Electronic Colloquium on Computational Complexity, Report No. 38 (2000)

On Computation with Pulses

Wolfgang Maass, Berthold Ruf *

Abstract

We explore the computational power of formal models for computation
with pulses. Such models are motivated by realistic models for biological
neurons, and by related new types of VLSI (“pulse stream VLSI”).

In preceding work it was shown that the computational power of formal
models for computation with pulses is quite high if the pulses arriving at
a computational unit have an approximately linearly rising or linearly
decreasing initial segment. This property is satisfied by common models
for biological neurons. On the other hand several implementations of pulse
stream VLSI employ pulses that are approximately piecewise constant
(i.e. step functions).

In this article we investigate the relevance of the shape of pulses in
formal models for computation with pulses. It turns out that the com-
putational power drops significantly if one replaces pulses with linearly
rising or decreasing initial segments by piecewise constant pulses. We
provide an exact characterization of the latter model in terms of a weak
version of a random access machine (RAM). We also compare the lan-
guage recognition capability of a recurrent version of this model with that
of deterministic finite automata and Turing machines.

1 Introduction

Computations in biological neural systems employ pulses in order to transmit
information between their computational units (i.e. neurons). For many decades
one had thought that information is primarily encoded in the frequency of these
pulses (“rate coding”). Under this assumption, computations in biological neu-
ral systems can be modeled quite well by common neural network models, that
employ threshold gates or sigmoidal gates as computational units. More re-
cent results have shown, however, that many biological neural systems encode
information in the timing of individual pulses (see e.g. [Abeles 91], [Bair 96],
[Bialek 92], [Rieke et al., 1996], [Sejnowski 95], [Thorpe 89]). Thus the commu-
nication and also the “computation” of biological neurons in these systems is
quite different from the way in which processors in digital computers and also
“neurons” in artificial neural networks operate.

*Institute for Theoretical Computer Science, Technische Universitaet Graz, Klosterwies-
gasse 32/2, A-8010 Graz, Austria, e-mail: {maass, bruf}Qigi.tu-graz.ac.at

ECCC

ISSN 1433-8092

In order to model such computations one has to resort to a quite different
mathematical model for the computational activity of a biological neuron: the
leaky integrate-and-fire neuron. Such a neuron adds up incoming pulses in a
quantity called membrane potential, which models the membrane potential at
the “trigger-zone” (located at the beginning of the axon) of a biological neuron.

Whenever this membrane potential reaches a certain threshold, the neuron
“fires” and emits a pulse (called an action potential or spike), which is trans-
mitted through its axon via synapses to other neurons, where it causes another
pulse: a “postsynaptic potential”. If the firing of the presynaptic neuron causes
an increase of the membrane potential in a postsynaptic neuron (and thus in-
creases its chance to fire), then this postsynaptic potential is called an excitatory
postsynaptic potential (EPSP). If the firing of the presynaptic neuron causes a
decrease of the membrane potential, one speaks of an inhibitory postsynaptic
potential (IPSP). In our mathematical model we will describe EPSP’s and
IPSP’s at the trigger-zone of a neuron by so-called response-functions.

Computational units of this type can easily be built in hardware, and one has
started to explore potential uses of this new mode of computation and commu-
nication in various VLSI-chips (“pulse stream VLSI”) ([Murray 94], [Pratt 89],
[Horinchi 91], [Zaghloul 94], [Maass 98]. But the principles and limitations of
computations with artificial spiking neurons are so far only poorly understood.

One important task for the theoretical investigation of computations in for-
mal models for networks of spiking neurons is to find out which aspects of the
assumed model are accidental for its computational power, and which ones are
essential. As part of this program we investigate in this article the computa-
tional effect of the shape of the pulses that reach the trigger-zone of a neuron
for the case of noise-free models. More precisely, we analyze the impact of the
assumed shape of the response functions (i.e. of the postsynaptic potentials)
on the computational power of an SNN (which is a formal model for a spiking
neuron network).

It has been shown that SNN’s with linearly rising or linearly decreasing
initial segments in their response functions can perform with a small number of
spikes basic operations on analog variables in temporal coding such as addition,
subtraction, and multiplication with a constant (see [Maass 96a]). Also noisy
versions of such networks turn out to be quite powerful ([Maass 97a]).

In this article we focus on SNN’s whose response functions are described by
piecewise constant functions (i.e. step-functions). This is certainly the simplest
type of response functions from a mathematical point of view. Consequently
piecewise constant pulses are frequently employed in software simulations of
biological neural systems. In addition, such functions approximate quite well
the shape of pulses that are currently employed in pulse stream VLSI (see the
review articles in [Maass 98]). We show that the computational power of such
SNN'’s is considerable weaker than that of a SNN with pulses that rise or drop
linearly. They can no longer carry out the above-mentioned operations on analog
variables in temporal coding. Consequently there exists already a significant
difference in the computational power of spiking neurons with response functions
of the types (b) and (c) in Figure 1.

Besides our investigation of computations with numerical (i.e. analog) inputs,
we also consider the case of computations of SNN’s on bit strings, and show that
their computational power drops from that of an arbitrary Turing machine to
that of a deterministic finite automaton if their response functions are required
to be piecewise constant instead of piecewise linear. In particular we will show
that such SNN’s can no longer carry out basic pattern matching operations in
polynomial time.

Our negative results regarding the computational power of models with
piecewise constant response functions hold even if there is no noise in the sys-
tem. This should be contrasted with the positive results for models with piece-
wise linear response functions that hold even in the presence of noise (see e.g.
[Maass 97al).

