Electronic Colloquium on Computational Complexity, Report No. 37 (2000)

New Worst-Case Upper Bounds for MAX-2-SAT
with Application to MAX-CUT

Jens Gramm* Edward A. Hirschf Rolf Niedermeier? Peter Rossmanith$

May 26, 2000

Abstract

The maximum 2-satisfiability problem (MAX-2-SAT) is: given a Boolean formula in 2-CNF,
find a truth assignment that satisfies the maximum possible number of its clauses. MAX-2-SAT
is MAX-SNP-complete. Recently, this problem received much attention in the contexts of
approximation (polynomial-time) algorithms and exact (exponential-time) algorithms. In this
paper, we present an exact algorithm solving MAX-2-SAT in time poly(L) - 25X/, where K is
the number of clauses and L is their total length. Since, in our analysis, we count only clauses
containing exactly two literals, this bound implies the bound poly(L) - 25/19,

Our results significantly improve previous bounds: poly(L)-2%/2-88 [27] and poly(L)-2K/344
(implicit in [3]). Concerning the bound w.r.t. L, nothing better than the bound poly(L)-2%/6-8
[3] for (general) MAX-SAT was known. Our algorithm, together with its analysis, is much
simpler than recent MAX-SAT algorithms (previous MAX-2-SAT bounds were obtained by
general MAX-SAT algorithms using inequalities relating different input formula parameters).

As an application, we derive upper bounds for the (MAX-SNP-complete) maximum cut
problem (MAX-CUT), showing that it can be solved in time poly(M) - 2M/3, where M is the
number of edges in the given graph. This is of special interest for graphs with low vertex degree.

1 Introduction

Worst-Case Upper Bounds for NP-hard Problems. Various NP-hard optimization prob-
lems arise naturally in many areas of computer science while no polynomial-time algorithms for
them are known. For some of these problems, there are polynomial-time approximation algorithms
that give solutions within a factor of some performance ratio « of the optimal solution. However,
for those problems that are MAX-SNP-hard (see, e.g., [1, 28]), it is known that the performance
ratio of a polynomial-time algorithm cannot be better than some constant ¢ (inapproximability
ratio) unless P = NP. For example, for MAX-2-SAT (for formal definitions, see below), a = 0.931
[14] and ¢ = 0.955 [17].

*Wilhelm-Schickard-Institut fiir Informatik, Universitét Tibingen, Sand 13, D-72076 Tiibingen, Fed. Rep. of Ger-
many. Email: gramm@informatik.uni-tuebingen.de. WWW: http://www-fs.informatik.uni-tuebingen.de/~gramm.

tSteklov Institute of Mathematics at St.Petersburg, 27 Fontanka, 191011 St.Petersburg, Russia. Email:
hirsch@pdmi.ras.ru. WWW: http://logic.pdmi.ras.ru/~hirsch. Work is partially supported by grants from INTAS
and RFBR.

Wilhelm-Schickard-Institut fiir Informatik, Universitit Tiibingen, Sand 13, D-72076 Tiibingen, Fed. Rep. of Germa-
ny. Email: niedermr@informatik.uni-tuebingen.de. WWW: http://www-fs.informatik.uni-tuebingen.de/~niedermr.

$Institut fiir Informatik, Technische Universitit Miinchen, Arcisstr. 21, D-80290 Miinchen, Fed. Rep. of Germany.

Email: rossmani@in.tum.de. WWW: http://wwwbrauer.in.tum.de/~rossmani.
ISSN 1433-8092

Recently, there was an explosion in proving (exponential-time) worst-case upper bounds for
NP-hard problems and, in particular, for the exact solution of M AX-SNP-hard problems. The
main results in the area concentrate around SAT, the problem of satisfiability of a propositional
formula in conjunctive normal form (CNF), which can be easily solved in time of the order 2%,
where N is the number of variables in the input formula. In the early 1980s, this trivial bound
was improved for formulas in 3-CNF (every clause contains at most three literals) by Monien and
Speckenmeyer [26] and independently by Dantsin [8] (e.g., a 2/%** bound' was proved). After that,
many upper bounds for k-SAT [10, 20, 23, 24, 29, 33], MAX-SAT [3, 25, 27|, MAX-2-SAT [3, 27|,
and other NP-hard problems were obtained.

Previous Research and Our Results. Concerning the problems for formulas in CNF, most
authors consider bounds w.r.t. three main parameters:

e the length L of the input formula (i.e., the number of literal occurrences),
e the number K of its clauses, and
e the number N of the variables occurring in it.

The best currently known bounds for SAT are 2K/3-23 and 2L/97 [20], while, w.r.t. the number of
variables, nothing better than trivial 2V is known. In constrast, for 3-SAT, randomized (4/3)"
[33] and deterministic 1.481% [10] are known, while the bounds w.r.t. K and L are the same as for
SAT.

The maximum satisfiability problem (MAX-SAT) is an important generalization of SAT. Here,
we are given a formula in CNF, and the answer is the maximum number of simultaneously satisfiable
clauses. This problem is NP-complete? and M AX-SNP-complete, even if each clause contains at
most two literals (MAX-2-SAT; see, e.g., [28, Theorem 13.11]). MAX-SAT and MAX-2-SAT are
well-studied in the context of approximation algorithms (see, e.g., [2, 9, 14, 17, 22, 34]). Recently,
numerous results appeared in the domain of worst-case time bounds for the exact solution of
MAX-SAT and MAX-2-SAT [3, 9, 16, 18, 19, 25, 27]. The currently best bounds for MAX-SAT are
2K/2:36 and 2L/6-89 [3]. For MAX-2-SAT, the considerably better bounds 2%/288 [27] and 25K/344
(implicit in [3]) follow from MAX-SAT algorithms. In this paper we prove a much better 2K/5
bound by giving a direct (and much simpler!) algorithm for MAX-2-SAT. Our result still holds
if K in the exponent is the number of 2-clauses (i.e., unit clauses are not counted). Therefore,
the bound 2%/10 follows, which is the first bound w.r.t. L that is better for MAX-2-SAT than for
MAX-SAT.

