

In particular, for the weight function w, it obviously follows that pp(r) =
valg (F,w;) for each r € K. Moreover, vali (F,w,) is in K-#P, by altering
the procedure wverify in the proof of Lemma 16 according to whether the as-
signment r is fixed or given as part of the input. Thus, we are left with n
algebraic polytime Turing machines M;,... , M, over K = F,a computing
valg (Fywr,), ... ,valg (F,w;,), respectively. Then by Lemma 31 there are alge-
braic polytime Turing machines M, ..., M/ over F, such that fas, (w) # 0 if
and only if fu;;(w) # 0 for some i, with 1 <i < n. The OR of the fy is done
with Lemma 30 resulting in an algebraic Turing machine M' over F.

Now above we have shown the existence of an algebraic polytime Turing
machine M’ over F» having the property that

valg(F) =1 if and only if far (F#a) =1,

where « is the further advice r!,... 7", of n-t-d = O(n®logn) bits. Since
Fy-P = @P by Proposition 13, it follows that L € &P /poly.

In the case L € LOGCFL/poly (L € NL/poly, respectively), the intermediate
logspace-computable scalar tensor formula F over B is tame, by Corollary 25
(simple by Corollary 28, respectively). The algebraic machine M’ over Fy op-
erating on F'#a is then an algebraic logspace polytime auxiliary pushdown
automaton (an algebraic logspace Turing machine, respectively), so we con-
clude by analogs of Proposition 13 that L € @LOGCFL/poly (L € ®L/poly,
respectively). O

Since 0 # valy, is ®P-hard (Corollary 19), the proof of Theorem 32 in fact
exhibits a non-uniform polytime reduction (as defined in [43]) from 0# valg to

25

0# valp,. Similarly, it yields a non-uniform logspace reduction from 0 # t-valg
to 0#t-valp,, and from 0#s-valg to 0#s-valp,.

Note further that in the case of tame tensor formulas, the construction used
in proving Theorem 32 requires only O(n?log®n) random bits, while the con-
struction in [20] uses O(n?®) random bits.

7 Conclusions

A gratifying overall picture emerges from the present work. The three most
important nondeterministic complexity classes NL, LOGCFL, and NP were long
known to have complete problems of an algebraic flavour, and the link between
LOGCFL and unbounded fan-in Boolean circuits was known to generalize. But
here these classes are captured by a single problem, Boolean tensor formula
evaluation. This problem, together with the notion of an (auxiliary pushdown)
algebraic Turing machine, unifies the treatment of the three classes beyond
expectation. In particular, inclusions of NL, LOGCFL, and NP in their parity
counterparts become instances of one and the same phenomenon. Counting the
number of nondeterministic computations also generalizes smoothly: evaluating
tensor formulas over the natural numbers yields the usual counting classes, and
evaluating them over other semirings yields the analog concept for more general
algebraic Turing machines.

The completeness results of the last section can be generalized to tensor
formulas over residue class rings in a straightforward way. Moreover, standard
techniques as surveyed, e.g., in [8], show that evaluation problems for (general,
tame, simple) tensor formulas over finite fields F,q«, for prime p, are computa-
tionally equivalent to those over F,. Indeed, a field element of IF,a corresponds
to a “d-vector” over F,. The idea is similar to that used in Lemma 31 to repre-
sent computations of an algebraic Turing machine over F,« by d computations
of algebraic Turing machines over F,, each responsible for one component of the
formula. The IFj.-outcome is non-zero if and only if the outcome of the first
OR the second OR ... OR the dth F,-computation is non-zero. By cascading
Fp-computations d — 1 times the outcomes are forced to be either 1 or 0 (by
Fermat’s Little Theorem). This, eventually, can be exploited to simulate the
big OR condition.

In this paper we have only considered formulas and shown that these capture
nondeterministic complexity classes. But what happens if we replace formulas
with circuits, that is, if we allow reusing the output of a subevaluation more than
once? Then the complexity, even in the Boolean case, seems to rise sharply be-
cause circuits can produce intermediate tensors of double-exponential size. The
evaluation problem for such circuits can be solved in nondeterministic exponen-
tial time. On the other hand, the large intermediate tensors created are heavily
contrived, so that proving hardness seems challenging.

Let us finally mention an interesting further aspect of our completeness re-
sults. In linear algebra there is an intimate relationship (in the algebraic as
well as in the computational sense) between computing rank, matrix formulas,

26

or determinants [10, 28]. No similar relations are known in the world of ten-
sors. Even worse, in multi-linear algebra no single concept is known to exist as
unifying and as versatile as the determinant in linear algebra (see [22]). The
results of Section 5 in particular say that the complexity of tensor evaluation
problems over fields decisively depends on the characteristic of the field (un-
less some of the classes coincide or some inclusions hold). On the other hand,
Hastad [23] has shown that computing the rank of a tensor is at least as hard
as NP regardless of the field’s characteristic. Tensor rank, which is a central
notion in algebraic complexity theory (see [12]), is a natural generalization of
matrix rank. However, while matrix rank can be expressed efficiently in matrix
calculus [28], Hastad’s result together with the characterizations from Section 5
tells us that tensor rank cannot be expressed efficiently in tensor calculus.