Another important component of the common model for a biological neuron
is its threshold function. Whereas a threshold gate has a static threshold, the
firing threshold of a biological neuron varies over time in dependency of its
recent firing history (hence we refer to it as a threshold function). In particular,
a neuron has a higher threshold right after it has fired (“refractory period”).
We consider in this article different types of threshold functions, and show that
their shape has less influence on the computational power of the network than
the shape of the response functions.

We review in Section 2 of this article the precise models that are used. In
Section 3 we show that for numerical inputs and outputs the computational
power of networks of spiking neurons with piecewise constant response func-
tions can be characterized completely in terms of a conceptually very simple
variation of the familiar random access machine (“N--RAM”). We then use
this characterization in Theorem 3.3 and Corollary 3.4 to derive the main re-
sults of this article. In Section 4 we analyze the computational power of the
SNN’s considered here for digital computations, and prove that SNN’s with
piecewise constant response functions cannot carry out in polynomial time a
simple pattern matching task, which can be carried out in linear time by SNN’s
with piecewise linear response functions.

An extended abstract of this article was presented at the ICANN’95 ([Maass 95b]).
We refer to [Maass 97b], [Maass 97c] for further information and references.
Learning issues for this model are discussed in [Maass 97d].

2 Basic Definitions and Assumptions

In [Maass 96a] a rather general formal definition of a spiking neuron network
(SNN) has been introduced, which allows the investigation of the computational
power of different types of response- and threshold functions. We recall here
this definition:

Definition 2.1 Spiking Neuron Network (SNN):
An SNN N consists of

— a finite directed graph (V, E) (we refer to the elements of V as “neurons”
and to the elements of E as “synapses”)

— a subset Vi, CV of input neurons

— a subset Vo CV of output neurons

— for each neuron v € V — Vy, a threshold function ©, : Rt — R U {o0}
(where RT := {z € R:z >0})

— for each synapse (u,v) € E a response function £,, : R" — R and a
weight Wy, , € R".

We assume that the firing of the input neurons v € Vi, is determined from
outside of N, i.e. the sets F, C RT of firing times (“spike trains”) for the
neurons v € Vi, are given as the input of N.

For a neuron v € V — V;, one defines its set F, of firing times recursively.
The first element of F, is inf{t € RT : P,(t) > ©,(0)} , and for any s € F,
the next larger element of F, is inf{t € R" : t > s and P,(t) > O,(t — s)} ,
where the potential function P, : R™ — R is defined by

Pv(t) =0+ Z Z Wy,p * Eu,v(t - S)

u:{u,v) €E s€F,:5<1

(the trivial summand 0 makes sure that P,(t) is well-defined even if F, = ¢
for all u with {u,v) € E). The firing times (“spike trains”) F, of the output
neurons v € V,y; that result in this way are interpreted as the output of N

The complexity of a computation in an SNN is evaluated by counting each
spike as a computation step.

This formal model is essentially a noise-free version of the spike response
model as described in [Gerstner 91], [Gerstner 92] and [Gerstner 94]. One uses
the response function €, , in order to describe the potential change or “postsy-
naptic potential” wy,, - €4,0(t — 8) at the trigger-zone of neuron v at time ¢, as
a result of a firing of neuron u at time s. For simplicity the resting value of the
membrane potential at the trigger-zone of neurons is normalized to 0.

For the constructions in this article it suffices to make the following rather
weak assumptions about the response- and threshold functions in an SNN.

All response functions €,,, : RT™ — R and threshold functions 0, : Rt —
R" U {oo} are some arbitrary functions with the following properties: There
exist constants Amin, Amaz, Tmin, Omez € RT with 0 < Apmin < Amas and
0 < 0min < Omaz such that the following conditions are fulfilled:

1. For every g,, there exists some delay Ay, € [Amin, Amaee] and some
Ouw € [Omin,Tmaz] such that e, ,(z) = 0 for all z € [0,A,,,] U[Ay,s +
Oups).

EPSP

0 time 0 IPSP time

(a) Typical shape of EPSP’s and IPSP’s for biological neurons.

A AlI,V AM,V-"_cyll,v

1 I
Auy Ayy +ouy v

(b) Simple piecewise linear response functions €, .

| i I

Auy Ayy TOuy

(c) Simple piecewise constant response functions €y .

14 —_—

|
f

A u,y A u,v + Su,v

(d) Ezample for a complicated piecewise constant response function £,, that
satisfies our conditions 1 - 3.

©,(0) |

I | (4

T

T v, ref v, end

(e) Typical shape of the threshold function ©, for biological neurons v.

o o]

©,(0) |

| S

I
Tv, ref(=Tv, end)

(f) Simple piecewise constant threshold function ©,,.

A
o0

©,(0) |

| |
I | [

T v, ref Tv, end

(9) Example for a more complicated piecewise monotone and continuous
threshold function ©, that satisfies our condition 4.

Figure 1: Examples for response- and threshold functions.

2. Every g, either satisfies ,,(z) > 0 for all * € (Ayy, Ay,y + Ouw)
(in which case we refer to it as an EPSP) or &,,(z) < 0 for all z €
(Ayw,Ayy + 0up) (in which case we refer to it as an IPSP).

3. For every EPSP- response funcmon Eu,v there exists some €737 > 0 with
ene? = max{€u(r) : T € (Auw,Aupy + oup)} Furthermore, for all
z1, 22 € (Ayy, Ayp + Ju,,,) with €y, (71) = €up(®2) = €5 it follows

that ,,,(z) = e's” for all © € [z, 72).