Using our MAX-2-SAT algorithm, we easily obtain the bound 2M/3 for the MAX-CUT problem
(given a graph with M edges, find a cut of maximum size in it). This is of particular interest for
graphs with bounded degree: If the maximum vertex degree is 3, then MAX-CUT can be solved
in time 27/2 (where n is the number of vertices) and, if the maximum vertex degree is 4, then
MAX-CUT can be solved in time 227/3. For larger degree d > 5, our algorithm does not improve
a simple 2"4/(d+1) Hound [35]. We are not aware of previous non-trivial worst-case upper bounds
for the exact solution of MAX-CUT, except for the parametrized bounds given by Mahajan and
Raman [25]. Their results are a bound of 22¥ for the question of whether a given graph has a cut

9N/1.44 2N/1.44,

'For brevity, we usually omit a polynomial factor in this paper: e.g., if we write
where |F| is the length of the input.

2 A more precise NP-formulation is, of course, “given a formula in CNF and an integer k, decide whether there is
an assignment that satisfies at least &k clauses.”

, we mean poly(|F|)-

of size k, and a bound of 2%¥ for the question of whether a given graph with m edges has a cut of
size [+ k.

Our results w.r.t. K and w.r.t. M, also hold for the versions of MAX-2-SAT and MAX-CUT
where each clause (resp., edge) is assigned an integer weight. In this case, K and M in the above
bounds denote the total weight of all clauses (resp., edges).

Splitting Algorithms. Most of the algorithms corresponding to the bounds mentioned above,
as well as the algorithms presented in this paper, use a kind of Davis-Putnam-Logemann-Loveland
procedure [11, 12]. In short, this procedure reduces the problem for a formula F' to the problem for
two formulas F'[v] and F[v] (where v is a propositional variable). This is called “splitting.” Before
the algorithm splits each of the obtained two formulas, it can transform them into simpler formulas
Fy and Fy using transformation rules. In a splitting tree corresponding to the execution of such
an algorithm, the node labelled by F' has two children labelled by F; and F5. The algorithm does
not split a formula if it is trivial to solve the problem for it; these formulas are the leaves of the
splitting tree. The running time of the algorithm is within a poly(L) factor of the number of leaves.

Sources of Our Improvements. Our MAX-2-SAT algorithm is a typical splitting algorithm,
i.e., to describe it we need to specify: a set of formulas corresponding to the leaves of our tree, a
heuristic determining the choice of a variable for splitting, and transformation rules. Worst-case
analysis of such algorithms usually contains a huge amount of case enumeration. The number of
cases we need to consider in our proof is tremendously smaller than in the current results for general
MAX-SAT [3, 27]. Our MAX-2-SAT algorithm makes use of two main ideas.

The leaves of our splitting tree are formulas containing only unit clauses (clearly, MAX-1-SAT
is trivial). Therefore, in the analysis of the running time of our algorithm we count only 2-clauses.
We prove that every variable occurring in at most two® 2-clauses (and maybe some 1-clauses) can
be eliminated in polynomial time*. It is not very hard to see that if there is a variable occurring in
three 2-clauses, then we can make a splitting such that each of the formulas F; and F; has at least
five 2-clauses less than F' (this situation corresponds to the recurrence inequality T'(K) < 2T'(K —5)
for the running time). Clearly, we can say the same about F containing a variable occurring in at
least five 2-clauses. If our splitting tree contains only formulas of these types, then the running time
is at most 2%/5. The remaining case corresponds to the recurrence inequality T'(K) < 2T(K — 4).

The second idea is connected to a general point in splitting algorithms for NP-hard problems:
usually, a problem has “bottleneck” instances, i.e., the instances corresponding to the “worst”
recurrence inequality. For example, for the algorithm described above, these are the formulas for
which our splitting corresponds to the inequality T'(K) < 2T(K — 4). Usually, this situation is
handled by looking to the next level of splitting and showing that the obtained two instances are
not “bottleneck” [20, 27]. In this paper, we handle this situation in a different way. Namely, we
show that we can build a splitting tree such that each branch contains at most one “bottleneck”
instance. Therefore, we can omit the corresponding recurrence inequality from asymptotic analysis.

For the MAX-CUT problem, there is an easy translation of any of its instances with M edges
into a MAX-2-SAT instance with 2M clauses. This would already give us a 22/5 bound. However,
the formulas given by the translation satisfy a very specific condition. Moreover, this condition is

3For simplicity, we give here our ideas in the unweighted case.

“In fact, it follows easily that MAX-2-SAT is solvable in polynomial time when every variable occurs in at most
two 2-clauses (and maybe some 1-clauses). Note that MAX-2-SAT is NP-complete and MAX-SNP-complete, even
if the number of occurrences of every variable is bounded by three (see, e.g., [5, 31]).

preserved by our transformation rules. For such formulas, our algorithm runs with small modifica-
tions in the time 25/6, i.e., MAX-CUT can be solved in the time 2M/3.

History of the Paper. The present work started from [15, 16, 18, 19], where parts of the ideas
of this paper already appeared. The authors thank DIMACS for financial support that gave them
an opportunity to meet at DIMACS Workshop on Faster Exact Algorithms for NP-Hard Problems,
where the ideas from earlier discussions between them were implemented into better algorithms
with significantly better bounds.

