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Abstract

Collective Coin-Flipping is a classical problem where n computationally unbounded proces-
sors are trying to generate a random bit in a setting where only a single broadcast channel is
available for communication. The protocol is said to be b(n)-resilient if any adversary that can
corrupt up to b(n) players, still cannot bias the coin to some desired outcome almost certainly.
The problem is extensively studied for the case of non-adaptive adversaries who have to decide
which players to corrupt before the protocol starts. In particular, it is well-known that the opti-
mum resilience threshold is n/2 in this case. However, none of these protocols is resilient against
an adaptive adversary who can corrupt just a single player in the course of the execution. In
fact, Ben-Or and Linial [BL90] conjectured that the adaptive adversary is much more powerful
than the non-adaptive adversary. More specifically, that the optimal resilience threshold for
adaptive adversaries is only O(y/n) (which is achieved by a simple ”"majority” protocol).

We give strong evidence towards this conjecture by showing that no black-box transformation
from any statically secure coin-flipping protocol can yield an adaptively secure protocol toler-
ating w(y/n) players, so it is impossible to beat the simple majority protocol in this way. The
result is proven by reducing the question in hand to the analysis of a novel imperfect random
source of independent interest. This imperfect random source generalizes and unifies two well-
known imperfect random sources: the SV-source of Santha-Vazirani [SV86] and the bit-fixing
source of Lichtenstein-Linial-Saks [LLS89]. While from each of these sources it is easy to extract
a "somewhat random” bit, we show this this is no longer possible for the generalized source.
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1 Collective Coin-Flipping

The Setting. Collective Coin-Flipping in the full-information model is a classical problem in-
troduced by Ben-Or and Linial [BL90], where n computationally unbounded processors are trying
to generate a random bit in a setting where only a single broadcast channel is available for com-
munication. As usual, we assume that some subset of the parties can be faulty or malicious, and
we would like our protocol to be “resilient” against the faulty players (which we define precisely
later). Taking the worst case scenario, we assume that all the faulty parties are coordinated by a
central adversary A, who can corrupt up to b out of n players. We call such an adversary b-bounded.
The computation proceeds in rounds, in which each processor broadcasts a message to the other
processors. The crucial complication is that the network is assumed to be asynchronous within a
round and is synchronized only in between the rounds. For example, players cannot flip a coin by
broadcasting a random bit and taking their exclusive OR: the last player to talk can completely
control the output. Again taking the worst case scenario, we assume that in each round first A
receives all the messages broadcast by the honest players, and only then decides which messages
to send on behalf of the bad players. Finally, we assume that A never violates the protocol in
a manner that can be detected (for example, if a faulty processor has to send a random bit, he
does so; however, the bit need no be random). The output of the protocol is some pre-agreed
deterministic function of the messages exchanged over the broadcast channel.

The Goal. As we said, the objective of collective coin-flipping is for the players to agree on a
random bit. Given a bit o generated by some random experiment, we define its fairness vy < % to
be the minimum of the probability that ¢ = 0 and that o = 1, and call such a bit y-fair. Thus,
constant bit is O-fair while a random bit is %—fair. When talking about coin-flipping protocols,
we usually talk about a family a protocols parametrized by the number of players, n. Having
this in mind, a coin-flipping protocol II is said to be weakly b(n)-resilient if for any b(n)-bounded
adversary II produces a coin which is 7g-fair, where 7 is a fixed (possibly very small) constant
independent of n. Such a coin is called slightly random. II is said to be strongly b(n)-resilient if for
any b(n)-bounded adversary II produces a (3 — o(1))-fair coin. Such coin is called almost random.
Traditionally, the “standard” definition of resilience for coin-flipping is that of weak resilience, so
this is the notion that we will use, unless we state otherwise.

Type of Adversary. So far we have been very vague about the type of adversary that we have.
The only thing we specified about it, is that it coordinates the faulty players and can make them
deviate in any manner undetected by the honest players. However, we have not talked about how
and when the player becomes faulty. Most of the papers in the full-information model assume and
crucially use the fact that the adversary A is static (or non-adaptive), i.e. it decides on which b
parties to corrupt before the protocol starts. The honest player do not know which b players were
selected by A, but the resulting coin has to be slightly random for any fized set of b players. A
somewhat more realistic and much more powerful type of an adversary is an adaptive adversary.
This adversary can listen to all the communication and corrupt up to b players anywhere in the
course of the execution. As we will see, this indeed seems to give an adaptive adversary a lot of
power over the static adversary.