References

[1] L. Adleman. Two theorems on random polynomial time. In Proceedings of
the 19th Foundations of Computer Science, pages 75-83. IEEE Computer
Society Press, 1978.

[2] E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arith-
metic circuits: depth reduction and size lower bounds. Theoretical Com-
puter Science, 209:47-86, 1998.

[3] E. Allender and M. Ogihara. Relationships among PL, #L, and the deter-
minant. RAIRO—Theoretical Informatics and Applications, 30:1-21, 1996.

[4] C. Alvarez and B. Jenner. A very hard log space counting class. Theoretical
Computer Science, 107:3-30, 1993.

[5] J. L. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity I. Texts in
Theoretical Computer Science. Springer Verlag, 1995.

[6] D. A. Mix Barrington. Bounded-width polynomial size branching programs
recognize exactly those languages in NC'. Journal of Computer and System
Sciences, 38:150-164, 1989.

[7] F. Bédard, F. Lemieux, and P. McKenzie. Extensions to Barrington’s M-
program model. Theoretical Computer Science, 107:31-61, 1993.

[8] R. Beigel. The polynomial method in circuit complexity. In Proceedings
of the 8th Structure in Complezxity Theory, pages 82-95. IEEE Computer
Society Press, 1993.

[9] A. Beimel and A. G4l. On arithmetic branching programs. Journal on
Computer and Systems Sciences, 59(2):195-220, 1999.

[10] S. J. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18:147-150,
1984.

27

[11] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and im-
portance of logspace MOD-classes. Mathematical Systems Theory, 25:223—
237, 1992.

[12] P. Burgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complezity
Theory, volume 315 of Grundlehren Der Mathematischen Wissenschaften.
Springer Verlag, 1997.

[13] S. R. Buss. The Boolean formula value problem is in ALOGTIME. In
Proceedings of the 19th Symposium on Theory of Computing, pages 123—
131. ACM Press, 1987.

[14] S.R. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel
algorithm for formula evaluation. STAM Journal on Computing, 21(4):755—
780, 1992.

[15] C. Damm. Problems complete for ®L. Information Processing Letters,
36:247-250, 1990.

[16] C. Damm. DET = L#L? Technical Report 8, Fachbereich Informatik der
Humboldt-Universitit zu Berlin, 1991.

[17] C. Damm. Depth-efficient simulation of boolean semi-unbounded circuits
by arithmetic ones. Information Processing Letters, 69:175-179, 1999.

[18] J. A. Eisele and R. M. Mason. Applied Matriz and Tensor Analysis. Wiley
& Sons Publisher, 1970.

[19] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Jour-
nal of Computer and System Sciences, 48:116-148, 1994.

[20] A. G4l. Semi-unbounded fan-in circuits: Boolean vs. arithmetic. In Pro-
ceedings of the 10th Structure in Complezity, pages 82-87, 1995.

[21] A. G4l and A. Wigderson. Boolean complexity classes vs. their arithmetic
analogs. Random Structures and Algorithms, 9(1-2):99-111, 1996.

[22] I. M. Gelfand, M. M. Kapranov, and A. V. Celevinskij. Discriminants,
resultants, and multidimensional determinants. Mathematics: Theory &
Applications. Birkhduser Verlag, 1994.

[23] J. Hastad. Tensor rank is NP-complete. Journal of Algorithms, 11:644-654,
1990.

[24] N. Immernan and S. Landau. The complexity of iterated multiplication.
Information and Computation, 116:103-116, 1995.

[25] R. Karp and R. Lipton. Turing machines that take advice. L’enseignement
mathématique, 28:191-209, 1982.

28

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5
of FEATCS Monographs on Theoretical Computer Science. Springer Verlag,
1986.

Ch. Meinel. Polynomial size {2-branching programs and their computational
power. Information and Computation, 85(2):163-182, 1990.

K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field. In Proceedings of 18th Symposium on Theory of
Computing, pages 338-339, ACM Press, 1986.

K. Mulmuley, U. Vazirani, and V. V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105-113, 1987.

R. Niedermeier and P. Rossmanith. Unambiguous auxiliary pushdown au-
tomata and semi-unbounded fan-in circuits. Information and Computation,
118(2):227-245, May 1995.

C. H. Papadimitriou and S. Zachos. Two remarks on the power of counting.
In Proceedings of 6th Conference on Theoretical Computer Science, number
145 of LNCS, pages 269-275. Springer Verlag, 1983.

J. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the Association for Computing Machinery, 27:701-
717, 1980.

W.-H. Steeb. Kronecker Product of Matrices and Applications. Wis-
senschaftsverlag, 1991.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponen-
tial time. In Proceedings of the 5th ACM Symposium on the Theory of
Computing, pages 1-9. ACM Press, 1973.

V. Strassen. The asymptotic spectrum of tensors. Journal fir die reine
und angewandte Mathematik, 384:102-152, 1988.

S. Toda. Computational Complexity of Counting Complexity Classes. PhD
thesis, Tokyo Institute of Technology, Department of Computer Science,
Tokyo, 1991.

S. Toda. PP is as hard as the polynomial time hierarchy. SIAM Journal
on Computing, 20:865-877, 1991.

L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189-201, 1979.

L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solu-
tions. Theoretical Computer Science, 47:85-93, 1986.

H. Venkateswaran. Properties that characterize LOGCFL. Journal of Com-
puter and System Sciences, 43:380-404, 1991.

29

[41] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In Proceedings of the 6th Structure in Complexity The-
ory, pages 270-284. IEEE Computer Society Press, 1991.

[42] 1. Wegener. The Complezity of Boolean Functions. Wiley-Teubner series
in computer science. B. G. Teubner & John Wiley, 1987.

[43] A. Wigderson. NL/poly C @L/poly. In Proceedings of the 9th Structure
in Complexity Theory, pages 59-62. IEEE Computer Society Press, 1994.

[44] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings
of the Symposium on Symbolic and Algebraic Manipulation, number 72 of
LNCS, pages 216-226. Springer Verlag, 1979.

A Some Comments on the Connection Between
Tensors and Matrices

Formally defined, a tensor ¢ over S is a mapping ¢ : [di] X --- x [dg] = S,
where di,... ,dy € {1,2,...} and [d;] :== {1,... ,d;} for each i. The shorthand
notation for ¢ is (¢;,..;,). We allow for also upper indices, like in ¢t = (]1777°).
We call such a tensor an (r, s)-tensor. To avoid double indices we write tensors
without specifying the number of indices and their ranges, like in (¢§:f). To
define the tensor operations we further simplify and consider as operands only
(2,2) tensors. This is enough to see how the exact general definition would be.

Let t = (tjf) and s = (s%,) be tensors. We consider the following three

operations: the tensor product t ® s is defined as (uff%”n) = (t§f - s%2,). If
corresponding indices of ¢ and s vary in the same range, their sum s + t is
defined, which is (uff) = (t§f + sff). Finally, if for tensor ¢ the ranges of one
lower index and one upper index, say ¢ and £, coincide, t’s junction, also called
partial trace, via i and ¢ exists and is defined by T'¢ = (3 u tﬁ’;), where the sum
ranges over all x4 in the joint range of ¢ and 4.

Similar to tensor formulas (formally based on matrix operations) we can
define tensor expressions and their evaluation on base of the just defined ten-
sor operations. Tameness and simplicity conditions can be introduced as in
the matrix terminology and similar to the non-zero tensor formula problem we
consider the non-zero tensor expression problem: decide whether a well-formed
tensor expression describes a scalar non-zero tensor (an (1,1)-tensor with a sin-
gle entry). It turns out, that both problems are computationally equivalent,
i.e., can efficiently be transformed into each other. We argue informally about
that only in the general case, referring to polytime computations. The tame or
simple case are similar—the additional conditions ensure that transformations
can be computed within logspace.

A matrix is the special case of a (1,1)-tensor. The definition of the sum is
the same for matrices and tensors. The tensor product of matrices is not readily
defined as a matrix, since this would be a (2,2)-tensor. However, by arranging

30

it’s entries in a block-wise fashion, we get the definition of a tensor product
for matrices as introduced in Section 2. Further, the product (A7) - (Bf) of
matrices A and B (A’s column number equals B’s row number) is I‘f; (A® B),
where A ® B is considered as a (2,2)-tensor. The rearrangement is easily seen
to be computable in polytime.

From this we can conclude, that a tensor formula can be translated into
a tensor expression, in which each tensor product is followed by a junction.
Hence, the non-zero tensor formula problem reduces to the non-zero tensor
expression problem. On the other hand, generalizing the above embedding of a
(2,2)-tensor into a matrix, arbitrary tensors can be embedded into matrices by
listing the entries row- and column-wise following the rule “run through later
indices first.” Moreover, tensor operations can be translated into corresponding
matrix operations in much the same way as is done above the other way around
(see [18]) and it is easy to see, that also this translation can be performed in
polytime. It follows, that the non-zero tensor expression problem reduces to the
non-zero tensor formula problem and, hence, the problems are computationally
equivalent.

31

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