Organization of the Paper. Our paper is structured as follows. In Section 2, we give basic
definitions. In Section 3, we describe the transformation rules we use. In Section 4, we present
our new MAX-2-SAT algorithm and its analysis. Section 5 shows the application to MAX-CUT.
Conclusions, open questions, and comparison to close research are given in Section 6.

2 Background

Let V be a set of Boolean variables. The negation of a variable v is denoted by w. Literals are
variables and their negations. If I denotes a negated variable 7, then I denotes the variable v.

Algorithms for finding the exact solution of MAX-SAT are usually designed for the unweighted
MAX-SAT problem. However, the formulas are usually represented by multisets (i.e., formulas in
CNF with positive integer weights). In this paper, we consider the weighted MAX-SAT problem
with positive integer weights. A (weighted) clause is a pair (w,S) where w is a strictly positive
integer number and S is a nonempty finite set of literals which does not contain, simultaneously,
any variable together with its negation. We call w the weight of a clause (w, S).

An assignment is a finite set of literals that does not contain any variable together with its
negation. Informally speaking, if an assignment A contains a literal /, then the literal [has the
value True in A. In addition to usual clauses, we allow a special true clause (w, T) which is satisfied
by every assignment. (We also call it a T-clause.)

The length of a clause (w, S) is the cardinality of S. A k-clause is a clause of length exactly
k. In this paper, a formula in (weighted) CNF (or simply formula) is a finite set of (weighted)
clauses (w, S), with at most one clause for each S. If a formula contains only one clause, for short
we write this clause instead of the formula. A formula is in 2-CNF if it contains only 2-clauses,
1-clauses and a T-clause. The length of a formula is the sum of the lengths of all its clauses. The
total weight of all 2-clauses of a formula F' is denoted by K(F) and by Ky when the formula is
clear from the context.

The pairs (0, S) are not clauses: for simplicity, however, we write (0, S) € F for all S and all F.
Therefore, the operators + and — are defined:

F+G = {(w1+we,8)| (w1,5) € F and (w9, S5) € G, and wy + we > 0},
F—-G = {(w—w8) | (w1,5) € F and (w2, 5) € G, and wy — wy > 0}.
Ezample 1. If
F = { (Q,T), (3,{1'7?/})’ (45 {E’g}) }
and
G={2{zy}), 4{z,7}) },
then
F— G == { (25T)a (1,{x,y}) }

4

For a literal [and a formula F, the formula F'[I] is obtained by setting the value of [to True.
More precisely, we define

Fll] = ({(w,9)] (w,S)€ Fandl,l¢S}+
{(w,S\{I}) | (w,S) € Fand S # {I} and [€ S} +
{(w, T) | w is the sum of the weights '
of all clauses (', S) of F such that [€ S}.

(Note that no (w,0) or (0,S) is included in F[l], F+G or F—G.) For an assignment A = {l1,...,ls}
and a formula F, we define F[A] = F[l1][l2]...[ls] (evidently, F[I][l'] = F[I'][l] for every pair of
literals [,1' with [# I'). For short, we write F[l1,...,ls| instead of F[{l1,...,ls}].

Ezample 2. If
F={1T), 1L{=zy}), 6,{7}), (2:{z7,7}), (10,{z}), (2,{z,2}) },

then
Flz,z) ={ (12,T), (7,{y}) }-

The optimal value of a maximum weight assignment for formula F' is defined as OptVal(F) =
maxs{w|(w,T) € F[A]}, where A is taken over all possible assignments. An assignment A is
optimal if F[A] contains only one clause (w, T) (or does not contain any clause, in this case w = 0)
and OptVal(F) = w (= OptVal(F[4])).

If we say that a literal v occurs in a clause or in a formula, we mean that this clause (more
formally, its second component) or this formula (more formally, one of its clauses) contains the
literal v. However, if we say that a variable v occurs in a clause or in a formula, we mean that this
clause or this formula either contains the literal v or it contains the literal v.

For a literal [, we write #;(G) to denote the total weight of the clauses of a formula G in which
l occurs. We omit G when the meaning of G is clear from the context. We also write #;k) to denote
the total weight of k-clauses in which [occurs. The weight of a variable is the total sum of the
weights of the 2-clauses the variable occurs in.

A closed subformula G is a subset of a formula F' such that none of the variables occurring in G
occurs in F'— G. We use this term only for non-trivial subformulas, i.e. both G and F' — G contain
at least one variable.

3 Transformation rules

A correct transformation rule replaces a formula F with a “simpler” formula F' such that F has
an optimal assignment with weight w iff F' has an optimal assignment with weight w, i.e., a correct
transformation rule preserves OptVal. In this section, we present the transformation rules we use
and show their correctness. Note that these rules do not increase neither the weight of any variable
nor the total weight of the 2-clauses.

Pure literal. A literal is pure in a formula F if it occurs in F', and its negation does not occur
in F. The following lemma is well-known and straightforward.

Lemma 1. If b is a pure literal in F, then OptVal(F) = OptVal(F'[b]).
Rule Tpyure replaces F' with F[b] if b is a pure literal.

Annihilation of 1-clauses. Rule T,,, “annihilates” opposite 1-clauses, i.e., it replaces F' with
(F—{(w,{a}), (w,{a}) })+(w, T) if F contains clauses (w1, {a}) and (w2, {a}) and w = min(w;, ws).