Coin-Flipping with Static Adversaries. The case of static adversaries has been extensively
studied and is understood very well by now. Historically, coin-flipping protocols are divided into
one-round/one-bit protocol and general (many-round/many-bit) protocols.

'In fact, since our main result is an impossibility result, it will become only stronger if we consider strong fairness.



In the one-round/one-bit protocols each player i is supposed to send a single bit z;, and the
resulting coin is some deterministic function f(z1,...,2,). Such protocols deserve such a special
attention because of their simplicity (they are given by a boolean function f : {0,1}" — {0,1}) and
the connection to “influence of variables” on boolean functions [KKL89]. If f defines a b(n)-resilient
protocol, it itself is called b(n)-resilient. Ben-Or and Linial [BL90] defined an “iterated majority
of 3” function that is resilient against (n!8:2) ~ Q(n%63) players. Ajtai and Linial [AL93] non-
constructively showed that there exist Q(n/log? n)-resilient functions. Unfortunately, there is not
much potential in improving this result, since Kahn, Kalai and Linial [KKL89] used a beautiful
argument to show that there are no w(n/logn)-resilient functions.

In contrast, general (statically secure) coin-flipping protocols can achieve much better resilience.
Historically, all such protocols first elect a single representative player (called a leader), who then
flips the final coin by itself. If the probability that the leader is non-faulty is lower bounded by a
constant 7y (independent of n) for any b(n)-bounded adversary, then the fairness of the resulting
coin is at least yy/2, yielding a weakly b(n)-resilient coin-flipping protocol. The intermediate leader
election (where the players are trying to select a non-faulty leader?) is by itself very important
and, as we said, has been typically considered instead of solving a seemingly easier coin-flipping
problem.?

The first interesting leader election (and thus, coin-flipping) protocol was given by Saks [S89],
who designed a very simple “baton passing” algorithm which he showed was Q(n/logn)-resilient
(Ajtai and Linial [AL93] improved the analysis of Saks to show that baton passing is in fact strongly
Q(n/logn)-resilient). Saks also observed that no leader election and coin-flipping protocol could
be n/2-resilient (formal proof appears in [BN]). The question of achieving (n)-resilience was
affirmatively resolved by Alon and Naor [AN93]. Using an elegant, but non-constructive “random
tree” protocol, they showed the existence of an n/4-resilient leader election protocol.* Adding
several “tricks”, they moved the resilience threshold to (% —d)n (for any d > 0). However, Boppana
and Narayanan [BN] showed that these tricks were not necessary and the “random tree” protocol
by itself is (% — §)n-resilient. This result showed that the optimal resilience of static coin-flipping
(and leader election) is n/2.

From this point on, the research in statically secure coin-flipping and leader election was focusing
on making constructive and/or more efficient leader election and coin-flipping protocols [ORV94,
RZ98, F99]. This culminated in a recent paper of Feige [F99] who gave constructive, extremely
simple and efficient (% — d)n-resilient coin-flipping and leader election protocol taking log*n +
0(1/6) rounds with each player sending O(logn) bits per round (improving and simplifying previous
protocols of [RZ98] with similar parameters).

A lot is also known on the optimal dependence 7(b) of the fairness of the coin and the number

b of faulty players. Namely, y(b) = & — @(%). The upper bound ~(b) < 5 — Q(%) was elegantly

shown by Ben-Or and Linial [BL90]. The lower bound y(b) > 1 — O(%) was proved in a series of
papers for larger and larger values of b: by Ben-Or and Linial [BL90] for b = O(n’%3), by Ajtai
and Linial [AL93] for b = O(n/logn) and, finally, by Alon and Naor [AN93] for all b. Notice that
the upper bound implies that there are no strongly 2(n)-resilient coin-flipping protocols, while the

lower bound implies that there is “no limit” for strongly o(n)-resilient protocols. (This is one of

2We notice right away that, unlike coin-flipping, leader election makes no sense against adaptive adversaries: the
adversary can always corrupt the leader at the end of the protocol.

3Feige [F99] recently showed the “converse”, i.e. that any b(n)-resilient coin-flipping protocol can be efficiently
transformed into a b(n)-resilient leader election protocol. Thus, in the static setting leader election and coin-flipping
are “equivalent”.

4Alon and Naor [AN93] and later Cooper and Linial [CL95] also gave very complicated but constructive O(n)-
resilient protocols with truly tiny constants in front of n.



the reasons why weak resilience is typically considered.)