4. For every v € V — Vj, there exist constants T, ref ;Tv,end € R+, such
that ©,(z) = oo for all z € (0, 7y rer) (“absolute refractory period”), 0 <
0,(0) < Oy(z) for all © € [Tyref ;Tv,ena) (“relative refractory period”),
and O,(x) = 0,(0) > 0 for all > 7, ena-

In this article we focus on the computational power of SNN’s with piecewise
constant response functions €,,, : R — R and piecewise monotone and contin-
uous (respectively piecewise linear) threshold functions ©, : RT™ — R* U {c0}.
When considering piecewise constant response functions we assume that for ev-
ery €y, there exist constants m,,, € N and #1"%,..., ;" € R*\{0} with

" <t;79,1 <i < my, — 2 such that the domain RJr of that function can be
partitioned into my,, intervals [0,#,""), [t;*", 7)) with 1 < i < my, — 2 and
[t%:,rp o0) such that ,,, is constant on each of these intervals. We will choose
t1" = Ay and 0 1 = Ay +0u,- A piecewise constant threshold function
©, is defined in the same fashion (see Figure 1).

In biological models one usually assumes in addition that the sign of the
derivative of each response function €, , changes only once. It turns out that
our negative results (i.e. lower bound results) even hold for the larger class of
models where this assumption is not imposed, and hence we do not make this
assumption in our formal model.

In this article we are interested in relating the computational power of various
kinds of SNN’s to other computational models. We employ for that purpose the
common notion of a real-time simulation from computational complexity theory
(see e.g. [Leong 81], [Paul 84], [Reischuk 90], [Maass 96a]). One says that M’
simulates M in real-time if M’ can simulate each step in a computation of
M with a fized number of computation steps (i.e. the simulation of “later”
computation steps of M does not require more steps of M’ than the simulation
of the first ones).

It is obvious that if M’ simulates M in real-time, then it also simulates M
in polynomial time (in fact: in linear time).

For biological neural systems the precise timing of computations is essential,
and most computations are completed within a fixed number of “clock-cycles”.
Hence the notion of a real-time simulation is better suited for their investigation
than the more common but too coarse notion of a polynomial simulation.

When we say in the following that a class C of machines can be simulated
in real-time by SNN’s with response- and threshold functions of a certain type
(e.g. piecewise constant), we mean the following: We can construct for any

machine M in C an SNN M’ that simulates M in real-time, where we choose
the architecture of M’ as well as the values of delays A, , and weights w,,, in
M’ and the “sign” of the response function (i.e. EPSP or IPSP). However we
allow that the exact shape of the response- and threshold functions of M’ is given
to us, i.e. they can be arbitrary functions of the specified type (e.g. piecewise
constant) that satisfy the conditions 1. - 4. specified above. In other words: we
assume that we have no control over the exact shape of response- and threshold
functions, but know that they satisfy conditions 1. - 4. Hence a simulation result
of this type yields a real-time simulation of M with the simplest examples of
such response- and threshold functions (see Figure 1, ¢ and f), but also with
any other response- and threshold functions that happen to satisfy the same
conditions (see Figure 1, d and g). Thus a result of this type automatically
implies that the exact shape of the response- and threshold functions of the
considered type does not matter for this simulation result.

In the next section we will show that SNN’s with piecewise constant response
functions are real-time equivalent to a special type of random access machine
(RAM), which we will call N--RAM.

Definition 2.2 (N--RAM)

An N--RAM is a random access machine (RAM) with a constant number of
registers that receives as its input, stores in ils registers, operates on, and out-
puts real numbers from some bounded interval [—B, B]. The contents of a reg-
ister R is denoted by [R]. The machine uses some designated register A as
an accumulator. It can execute arbitrary programs of finite length, where each
program statement has some unique label and consists of one of the following
wmstructions:

ADD(3): given some arbitrary constant 3 € [0, B], this command adds 3 to
[A] (provided that [A] + 8 € [—B, B]) and stores the result in A.

SUBTRACT(3): given some arbitrary constant B € [0, B), this command sub-
tracts B from [A] (provided that [A] — B € [-B, B]) and stores the result
in A.

IF COMPARE(R) THEN GOTO label: this command compares the con-
tents of the registers R and A. If [A] > [R], then a jump to “label” is
executed.

GOTO label: jumps to “label”.

LOAD(R): loads the contents of R into A.

STORE(R): stores the contents of A into R.

HALT: unique instruction that ends the execution of the program.

The input is given as the initial content of certain registers, and the output is
given as the difference between the contents of two other distinguished registers
when the machine halts. The complexity of a computation is evaluated according

to the unit-cost criterion, where each execution of an instruction is counted as
one computation step (regardless of the complexity of the operands).

Our output convention for N~ -RAMs is motivated by the goal to prove that
N—-RAMs and SNN’s with piecewise constant response functions are real-time
equivalent (Theorem 3.3). For SNN’s we adopt the natural output convention
that analog output values are represented as the difference between the firing
times of two output neurons.

In [Maass 97a] the stronger model of an N-RAM had been considered that
can in addition execute the instructions ADD, SUBTRACT (on two arbitrary
registers containing reals from some bounded interval), and MULTIPLY(0).
This machine model was shown in [Maass 95a] and [Maass 97a] to be real-time
equivalent to SNN’s with piecewise linear activation functions and to recurrent
analog neural nets with piecewise linear activation functions.

We will use the adjectives analog, numerical and real-valued interchangeably
throughout this article.

3 Characterization of the Power of Restricted
SNN’s for Analog Computations

Theorem 3.1 Any SNN with piecewise constant response functions and piece-
wise monotone and continuous threshold functions can be simulated for real-
valued input and output from a bounded range in real-time by an N~ -RAM.

ProOF We will show that for any given SNN N of the type considered
here one can construct an N--RAM M that can simulate A in real-time. The
basic idea of the proof is that given the firing time ¢ of some neuron in N, the
simulating N"-RAM M computes for each neuron v in N the potential firing
time t, > t, i.e. the first time where v would fire provided that no other neuron
fires within the time-interval (¢,t,). From Definition 2.1 it follows that the
neuron v for which ¢, is minimal actually fires (there might in fact be several
neurons that fire simultaneously at time ,).