Resolution. In this paper, the resolvent R(C,D) of 2-clauses C = (w1,{l1,l2}) and D =
((UQ, {ll, 13}) is the formula

{ (max(w1,ws), T), (min(wi,ws), {l2,I3}) } (1)

if Iy # I3, and it is the formula {(w; +wa, T)}, otherwise. This definition is slightly non-traditional,
but it is very useful in the MAX-SAT context.
The following lemma is a straightforward generalization of a statement about usual resolution
(see, e.g., [32]).
Lemma 2. If F contains 2-clauses C = (w1, {v,l1}) and D = (w9, {7,l2}) such that the variable v
does not occur in other clauses of F', then
OptVal(F') = OptVal((FF —{C,D}) + R(C,D)). (2)

Rule Tpp replaces F with (F—{C, D})+R(C, D) if F, C, and D satisfy the conditions of Lemma 2.

Dominating 1-clause. The following fact was observed in [27].
Lemma 8 ([27]). If for a literal b and a formula F, #;" > #;, then

OptVal(F') = OptVal(F'[b]).

Rule Tgom replaces F' with F[b] in such a case.

Small closed subformula. We can easily compute the optimal value for a closed subformula G
containing at most, say, 12 variables. Clearly,

OptVal(F') = OptVal(F' — G) + OptVal(G).
Rule Tgman replaces F with (F — G) + (OptVal(G), T) in such a case.

Rare variable. Let F be a formula, and let a be a literal such that #5’ = 2, #(;) = #P =0,
and #(al) = 1. Consider a 2-clause (w, {a,b}) in F. Rule Tyare replaces this clause with (w, T) and
replaces literal a with literal b and literal @ with literal b in all other clauses.

Lemma 4. Rule Tyape is correct.

Proof. Let F' be the obtained formula. It is trivial that OptVal(F') < OptVal(F). We now prove
the opposite inequality.
Let A be an optimal assignment for F. Let b € A. Consider F[b]. Note that we can apply
Tg4om to the literal @ in this formula, i.e.,
OptVal(F) = OptVal(F[A]) < OptVal(F[b])
= OptVal(F[a,b]) = OptVal(F'[a,b]) < OptVal(F').
Let now b € A. Consider F[b]. Note that we can apply Tann and then Tpure to the literal a in
this formula, i.e.,
OptVal(F) = OptVal(F[A]) < OptVal(F[b])
= OptVal(F|a, b]) = OptVal(F'[a,b]) < OptVal(F").

4 A 25/5_time Algorithm for MAX-2-SAT

In this section, we present Algorithm 1 which solves MAX-2-SAT in time poly(L) - 25X2/5 where
K, is the total weight of 2-clauses of the input formula (in the case of unweighted MAX-2-SAT,
K5 is the number of 2-clauses). We first state the algorithm and then show its running time and
its correctness using several lemmas.

Algorithm 1.
Input: A formula F' in weighted 2-CNF.
Output: OptVal(F).

Method.

(A1) Apply Tpure; Tann, TDP; Tdom; Tsmall, Trare to F' as long as at least one of them is
applicable.

(A2) If F contains only a T-clause, return the weight of this clause.

(A3) If F consists of several closed subformulas, then decompose F' into two closed subformulas
Hy and Hy, apply Algorithm 1 to each of the formulas Hy + (1, {u,v}) and Hy + (1,{u,v})
(where u and v are new variables), and return the sum of the results minus 2.

(A4) If each variable has weight exactly four, then choose a variable v, apply Algorithm 1 to F[v]
and F[v] and return the maximum of the results.

(A5) If F satisfies the conditions of Lemma 6 below, then compute F; and F5 with the properties
stated in the lemma. Next, recursively apply Algorithm 1 to F; and F5 and return the
maximum of the results.

Otherwise, find a variable v such that the following works: Form the formulas F| := F[v]
and Fj := F[v]. For each i = 1,2, apply Tpure; Tann, TDP; Tdom; Trare to F; in such
order that, for the obtained formula Fj,

Ky(F) — K»(F;) 2 5. (3)

Execute Algorithm 1 for the formulas F; and F, and return the maximum of its answers.

O
We first formulate the additional straightforward properties of our transformation rules that we
use in our proofs.

Lemma 5. Let F be a formula, and let x be a variable of weight one or two. Then repeated
application of transformation rules to this variable

1. eliminates this variable from F’;
2. decreases the total weight of 2-clauses of F'; and

3. does not change clauses that do not contain z (in particular, it does not change the weights
of the variables that do not occur together with z in a clause).

The following two lemmas address special cases that will be needed in our main theorem which
states the correctness of Algorithm 1 and proves the claimed running time.

Lemma 6. Let F be a formula such that there are no closed subformulas and all variables are of
weight either three or four, where both these possibilities are realized. Furthermore, let us assume
that no transformation rule is applicable.

Then, we can easily compute two formulas F} and F5 such that for each 7 = 1,2,

1. F; contains a variable of weight exactly one, two, or three,
2. KQ(F) — KQ(E) > 5, and
3. OptVal(F') = max{OptVal(F1), OptVal(F»)}.

Proof. Let = be a variable of weight three and let y be a variable of weight four. Furthermore, let x
and y occur together in a clause. Such variables must exist, since there are no closed subformulas.

As a special case, let us first assume that there is a variable v (v = z is possible) that exclusively
occurs together with y in clauses of total weight three. Then, take the variable z (z = z is possible)
that only occurs together with y in a clause of weight one and look at F[z] and F[Z]: In both
formulas, all clauses that contain y form a small closed subformula. Hence, we apply Tsman to
F[z] and F[z], resulting in F and F. Note that Ko(F) — Ko(F;) > 6. If claim (1) of Lemma 6
is violated, i.e., F; contains a variable that does not occur four times in 2-clauses, then we replace
F; with F; — (1, T) + (1,{u,v}), where u and v are new variables. Thus, v fulfills claim (1), and
claim (2) and (3) are still true.