To summarize, statically secure coin-flipping is very well understood by now, the optimal re-
silience threshold is n/2, and all the best protocols (which are quite simple and efficient) elect a
single leader who flips the final coin.

Coin-Flipping with Adaptive Adversaries. First we remark that all the best statically secure
coin-flipping protocols are not even 1-resilient against adaptive adversaries. Indeed, all of them
first elect the leader, so corrupting the leader allows the adversary to completely fix the coin. More
generally, the whole philosophy of most statically secure protocols is not applicable here, as these
protocols try to aggressively eliminate players (without significantly changing the fraction of faulty
players).

Adaptive adversaries were already considered in the original paper of Ben-Or and Linial [BL90].
In particular, they observed that the following simple “majority” protocol achieves ©(y/n)-resilience.
Each player sends a random bit, and the final coin is the majority bit. Here any cy/n players (for
small enough ¢) do not affect the protocol, since with probability 1 — o(1) the majority will be
determined anyway. Adaptivity does not help here since in order to bias the coin to 1 (similarly for
0) it does not really matter whom and when to corrupt. Any set B of b players will do: the optimal
adversarial strategy for these players is to declare that their random bits are all 1. Surprisingly
enough, this simple protocol is the best known adaptively secure coin-flipping protocol! In fact,
Ben-Or and Linial [BL90] conjectured that this protocol is indeed optimal.

Conjecture 1 ([BL90]) Majority is the optimal coin-flipping protocol against adaptive adver-
saries. In particular, the mazimum threshold that can be tolerated is O(y/n).

This conjecture, if true, would imply that adaptive adversaries are much more powerful than
static adversaries for the problem of collective coin-flipping. The only result addressing this conjec-
ture is a very nice paper by Lichtenstein, Linial and Saks [LLS89]. By looking at another question
that we will discuss later (for a different reason), they derived along the way the following result,
that seems to strongly support the conjecture above.

Theorem 1 ([LLS89]) If each player is allowed to broadcast at most 1 bit (possibly, taking n
rounds overall), the most resilient adaptively-secure coin-flipping protocol is indeed the magority
protocol (which tolerates ©(y/n) faults).

The theorem above already shows some strong separation between static and adaptive adver-
saries. Recall that the result of Ajtai and Linial [AL93] says that there are Q(n/log?n)-resilient
functions. In other words, there are Q(n/ log? n)-resilient coin-flipping protocols where each player
sends one bit (even in a single round) which are secure against static adversaries. The above result
says that no function (e.g., the function of Ajtai and Linial) f : {0,1}" — {0, 1}, even if we spread
it in any way over n rounds, can be more than O(y/n)-resilient against adaptive adversaries!

However, Theorem 1 supports Conjecture 1 much less than it seems to. Indeed, restricting each
player to send at most 1 bit seems like a huge limitation. We saw that it was very limiting even for
statically secure protocols (recall, no function can be more than O(n/logn)-resilient by the result
of [KKL89], and there are general n/2-resilient statically secure protocols [BN, ORV94, RZ98, F99]).
For adaptively secure protocols, sending at most one bit seems particularly restrictive since last
players typically have much more “influence” in this case, and it seems quite conceivable that
this unproportional influence can be mitigated by having players send many bits (e.g., in many
round-robin cycles).



To summarize, adaptively secure coin-flipping is much less understood than its static counter-
part, there seems to be some indication that adaptive adversaries are much more powerful than
static adversaries, but there is little formal evidence supporting this claim.

2 Our Approach and Main Impossibility Result

Black-Box Reductions. We look at the problem of constructing adaptively secure coin-flipping
protocols from a different perspective. Namely, assume we are given a protocol IT which is known
be “good” against static adversaries (we will be more precise in a second). We ask the question if
it is possible to transform IT in a “black-box” way so as to obtain a “somewhat good” adaptively
secure protocol ®. To capture the intuition that we are really obtaining ® from II, we do not allow
the player to send any messages outside those they send in II, but allow them to run II sequentially
as many times as they wish. Of course, one might try to let the players run some sub-protocols in
between running II, but then it is very hard to say that we are really using II and do not, say, run
a brand new protocol in the middle and ignore everything that happens in II. Thus, ® can run II
any number of times times D, and get some coins z1, ... ,zp, some of which might not be very fair
since we ran II against an adaptive adversary. To correct against this, players in ® try to apply
some function f : {0,1}” — {0,1} to x1,... ,zp to produce the final coin. This leads us to the
following natural definition.