M reserves for each neuron in A" a fixed number of registers. The firing times
of the input neurons of N are assumed to be given to M as input in the form
of the initial content of some registers. For each firing time ¢ of an input neuron
and for each later firing time ¢ that it has already “constructed”, M proceeds as
follows: We assume that M stores for each neuron u all its firing times < ¢ which
can still be relevant at times > t for some other neuron v, i.e. which occured
within the time-interval (t—mas — Amaz, t].1 With Timin 1= min{ry, ser : u € V}
it follows that at most (|(omaee + Amaz)/Tmin] +1) -|V| registers are needed for

11t would be sufficient to consider the time-interval (t — omaz,u — Amaz,u,t] for every
neuron % with Apaz,w = max{Ay,, v € V} and omaz,u = max{oy,» : v € V}, but this gain
in efficiency is irrelevant for our proof.

that, since a neuron u can generate in a time interval of length 0,40 + Amaes at
most L(Umaz + Amaa:)/Tu,refJ + 1 spikes.

We now show how P,(t) can be computed by M: Observe that P,(t) can
assume only finitely many values, since v can receive only a bounded number of
EPSP’s respectively IPSP’s which are still relevant at time ¢ from some neuron
u with (u,v) € E. With our assumption on the shape of the response functions
it follows that each of them can contribute to P,(t) only one of finitely many
values (of the form wy,, - €44 (t — ty), with ¢, being some firing time of neuron
w).

In order to compute P,(t) at some time ¢, M has by definition to compute
for every neuron u with (u,v) € E and all firing times ¢, < ¢ of u, which can
be relevant to P,(t) the contribution wy,y - €4,4(t — ty) to Py(t). Therefore M
has to find the largest t;>* (see Section 2) with ¢* < ¢ —t,. Since ey, (t) is
assumed to be piecewise constant, all possible values of ¢;"" and wy y - €40 (t;"")
can be stored in a lookup-table (provided in the form of constants in certain
registers of M). If j < m,,, — 1 then M also stores in some register the next
time ¢!, = t,, + t;-‘_’:’l , when P,(t) changes again due to the firing of neuron u at
tu.

With the knowledge of P,(t) and of the first time ¢’ when the potential
changes after ¢ (given by the minimum of all the ¢}, for all u with (u,v) € E),
M can easily check whether there is some potential firing time during the time-
interval [t,t), i.e. a time where the potential function P, meets the threshold
function ©,. Since P, can assume only finitely many values, it is possible to
store in a lookup-table for every v and for every possible value P of P, all f for
which 0, (f) = P. If ©, has some constant segment of value P, M simply stores
the corresponding interval-boundaries. Note that there are only finitely many
values of ¢ to be stored due to our assumptions about the threshold function.
Using this table M can find out whether there exists some #, such that t, + 1 is
within [¢,#') and whether ©,(t) = P,(t, + t) with ¢, being the last firing time
of neuron v (if v has not fired before ¢ then we set ¢, = 0 and replace ©,(f) by
0,(0)). If such # can be found, then the smallest # fulfilling this condition yields
the next potential firing time ¢, + ¢ of v. Otherwise M has to check iteratively
whether the threshold is exceeded within the next constant segment of P,,.

Obviously it is sufficient to search for the potential firing times of v within
the time-interval [t,t + Omaz + Amaz) since no spike which occurred before ¢
can have any influence on v at times > t + 00z + Amaz- As mentioned above
the neuron with the smallest potential firing time actually fires. M stores this
time in a register dedicated to this neuron and then continues its simulation in
the same manner (taking this new firing time into account).

The registers containing (potential) firing times of M have to be kept bounded.
Since only a bounded “time-window” of previous firings is relevant for determin-
ing future firings, M can subtract from the contents of all registers containing
such firing times a suitable constant C' and can erase those among these registers
whose content is < C. [|

10

Theorem 3.2 Any N--RAM can be simulated in real-time by an SNN with
piecewise constant response- and threshold functions.

PrOOF We show that SNN’s of the type considered here can store real
numbers from some bounded interval with the help of oscillators, and that
they can simulate within a bounded number of spikes every possible N~-RAM
instruction. The argument is based on a proof given in [Maass 96a] for the
real-time simulation of Turing machines by a less restricted class of SNN’s.

In our SNN model, oscillators can be realized using two neurons v and v
with (u,v) € E, (v,u) € E, &,, and ¢, , being EPSP-response functions. The
weights are chosen such that wy,, > 0,(0)/e;s” and wy > 04(0)/e7'a". In
this way a single pulse from u will cause v to fire, and vice versa. Once started,
a spike “cycles” periodically through these two neurons. Such an oscillator
has two inputs with which the oscillation can be started respectively halted,
and one output, through which spikes with the oscillation period are sent out.
These oscillators can be used in two ways for storing data: They can be used
for storing single bits using their two states oscillating/dormant. Assuming
the existence of a designated oscillator, which we call the pacemaker PM with
oscillation period mpys, any other oscillator O with the same oscillation period
can also be used for representing positive real numbers modulo 7wpy; as the
phase difference between O and PM. In order to represent negative numbers we
assume that each oscillator representing some real number is associated with
a second oscillator Oy representing the sign of that number. Numbers greater
than or equal zero are represented by O as described above where O; is dormant,
for negative numbers we assume that O, is oscillating with the same frequency
and phase difference to PM as O. Note that for arbitrary a € R* we get
(—a = mpym — a)modwpy. In order to represent for the given constant B
of a given N--RAM all possible register contents € [—B, B], we assume that
wpa > B.2 The oscillator corresponding to the accumulator A as described in
Definition 2.2 will be denoted with O 4.