If the previous special case does not apply, then z occurs in F[y] in 2-clauses of weight one or
two. We now produce a formula F; from F[y| by applying transformation rules to z in F'[y] until
z is eliminated. To fulfill claim (1), we choose some other variable z that occurs in F' together
in a clause with y and that still occurs in Fy in 2-clauses, which, however, have weight at most
three. Note that by Lemma 5(3), such a z always exists and meets claim (1) because, otherwise,
the special case would have applied.

In the same way, we get Fy from F[y]. O

Lemma 7. Let F be a formula containing two variables u and v such that u has weight exactly two
and v has weight either one or two. Then, we can find easily transformation rules that produce
from F another formula F’ such that Ko(F) — Kyo(F') > 2.

Proof. First apply Tann to F' as long as possible. If we can now apply Tpure or Tdom to u then
we are done, since this eliminates 2-clauses of weight two.

Otherwise, we can apply Trare or Tpp to u which eliminates 2-clauses of weight one or two
and, if it eliminates a 2-clause of weight only one, then it leaves v occurring in 2-clauses of weight
one or two (see Lemma 5). Hence, we can now apply transformation rules to v that eliminate
another 2-clause of weight one. O

Using the above lemmas, we are now ready to prove our main result:

Theorem 1. Given a formula F' in 2-CNF, Algorithm 1 always correctly finds OptVal(F') in time
poly(L) - 2K2/5 where L is the length of F and K is the total weight of 2-clauses in F.

Proof. Running time. Every transformation rule takes polynomial time and does not increase the
total weight of non-T-clauses. When the condition of a rule is satisfied, the rule decreases the total
weight of non-T-clauses. Thus, the transformation rules are executed a polynomial number of times
during step (Al).

After applying transformation rules to F', Algorithm 1 makes two recursive calls for formulas
with smaller total weight of 2-clauses (unless F' becomes trivial), either at step (A3), (A4), or

(A5). Clearly, the total running time of the algorithm is the total running time of the two recursive
calls plus a polynomial time spent to make these calls. Therefore, the running time is within a
polynomial factor of the number of nodes (or leaves) of the recursion tree. In the following we show
that the number A\(K3) of these leaves for a formula F with K, is O(2K2/5).

First consider a formula F with Ks clauses that forces our algorithm to make a recursive call
at step (A3) or (A5). The number of leaves in the recursion tree corresponding to this formula is
at most 2A(Ky — 5). If all nodes of our tree for the input formula would be of this type, then we
would have a straightforward 252/% bound on the number of leaves.

However, there may be also recursive calls at step (A4). On first glance, the number of leaves
in a tree corresponding to such a call is bounded only by 2A(Ky — 4). To avoid worsening our
bound, in the following we prove that, for most such formulas, we still have 2A(K3 —5) leaves and a
different “odd” formula can occur at most once in each branch of our tree (i.e., on each path from
the root to a leaf). Therefore, we get the desired bound.

We now prove this claim about (A4). What may cause the application of (A4) to a formula F'?
In principle, F' may be the input, F' can originate from a transformation rule in (Al), or from a
recursive call at step (A3), (A4), or (A5).

If F originated from applying a transformation rule at step (A1), then we have the desired
bound on the number of leaves, since the transformation rule reduces Ks at least by 1 and (A4)
then reduces it by 4 (in both branches).

Note that F' cannot originate from (A3), since (A3) adds weight one variables to each of the
two produced formulas.

Such F' also cannot originate from (A4): Setting the truth value of a variable clearly implies
that, afterwards, another variable has weight 1, 2 or 3, because at step (A4), F does not have
non-trivial closed subformulas.

Finally, if F' originated from (A5), then we have two distinct cases. Let G be a formula from
which F' originated (i.e., F' is obtained at step (A5) as G[v] or G[v], or possibly from applying
transformation rules to G[v] or G[v]). First, if G contains a weight 5 variable, then we do not need
to worry, because this can happen only once on each path in the recursion tree from the root to one
of its leaves (note that weights never increase and, thus, none of the successors will have a variable
of weight greater than 4). Otherwise, Lemma 6 applies to G (note that by Lemma 5(1), at step
(A5), the formula contains only weight 3 and weight 4 variables, and it must contain a weight 4
variable because weights do not increase).

Correctness. The correctness of the transformation rules is shown in Section 3. The correctness
of steps (A2)—(A4) is trivial. It remains to show that at step (A5), appropriate rules can be easily
found.

If a variable has weight at least five, then we can simply choose that variable. If each variable
has weight exactly three, then we proceed as follows: Choose some variable . Then it is easy to
see that Lemma 7 applies to F[z] (and to F[z]) and, thus, we can eliminate 2-clauses of weight two
from F[z] (and from F[Z]) making a total of at least 5.

Otherwise, Lemma, 6 applies and shows how to proceed. O

In the case of unweighted® MAX-2-SAT, we have L > 2K,. This directly implies the following
corollary.

Corollary 1. Given a formula F' in unweighted 2-CNF of length L, Algorithm 1 always correctly
finds OptVal(F) in time poly(L) - 2%/19,

®In other words, all weights equal 1.

Remark 1. Of course, in Corollary 1, only the number of literal occurrences in 2-clauses is essential
in the exponent.

Remark 2. Algorithm 1 can be easily redesigned so that it finds the optimal assignment (or one
of them, if there are several assignments satisfying the same number of clauses) instead of only
OptVal(F').

5 Application to MAX-CUT

Our results can be applied to other NP-complete problems which are easily reducible to MAX-2-SAT.
For instance, we consider the NP-complete graph problem MAX-CUT: Given an undirected graph
G = (V, E) where edges are assigned integer weights, we ask for a cut of maximum weight, i.e., for a
partition of V' into V; and V5 such that we maximize the sum of weights over those edges (s,t) € E
for which s € V; and t € V,. For a survey on MAX-CUT refer to Poljak and Tuza [30]. We can
easily reduce MAX-CUT to MAX-2-SAT. The resulting formulas expose a very special structure.
After presenting the reduction, we formulate, in the following, a condition that tries to capture
this structure. We take advantage of it, and refine the analysis of Algorithm 1 when processing
these formulas. Thereby, we improve the bounds, compared to the general case, and derive upper
bounds for MAX-CUT.

For the reduction of MAX-CUT to MAX-2-SAT [30], we translate a graph G = (V, E) into a
2-CNF formula having the vertices as variables and having clause set

C = {(w,{i,j}) |edge (3,j) € E having weight w }
U{ (w,{4,5}) | edge (4,j) € E having weight w }.

In this way, a graph having n vertices and m edges of total weight M results in a formula having
n variables and 2m clauses of total weight 2M/. All these clauses are 2-clauses. The graph G has a
cut of weight k iff the formula has simultaneously satisfiable clauses of weight M + k; every optimal
assignment to the formula translates into a maximum cut, namely with all vertices corresponding
to satisfied variables on one side and all vertices corresponding to falsified variables on the other
side. An assignment satisfying a maximum number of clauses in the resulting formula will satisfy
at least one of the clauses (w, {i,5}) and (w, {i,5}), which are created for an edge (4, j) of weight
w, but will satisfy both clauses only if the edge is in the cut.
As we can see, the formulas created by this reduction initially exhibit a characteristic structure
which we call MAX-CUT Condition:
For each 2-clause of weight w containing literals z and y, there is

also a 2-clause of weight w containing literals z and §. (MCC)

In the following, we show that the steps applied by Algorithm 1 preserve this structure of the
formulas.

Lemma 8. Let a formula satisfy (MCC). After applying a transformation rule or after assigning a
value to a variable, the formula still fulfills (MCC).

Proof. For assigning a value to a variable, the claim is trivial; the 2-clauses of the new formula are
exactly those 2-clauses of the old formula that do not contain the assigned variable. To prove the
rest of this statement, we show for all transformation rules that, applied to a formula satisfying
(MCC), they preserve this property. Rule Tyare, however, cannot apply at all to formulas having
(MCC). To apply this rule, we would need a literal z occurring in 2-clauses of weight two without
Z occurring in any 2-clauses. This contradicts (MCC).

10

When applying rules Tpyure and Tgom, We simply assign values to certain variables. Hence, the
above discussion shows that these rules preserve (MCC). Rule Ty, does not affect the 2-clauses
and, thus, does no harm to (MCC). As the statement formulated in (MCC) is valid or not only
within a closed subformula, rule Tg,an also does not violate the property.

Only regarding Tpp, it is not so obvious that the rule maintains (MCC). Let a variable z have
occurrences in 2-clauses only in clauses (w1, {z,l1}) and (we, {Z,l2}). We infer from (MCC) that
Iy = I;. Therefore, Tpp replaces these two clauses with (w; + we, T) and, thus, (MCC) is not
violated. O

We observe that the modifications covered in Lemma 8 are exactly those applied by Algorithm 1
to the input formula while processing it. We conclude that the special structure of the formula is
preserved in every step of the algorithm. Compared with arbitrary formulas, the number of possible
occurrence patterns for a variable is, thereby, reduced. Using this, we can improve the analysis of
Algorithm 1 when the input is a formula satisfying (MCC).

To simplify the proof, we slightly modify Algorithm 1: step (A3) now does not add new variables
and makes a recursive call directly for H; and Hy; step (A4) is omitted; and at step (A5), the
inequality now requires Ko(F') — Ko(F;) > 6. Also, F satisfying (MCC) cannot fulfill the condition
of Lemma 6 and, thus, the first part of step (A5) can be omitted.

Theorem 2. Given a formula F in 2-CNF satisfying (MCC), the modified Algorithm 1 always
correctly finds OptVal(F) in time poly(L) - 252/6, where L is the length of F' and Ky is the total
weight of 2-clauses in F'.

Proof. In the proof of Theorem 1, we have seen that every step of the recursion takes polynomial
time. The size of the splitting tree is now guaranteed by the conditions of the steps of the modified
algorithm. It only remains to prove that an appropriate variable and transformation rules at the
modified step (A5) can be easily found.

In Lemma 8, we have shown that every step of Algorithm 1 (and also of its modified version)
preserves (MCC). Thus, we can assume that every node of our splitting tree is labelled by a formula
satisfying (MCC). Note that (MCC) implies that F' does not contain variables of odd weights.
Also, it does not contain variables of weight two (Lemma 5(1)), because these are handled by the
transformation rules. Therefore, every formula labelling a node of our splitting tree either contains
a variable of weight at least six (this directly implies the required inequality Ko(F) — Ko(F;) > 6
for i = 1,2), or each of its variables is of weight exactly four. We now prove that, even in this case,
we can find transformation rules such as to fulfill the required inequality.