The program control can be realized in the same way as in [Maass 96a],
where it has been shown how SNN’s can simulate arbitrary threshold circuits
with boolean input, and thus simulate the control of some Turing machine in a
very efficient way. This construction can also be applied for the type of SNN’s
considered here. A given N--RAM-program P can be described by a boolean
function if we assume that each N~-RAM-program statement is associated with
a certain unique state. Each state can be described in a binary way using
oscillators where a “1” (“0”) is represented by an oscillating (dormant) state.
We will refer to these oscillators as “state-oscillators”. For every N--RAM-
operation occurring in P we will construct one module which is started by the
firing of some designated neuron, which acts as input neuron for that module.
Thus there are as many ADD-modules as ADD-statements in P using different

21f B is greater than the sum of the lengths of the time-intervals it takes £, and £y 4 t0

reach 7’5" respectively £7'0%, then one has to use a cycle of more than two neurons.

11

parameters (the same holds for the other parameterized statements). By using a
layer of inter-neurons between the state-oscillators and those modules, it can be
easily achieved that a certain state of the state-oscillators activates one unique
module, executing the corresponding N~-RAM-operation.

We now show how the N--RAM-instructions can be simulated by such SNN.
We begin with the instruction COMPARE(R). A dedicated neuron v will fire
within a specific time-interval if and only if [4] < [R], where [A] denotes the
current content of the accumulator and [R] the current content of register R.
In order to realize the GOTO-part of the instruction, some straightforward
circuitry makes sure that the binary states of the state-oscillators are reset to
different values (representing the two possible next states of the N--RAM),
depending on whether u fires within the specified time interval or not. In case
that A > 0 and R > 0 we want to achieve that u fires if and only if the EPSP
from wus (whose arrival time encodes [A]) reaches u before the IPSP from uq
(whose arrival time encodes [R]). For that purpose one has to make sure that
Wy, s sufficiently large so that in the absence of inhibitory input from other
neurons the neuron v fires immediately when the EPSP from wus arrives at u.
Furthermore, w,, , is chosen sufficiently large so that v will not fire if the IPSP
from wu; arrives before the EPSP from uy. In case that the length of this IPSP is
too short to achieve this, one has to supplement it by IPSP’s forming a chain of
auxiliary inhibitory neurons that fire shortly after u;. The binary states of the
sign oscillators Oy for the accumulator A and the register R indicate whether
the assumptions [A] > 0 and [R] > 0 for the case described above are actually
met. If [A] < 0 and [R] < 0 one proceeds in an analogous manner to make
sure that u fires within a specified time interval if |[A]| > |[R]|- If [4] < 0 and
[R] > 0 the condition [A] < [R] is always satisfied, and if [4] > 0 and [R] < 0
the condition [A4] < [R] is always false. Auxiliary circuitry makes sure that u
fires in the former case, and does not fire in the latter case.

The simulation of the operation ADD(3) can basically be achieved by “send-
ing” the spike of O4 through a delay module with delay g, i.e. a chain of neurons
having only EPSP-links such that the delay of a spike passing through this chain
adds up to 8. In order to compute the sign of the addition, the result of that op-
eration is temporarily stored in some oscillator O. Depending on the input [A4],
0O 4,5 has to be started/halted, which can be easily realized using a COMPARE-
module. Finally the “content” of O is copied to O4. SUBTRACT(8) can be
realized in the same fashion.

The simulation of the LOAD(R)-operation signals to the oscillator repre-
senting [R] to send a spike through its output to O4. The delays have to be
chosen such that O4 will actually represent [R]. We assumed that each LOAD-
operation occurring in P corresponds to a unique state of the state oscillators.
The proper register can be addressed in the same fashion as the different states
of the state-oscillators address different modules. If [R] < 0 the corresponding
sign-oscillators have to be copied as well.

The STORE(R)-operation can be realized in an analogous way by first halt-
ing the oscillator containing [R] and then copying the “contents” of O4 to this
oscillator.]

12

Theorems 3.1 and 3.2 immediately imply:

Theorem 3.3 SNN’s with piecewise constant response- and threshold functions
are for computations with bounded real-valued input and output real-time equiv-
alent to N--RAMs.

A closer look at the statements of the Theorems 3.1 and 3.2 shows that
in Theorem 3.1 a slightly more general class of SNN’s was considered than in
Theorem 3.2: the threshold functions were allowed to be piecewise monotone and
continuous, instead of piecewise constant. Hence the simulation results of both
theorems together imply that both classes of SNN’s are real time equivalent:

Corollary 3.4 SNN’s with piecewise constant response- and threshold functions
are real-time equivalent to the class of SNN’s with piecewise constant response
functions and piecewise monotone and continuous threshold functions.

It has been shown in [Maass 96a] that an SNN that has small linearly in-
creasing and decreasing segments in its response functions can add and subtract
arbitrary bounded real numbers and also multiply arbitrary real bounded num-
bers with a given real constant. However with piecewise constant response
functions this is not possible, as the following theorem shows.

Theorem 3.5 No SNN with piecewise constant response functions and piece-
wise monotone and continuous threshold functions can carry out with a bounded
number of spikes any of the operations ADD, SUBTRACT, MULTIPLY(3) (for
any B > 0 with B8 # 1) on arbitrary small differences in firing times between neu-
rons. This holds even if the simulating SNN may employ arbitrary real-valued
parameters.

Proor We prove by contradiction a slightly stronger result: no such SNN
can decide with a bounded number of spikes for given (arbitrarily small) dif-
ferences a,b,c > 0 in firing times between certain neurons whether a + b = ¢,
a—b=c ora-f =c (for any fixed 8 > 0 with 8 # 1). Assume that there
exists an SNN of the considered type that solves any of these decision-problems
with a bounded number of spikes. By Theorem 3.1 this implies that there ex-
ists an N--RAM M that can solve this decision problem for arbitrarily small
inputs a, b, ¢ > 0 with a bounded number of (say: at most £) computation steps.
Consider first the case where M decides whether a + b = c.