Take any clause of literals a and b corresponding to variables « and y. This clause has to have
weight one: If it would have weight two, (MCC) would imply that there is also a clause (2, {a,b})
and, thus, there are no other 2-clauses containing variables £ and y. In this situation, however,
Tsman would apply. Therefore, (MCC) implies that there is another literal ¢ (corresponding to a
variable z) such that there are, besides (1,{a,b}), also clauses (1, {a,b}), (1,{a,c}), and (1, {@,}).
Assigning a value to z eliminates four 2-clauses and causes Tgom to apply to y and z (again by
(MCQC)). This eliminates two more 2-clauses because, otherwise, z,y, and z would form a small
closed subformula of F. Summarizing, we have that we can always fulfill the modified inequality
of the step (A5). O

Theorem 2 gives upper bounds for the running time of the modified algorithm on 2-CNF for-
mulas derived from MAX-CUT instances. We now translate these results into numbers of vertices
and edges of a graph.

11

Corollary 2. Given a graph G having n vertices and edges of total weight M, we can solve (weighted)
MAX-CUT in time poly(n) - 2M/3. Tf an unweighted graph has maximum vertex degree three, then
MAX-CUT is solvable in time poly(n) - 27/2 and if the graph has maximum vertex degree four, it
is solvable in time poly(n) - 22%/3.

Proof. Generating 2-CNF formulas from MAX-CUT instances, i.e., graphs with n vertices and
edges of total weight M, results in 2-clauses of total weight 2M with n different variables. Then,
the bound shown in Theorem 2 translates into a bound of poly(n) - 22M/6 = poly(n) - 2M/3 with
respect to the total weight of the edges. The other two bounds follow from the inequality m < dn/2
relating n to the number m of edges and the maximum degree d. O

6 Discussion and Open Questions

Our Bounds vs Parametrized Bounds. In this paper, we proved the upper bound of the order
2K2/5 for MAX-2-SAT with positive integer weights, where K5 is the total weight of 2-clauses of
the input formula (or the number of 2-clauses for unweighted MAX-2-SAT) and L is the number
of literal occurrences. This also implies the bound 2%/10 for unweighted MAX-2-SAT. From this,
we also derived upper bounds for MAX-CUT.

Our bounds depend neither on the weight of an optimal solution nor on a required mini-
mal weight of solution. In contrast, beginning from [13, 25], there has been much research for
parametrized bounds for MAX-SAT, MAX-2-SAT and MAX-CUT: in terms of k, how much time
do we need to find a solution of weight at least k7 For MAX-SAT, Bansal and Raman [3] give
the best known parametrized bound 2¥/215 which is better than their “unparametrized” bound
2K/2:36 when k < 0.92K, where K is the total weight of all clauses. In one of the papers [16] that
inspired this paper, the parameterized bound 2¥/27 for MAX-2-SAT has been proved. However,
our present “unparametrized” bound 252/° where K, is the total weight of 2-clauses, is better
for all reasonable values of k: the parametrized bound is better only when k < 0.55K5, while an
assignment satisfying 0.5K + 0.25K5 > 0.75K> clauses can be found in a polynomial time [25, 34].
It seems like the idea of counting only 2-clauses does not work for parametrized bounds.

As [%] clauses can be easily satisfied, Mahajan and Raman [25] propose to ask in the parameter-
ized version of the problem for an assignment satisfying [% + k'] clauses. Taking the parameterized
bound shown in [16] and plugging it into the results by Mahajan and Raman, we can translate it
into a bound with respect to this new parameter k’; in time 96K'/2.73 — 9K'/045 one can find an
assignment to the variables that satisfies at least [% + k'] clauses or one can determine that no
such assignment exists. However, for k' < [%], this question still can be handled in polynomial
time. Comparing for k' > [%1 the bound 2¥/%45 to the bound shown for Algorithm 1, we see,
again, that the parametrized bound is worse for every parameter value.

It would be interesting, however, to consider, for a given k”, the parameterized complexity of

the question whether there is an assignment satisfying [% + %] + k" clauses.

Possible Applications of Our Ideas. The key idea of our MAX-2-SAT algorithm is to count
only 2-clauses (we can do this, since MAX-1-SAT instances are trivial). It would be interesting to
apply this idea to SAT, for example, by counting only 3-clauses in 3-SAT (since 2-SAT instances are
easy). Also, it would be interesting to apply our idea of handling “bottleneck” cases to the analysis
of other algorithms with such cases [20, 27]. Also, it remains a challenge to find a “less-than-2V"
algorithm for MAX-SAT, or even for MAX-2-SAT, where N is the number of variables. (Note that

12

for any fixed € > 0, an assignment satisfying (1 — ¢)OptVal(F') clauses of a formula F in k-CNF
can be found in randomized ¢V time, where ¢ < 2 is a constant depending only on k and e [21].)

In a similar way as we did for MAX-CUT, we can apply our results to the NP-complete
unweighted INDEPENDENT SET problem which also has an easy reduction to MAX-2-SAT [7].
The problem is, for a given graph G = (V, E), to find the maximum number of vertices sharing no
edge. The resulting bound with respect to the number of edges m, however, does not improve the
bound of 2/877 given by Beigel [4].

From a more practical point of view, it would also be challenging to experimentally examine the
efficiency of our algorithms. Previous results for exact MAX-2-SAT algorithms having guaranteed
worst-case time bounds compared with a heuristic algorithm [6] lacking guaranteed worst-case time
bounds have shown encouraging results in this direction [15, 16].

References

[1] S. Arora and C. Lund. Hardness of approximation. In D. Hochbaum, editor, Approzima-
tion algorithms for NP-hard problems, chapter 10, pages 399-446. PWS Publishing Company,
Boston, 1997.

[2] T. Asano and D. P. Williamson. Improved approximation algorithms for MAX SAT. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’00,
pages 96-105, 2000.