All possible computations of length < £ of this N--RAM M can be simulated
by a decision tree T of depth ¢ with some rather special form of linear decision
at its branching nodes. All register contents of M can be represented as a
sum of at most one of the inputs a,b,c and a finite number of constants .
The linear decisions at the branching nodes of T represent applications of the
instruction COMPARE to two sums of this type. Thus assuming that T' contains
m branching nodes, for every 1 < ¢ < m the ith linear decision is of the form

13

“pi4y; > 5;+6;", where r;, s; € {a,b,c,0} and 7;,d; € R are certain constants
for this branching node.

Now we consider arbitrary inputs a,b,c with 0 < a < b < ¢ < €/2 with
e =min{|y; — | : v # d; and 1 < i < m}. It follows that each comparison
“ri +7; > 8; +6;” in T holds for all such a,b, ¢ if v; > 6;, and holds for no such
a,b,c if v; < §; (if v = 0;, its validity is predetermined by the pre-arranged
order a < b < ¢). This results in a contradiction since the computation of T'
will arrive for all these inputs {(a, b, c) at the same leaf of T' (and hence give the
same output), in spite of the fact that a + b = ¢ holds for some of these inputs,
and does not hold for others.

Since a — b = ¢ holds if and only if a = b + ¢, the preceding argument
automatically also covers the case of decisions “a — b = ¢”. The argument for
“a - B = ¢” is analogous.]

Corollary 3.6 (see [Maass 97c]) There exists a circuit consisting of 3 threshold
gates that cannot be simulated by any SNN with piecewise constant response
functions with a bounded number of spikes.

PRrOOF Consider a threshold circuit that outputs 1 for inputs 1,%s, 23 €
[0,1] if 1 + 22 = z3 , and 0 else. Obviously this can be achieved by a circuit
with just 3 threshold gates: the circuit outputs 1 if and only if 1 + x5 > z3
AND z1 + 22 < z3 .

The negative part of the claim follows from the proof of Theorem 3.5.]

Corollary 3.7 No SNN with piecewise constant response functions and piece-
wise monotone and continuous threshold functions is able to double through
computations that involve at most a bounded number of spikes a difference in
firing times between neurons, or a phase-difference between two oscillators (not
even for arbitrarily small phase-differences).

ProoOF This follows directly from Theorem 3.5 (consider the operation MUL-
TIPLY(2)). |

4 Characterization of the Power of Restricted
SNN’s for Digital Computations

In this section we consider the case where the SNN receives an input w € {0,1}*
in an online fashion, i.e. bit by bit, where {0, 1}* is the set of all binary strings of
finite length. We allow that the SNN signals through the firing of a designated
Neuron Vprompt that it wants to receive the next input bit. If the next input bit
is “1”, a designated neuron v;, € V;, will fire with a certain given delay A € Q

14

after the firing of vprompe. If the next input bit is “0”, v, will not fire before
the next firing of vprompt-

The following theorem provides a stark contrast to the result in [Maass 96a],
where it was shown that SNN’s with piecewise linear response- and threshold
functions and rational parameters can simulate arbitrary Turing machines.

Theorem 4.1 SNN’s with piecewise constant response functions and piecewise
linear threshold functions with rational parameters are for online boolean input
real-time equivalent to DFA’s.

PROOF Assume that some SNN N as in the claim is given. Since N uses only
rational parameters, the times ¢t where the potential of some neuron changes or
some neuron fires can be shown to be a multiple of some constant § € Q. We
will represent the current state of all neurons of A" at such time ¢ as some state
of the DFA A and compute by a transition-function the next state at time ¢+ 4.

The construction of the simulating DFA is carried out as follows: We will
define a finite set of SNN-states in terms of the states of all neurons of A in such
a way that every SNN-state has a unique successor-state. For that purpose it
suffices if the state of some neuron v at time ¢ contains the following information:

¢ the spiking history of v, given as the time difference between ¢ and all
firing times of v which can be still relevant to other neurons at times > ¢,
i.e. all firing times of v which occurred within (t — omaz — Amaz, t]-

e for every neuron u with (u,v) € E and every firing time t,, < t of u given by
t—t,, with t—t, € (0, Omaz+Amaz), the contribution of this spike to P,(t),
i.e. Wy, - Euw(t —t,) and, furthermore, the time-difference ¢’ — ¢ between
the smallest ¢ > ¢t (if any) and ¢ with €, ,(t' — t,) # €u,o(t — t,). The
state of v also depends on the number ¢ of the current segment of €,
with 1 < 4 < my, — 1 such that t' —t, = ¢;7. If no ¢’ exists then
i = Myyp.

e the current threshold ©,(t —t,), where t, is the last firing time of v. t—t,
is given by the smallest element from the spiking history of v. If v has not
fired before ¢ or if ¢ — t, > 7y end, then the current threshold is ©,(0).

As shown in the proof of Theorem 3.1, P,(t) can assume only finitely many
values, which are in this case rational. For each possible value P of the potential
function of some neuron v it follows that each ¢ for which P = 0,(¢) (if any) such
that ¢ is within a non-constant segment of O, is rational, since the threshold
functions were assumed to be piecewise linear. We denote all these possible
times with 8,.1,...,0y n, for some suitable constant n, € N.

If a neuron v # v;, fires at time ¢, then there has to be at least one neuron
u, which fired at some time ¢, < ¢t and which caused the “last jump” in the
potential function of v before or at t. We can express t in terms of previous
firing times: Either ¢ = t,, + t;"* for some ¢ (i.e. the threshold was exceeded at
a “jump” of the potential function) or t = ¢, + 6, ; for some j with ¢, being

15

the last firing time of v (i.e. the threshold was exceeded during a non-constant
segment of the potential function). Obviously the latter case cannot occur if v
did not fire within [¢ — 7, ena, t). Finally we observe that if the input neuron
vy, fires at time ¢, then ¢ = ¢' + A for a firing time ¢’ of the neuron vy, gmpt-

By induction it follows that for every neuron v any time ¢ where v fires or
its potential changes is rational and of the form

t=> niti+»_ f;f; +0-A (1)
i J

with n;, 75,7 € N, t; of the form t”” and ©; of the form ©; 5 with i, €N
and 4,0 € V. The last term of Equatlon (1) takes into account the delay A of
the input neuron v;, after the firing of vprompt (as described at the beginning
of this section). Now we can easily choose a constant § € Q such that for any
such t there exists some n € N with ¢t =n - 4.

The preceding analysis implies that it is sufficient to consider N only at
times t+ = n - § and that every neuron and thus also A/ can assume at those
times only finitely many states. We model every state s of A as described
above by a state s’ of the DFA A. Those states of N' where v;.mpt fires, will be
mimicked by states of the DFA A where it reads its next input bit. A “1”-input
causes the DFA to assume a state reflecting an SNN state where v;, fires at the
corresponding time. Since there exists according to the preceding construction
for each state of A and each time § a unique successor state of A at time ¢+ 4,
we can define a corresponding transition function on states of A which allows
A to simulate N for arbitrary online boolean input.

On the other hand a DFA can be simulated in real-time by an SNN of the
type considered here in the same way as described in the proof of Theorem 3.2,
since the simulation of boolean circuits on SNN’s described there can be achieved
using exclusively rational parameters. The states of the DFA are simulated by
an array of oscillators in the SNN with binary states oscillating/dormant. ™

An SNN of the type considered in Theorem 4.1, but with real-valued param-
eters, is computationally more powerful than a DFA, as the following corollary
indicates:

Corollary 4.2 Any Turing machine M can be simulated by an SNN with piece-
wise constant response functions and threshold functions (although not in real-
time)

PROOF In order to prove this result we have to design a mechanism which allows
a fized size SNN to store and manipulate bit sequences of arbitrary length.

It is well known that any Turing machine M can be simulated (however
not in real time) by a counter machine M’, having no tapes but two counters
(see e.g. [Hopcroft 79]). At each step M’ can either increase or decrease one
counter by one, or check if one counter is zero. An SNN can realize a counter
with an oscillator O using the same idea as described in the proof of Theo-
rem 3.2 by representing the current value of a counter as the phase-difference

16

between O and some pace-maker wpyr. We choose a suitable constant 8 such
that k-8 =1 - wpy for any k,I € N implies that kK = [= 0. Now the SNN
can realize a counter incrementation (respectively decrementation) by using the
ADD(3) and SUBTRACT(8) modules, as described in the proof of Theorem
3.2. In order to check if the counter is zero one can use the same idea as for the
COMPARE-module. [|

The preceding result shows that SNN’s with piecewise constant response-
and threshold functions can simulate arbitrary Turing machines, as it has been
shown before for SNN’s with response functions that contain linearly increasing
and decreasing segments ([Maass 96a]). However our next result exhibits an
important difference between both classes of SNN’s with regard to speed of
these simulations. Whereas with the latter class of SNN’s one can simulate
arbitrary Turing machines in real-time (hence in linear time), no polynomial
time simulation is possible if the response functions are piecewise constant.

Theorem 4.3 Assume that o language L C {0,1}* is accepted in polynomial
time by some online SNN N with arbitrary piecewise constant response functions
and arbitrary piecewise monotone and continuous threshold functions, whose
definition may involve arbitrary real-valued parameters. Then for every n € N
the initial segment LN {0,1}=" of L can be accepted by some DFA with at most
polynomially in n many states.

PROOF Theorem 3.3 also holds for online SNN’s: One simply has to con-
sider online N=-RAMs, which have in addition to the N--RAM introduced in
Definition 2.2 a READ-command, causing the next input-bit to be stored into
some designated register.

An on-line N--RAM M which simulates the given SNN N in real-time ac-
cepts LN {0,1}<™ in at most polynomially in n many steps. The program of M
is by definition of finite length and thus uses a finite number of constants. The
possibilities of M to change the contents of registers are very limited (it can
basically only add or subtract constants). Each of the (say k) registers of M can
assume within polynomially in n many steps at most p(n) different values for
some polynomial p, independent from the input. Hence the registers of M can
assume at most p(n)* “states” within polynomially in n many steps. Therefore
a DFA with polynomially in n many states can simulate M for inputs up to
length n, and hence accept L N {0, 1}=". []

Corollary 4.4 No SNN of the type considered in Theorem 4.3 can decide in
polynomial time whether w = @ for two sequentially presented bit strings w,w €
{0,1}" (i.e. ww, or w#w with a separation marker #, is given as input in an
online fashion).

PROOF By Theorem 4.3 it is sufficient to consider some DFA which carries
out such a decision for a fixed n. It can be easily shown that such a DFA has

17

to employ at least 2™ states to record the first half w of the input.]

The pattern matching task from Corollary 4.4 can obviously be carried out
by a Turing machine in linear time. Hence no SNN of the type considered
in Theorem 4.3 and Corollary 4.4 can simulate an arbitrary Turing machine in
polynomial time (i.e. in such a way that the simulation of ¢ Turing machine steps
requires at most polynomially in ¢ many spikes). This provides a strong contrast
to the situation for SNN’s with linearly increasing and decreasing segments in
their response functions, that can simulate any Turing machine in real-time
(hence in linear time) even if all their parameters are rationals.