[3] N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In A. Aggarwal and
C. Pandu Rangan, editors, Algorithms and Computation (Proceedings of ISAAC’99), volume
1741 of Lecture Notes in Computer Science, pages 247-258. Springer-Verlag, December 1999.

[4] R. Beigel. Finding maximum independent sets in sparse and general graphs. In Proceedings of
the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’99, pages 856—857,
1999.

[5] P. Berman and M. Karpinski. On some tighter inapproximability results. In Automata, Lan-
guages and Programming (Proceedings of ICALP’99), volume 1644 of Lecture Notes in Com-
puter Science, pages 200-209. Springer-Verlag, 1999.

[6] B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and weighted MAX-
SAT problems. Journal of Combinatorial Optimization, 2(4):299-306, 1999.

[7] J. Cheriyan, W. H. Cunningham, L. Tuncel, and Y. Wang. A linear programming and rounding
approach to Max 2-Sat. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 26:395-414, 1996.

[8] E. Dantsin. Two propositional proof systems based on the splitting method (in Russian).
Zapiski Nauchnykh Seminarov LOMI, 105:24-44, 1981. English translation: Journal of Soviet
Mathematics, 22(3):1293-1305, 1983.

[9] E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. Approximation algorithms for MAX
SAT: a better performance ratio at the cost of a longer running time. Technical Report PDMI
preprint 14/1998, Steklov Institute of Mathematics at St.Petersburg, 1998. Electronic address:
ftp://ftp.pdmi.ras.ru/pub/publicat/preprint /1998 /14-98.ps.gz.

13

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schéning. Deterministic algorithms for k-SAT
based on covering codes and local search. In Proceedings of ICALP’2000. To appear.

M. Dayvis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Commu-
nications of the ACM, 5(7):394-397, July 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7(3):201-215, July 1960.

R. G. Downey and M. R. Fellows. Parametrized Complezity. Springer-Verlag, 1999.

U. Feige and M. X. Goemans. Approximating the value of two proper proof systems, with
applications to MAX-2SAT and MAX-DICUT. In Proceedings of the 3rd Israel Symposium on
Theory and Computing Systems, pages 182-189, 1995.

J. Gramm. FExact algorithms for Max2Sat and their applications. Diploma the-
sis, WSI fur Informatik, Universitat Tubingen, October 1999. Available from
http://www-fs.informatik.uni-tuebingen.de/~gramm/publications/.

J. Gramm and R. Niedermeier. Faster exact solutions for Max-2-Sat. In G. Bongiovanni,
G. Gambosi, and R. Petreschi, editors, Algorithms and Complezity (Proceedings of CIAC
2000), volume 1767 of Lecture Notes in Computer Science, pages 174-186. Springer-Verlag,
March 2000.

J. Hastad. Some optimal inapproximability results. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, STOC’97, pages 1-10, 1997.

E. A. Hirsch. A 2K/%.time algorithm for MAX-2-SAT: Corrected version. Technical Report
99-036, Revision 02, Electronic Colloquim on Computational Complexity, February 2000. Elec-
tronic address: ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/1999/TR99-036 /revisn02.ps.

E. A. Hirsch. A new algorithm for MAX-2-SAT. In H. Reichel and S. Tison, editors, Proceedings
of STACS 2000, volume 1770 of Lecture Notes in Computer Science, pages 65-73. Springer-
Verlag, February 2000. Contains an error, fixed in [18].

E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Reasoning, Special
Issue II on Satisfiability in Year 2000, 2000. To appear. A preliminary version appeared in
Proceedings of SODA’98.

E. A. Hirsch. Worst-case time bounds for MAX-k-SAT w.r.t. the number of variables using local
search. In Proceedings of RANDOM 2000, 2000. To appear. Preliminary version available as
Technical Report 00-019, Electronic Colloquim on Computational Complexity, 2000. Electronic
address: ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2000/ TR00-019/index.html.

H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In Proceedings
of the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS’97, pages
406-415, 1997.

O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical Computer
Science, 223(1-2):1-72, 1999.

14

[24] O. Kullmann and H. Luckhardt. Deciding propositional tautologies: Algorithms and their com-
plexity. Preprint, 82 pages, available from http://www.cs.toronto.edu/ kullmann. A journal
version is submitted to Information and Computation, January 1997.

[25] M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut.
Journal of Algorithms, 31:335-354, 1999.

[26] B. Monien and E. Speckenmeyer. Solving satisfiability in less then 2" steps. Discrete Applied
Mathematics, 10:287-295, 1985.

[27] R. Niedermeier and P. Rossmanith. New upper bounds for MaxSat. Journal of Algorithms,
2000. To appear. Preliminary version appeared in Proceedings of ICALP’99.

[28] C. H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

[29] R. Paturi, P. Pudldk, M. E. Saks, and F. Zane. An improved exponential-time algorithm for
k-SAT. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science, FOCS’98, pages 628—637, 1998.

[30] S. Poljak and Z. Tuza. Maximum cuts and large bipartite subgraphs. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 20:181-244, 1995.

[31] V. Raman, B. Ravikumar, and S. Srinivasa Rao. A simplified NP-complete MAXSAT problem.
Information Processing Letters, 65(1):1-6, 1998.

[32] J. A. Robinson. Generalized resolution principle. Machine Intelligence, 3:77-94, 1968.

[33] U. Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Pro-
ceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS’99,
pages 410414, 1999.

[34] M. Yannakakis. On the approximation of maximum satisfiability. Journal of Algorithms,
17(3):457-502, November 1994.

[35] U. Zwick. Personal communication, 2000.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

15