5 Conclusion

We have shown that both for numerical and boolean inputs a model for a noise-
free network of spiking neurons with piecewise constant pulses (i.e. response
functions) has much less computational power than a model whose pulses have
linearly increasing or decreasing segments. In addition, Theorem 3.3 provides
a complete characterization of the computational power of such networks with
piecewise constant pulses in terms of a mathematically very perspicuous (and
easy to program) computational model: the N--RAM.

On the side we have shown that the shape of the threshold functions has
much less influence on the computational power of the network than the shape
of the pulses.

Acknowledgement: We would like to thank Eric Allender and Pekka,
Orponen, as well as the referees, for helpful comments.

References

[Abeles 91] M. Abeles. (1991) Corticonics: Neural Circuits of the Cerebral Cor-
tex. Cambridge University Press.

[Bair 96] W. Bair, C. Koch, “Temporal precision of spike trains in extrastriate
cortex of the behaving macaque monkey”, Neural Computation, vol. 8,
pp 1185-1202, 1996.

[Bialek 92] W. Bialek, F. Rieke. (1992) Reliability and information transmission
in spiking neurons. Trends in Neuroscience, vol. 15, 428-434.

[Gerstner 91] W. Gerstner. (1991) Associative memory in a network of “biolog-
ical” neurons. Advances in Neural Information Processing Systems, vol. 3,
Morgan Kaufmann: 84-90.

[Gerstner 92] W. Gerstner, R. Ritz, J. L. van Hemmen. (1992) A biologically
motivated and analytically soluble model of collective oscillations in the
cortex. Biol. Cybern. 68: 363-374.

18

[Gerstner 94] W. Gerstner, J. L. van Hemmen. (1994) How to describe neuronal
activity: spikes, rates, or assemblies? Advances in Neural Information
Processing Systems, vol. 6, Morgan Kaufmann (San Mateo), 463-470.

[Hopcroft 79] J. E. Hopcroft, J. D. Ullman. (1979) Introduction to Automata
Theory, Languages and Computation. Addison- Wesley Publishing Com-
pany Inc.

[Hopfield 95] J. J. Hopfield. (1995) Pattern recognition computation using ac-
tion potential timing for stimulus representations. Nature, vol. 876, 33-36.

[Horinchi 91] T. Horinchi, J. Lazzaro, A. Moore, C. Koch. (1991) A delay-line
based motion detection chip. Advances in Neural Information Processing
Systems, vol. 8, Morgan Kaufmann (San Mateo), 406-412.

[Leong 81] B. Leong, J. Seiferas. (1981) New real-time simulations of multihead
tape units. J. of the ACM 28, 166-180.

[Maass 95a] W. Maass. (1995) On the computational complexity of networks
of spiking neurons (extended abstract). Advances in Neural Information
Processing Systems, vol. 7, MIT-Press, 183-190.

[Maass 95b] W. Maass and B. Ruf. (1995) On the relevance of the shape of post-
synaptic potentials for the computational power of spiking neurons. Proc.
of the International Conference on Artificial Neural Networks (ICANN’95),
EC26PIE, Paris, vol. 2, 515-520.

[Maass 96a] W. Maass. (1996) Lower bounds for the computational power of
networks of spiking neurons. Neural Computation, vol. 8, issue 1, 1-40.
[Maass 97a] W. Maass (1997) Fast sigmoidal networks via spiking neurons. Neu-

ral Computation, vol. 9, 279-304.

[Maass 97b] (1997) On the relevance of time in neural computation and learn-
ing. Proc. of the 8th International Conference on Algorithmic Learning
Theory in Sendai (Japan), Ming Li abd Akira Maruoka, eds., Springer Lec-
ture Notes in Computer Science, vol. 1316, Springer (Berlin), 364-384.

[Maass 97c¢] W. Maass. (1997) Networks of spiking neurons: the third genera-
tion of neural network models. Neural Networks, vol. 10(9), 1659-1671.

[Maass 97d] W. Maass, T. Natschliger (1997) Networks of spiking neurons can
emulate arbitrary Hopfield nets in temporal coding. Network: Computation
in Neural Systems, vol. 8(4), 355-372.

[Maass 98] W. Maass, C. Bishop, eds. (1998) Pulsed Neural Networks, MIT-
Press, Cambridge.

[Murray 94] A. Murray, L. Tarassenko. (1994) Analogue Neural VLSI: A Pulse
Stream Approach. Chapman € Hall.

[Paul 84] W. Paul. (1984) On heads versus tapes. Theoretical Computer Science
28, 1-12.

[Pratt 89] G. A. Pratt. (1989) Pulse Computation. Phd-dissertation, MIT,
Dept. of Elect. Eng. and Comp. Sci.

[Reischuk 90] K. R. Reischuk. (1990) Einfiihrung in die Komplexititstheorie.
Teubner (Stuttgart).

19

[Rieke et al., 1996] F. Rieke, D. Warland, R. van Stevenick, W. Bialek,
“SPIKES: Exploring the Neural Code”, MIT Press, Cambridge, 1996.
[Sejnowski 95] T. J. Sejnowski. (1995) Time for a new neural code? Nature,

vol. 376, 21-22.
[Thorpe 89] S. J. Thorpe, M. Imbert. (1989) Biological constraints on connec-
tionist modelling. In: Connectionism in Perspective, Pfeifer, R., Schreter,
Z., Fogelman-Soulié, F., and Steels, L., eds., Elsevier (North-Holland).
[Zaghloul 94] M. L. Zaghloul, J. L. Meador, R. W. Newcomb, eds., “Silicon Im-
plementations of Pulse Coded Neural Networks”, Kluwer Academic Pub-
lishers, 1994.

20

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