Definition 1 Let D be any integer and f : {0,1}P — {0,1} be any function. We let ®(D, f,1I)
(often we omit I1) be the protocol where players sequentially run the protocol II D times, obtain
coins 1, ... ,xp, and output f(z1,... ,xp) as the resulting coin. The class {®(D, f,II) | D > 1, f :
{0,1}P — {0,1}} is called the class of black-box transformations of II.

The (False) Hope. The intuitive reason why black-box transformations look very promising is
the following. Assume that II is b(n)-resilient and we wish to construct an adaptively b(n)-resilient
®(D, f,II). Ignoring the question of efficiency, we can make D arbitrarily large compared to b(n)
and n (e.g., 22" if we so wish). Assume now A can adaptively corrupt up to b(n) players. Let us
take the worst case, and assume that whenever A corrupts even a single player in the middle of TI;
(the 4-th run of IT), he controls x;. But this can happen at most b(n) < D times. And if A does not
corrupt a player in the middle of II, we know from the static security of II that the coin is at least
slightly random. Thus, at most b < D of the z;’s are really biased, the remaining D — b of z;’s are
at least slightly random (maybe even almost random). So it seems like there should not be a big
problem to design a function f that would be able to “ignore” this “miniscule” number b of “fixed”
bits, and extract just a single somewhat random bit from the remaining (D — b) “good” bits. We
will show, perhaps even surprisingly, that this hope is unfortunately false for any interesting setting
of parameters. In particular, one cannot beat the simple majority protocol in this way.

Adaptive Adversary for a Black-Box Transformation. The definition of a black-box trans-
formation views the protocol II as “one piece” that is simply being run several times. Even though
given a particular IT (and D and f), we will end up with a particular protocol ®(D, f,II) and can
talk about it being adaptively b(n)-resilient, it is more natural to let the adaptive adversary A for
® perform “meta-operations” on the entire run of each IT (consistent with the static security of II).
Namely, (1) A can decide not to corrupt any players during the run of II, and then the fairness
of the resulting coin is what is achieved by II, or (2) A can decide to corrupt one or more player
during the run of II, and then we do not know anything about the resulting coin, and, therefore,
have to assume the worst (i.e., A can fix the coin). We make this more formal.
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Assume that given a fixed set B of faulty players, II produces a 7y (B)-fair coin for any static
adversary who corrupts B at the beginning, and let y;(b) = min g—; v (B) be the best that a
b-bounded static adversary can achieve. Let us denote by II; the i-th run of II, and by z; the
resulting coin. As before, A is called b-bounded if he corrupts at most b players overall. However,
now we assume that A (the adversary for ®(D, f,II)) has the following capabilities:

(A) If at the beginning of II; the set of corrupted players is B and A decides not to corrupt new
players during II, the resulting coin z; is 7y (B)-fair, but A can set the probability of z; =0
anywhere in the interval [y (B),1 — yy(B)]-

(B) If A decides to corrupt at least one new player during the execution of II;, he can set the
resulting coin x; to any value.

We justify assumptions (A) and (B) in two ways. First of all, we are talking about black-box
reductions. In other words, we do not know and do not want to assume anything more about II
than what is given to us by the function v (B). Thus, if A does not corrupt new players inside
II;, we know that Pr(z; = 0) € [y;(B),1 — vy (B)], but we cannot assume anything more, so we
assume that A can set Pr(z; = 0) anywhere in this interval. Similarly, once A corrupts a player
inside II;, nothing can be said about the behavior of the resulting coin, so we again have to assume
the worst case.

The other justification comes from the fact that all best non-adaptively secure coin-flipping
protocols (e.g., [AN93, ORV94, RZ98, F99]) essentially satisfy both of these assumptions.> As-
sumption (B) because they always elect the leader, so corrupting the leader allows the adversary
to control the coin. And assumption (A) because these protocols are actually symmetric in 0 and
1 and by making faulty players be “less and less faulty”, they can indeed achieve essentially any
probability inside the specified interval.

Main Result. Our main result is the following theorem, which states that using black-box re-
ductions one cannot significantly beat the simple majority protocol, giving further support to
Conjecture 1.

Theorem 2 For any family of coin-flipping protocols 11, there is no black-box transformation re-
sulting in an adaptively w(~/n)-resilient family of protocols ®(D, f,1I).

We also remark that the adaptive adversaries we will use to prove this result satisfy considerably
weaker assumptions than (A) and (B). For example, we will only use the extremes ~y;(B) and
(1 —y(B)) (even for some particular B) for assumption (A).® As for assumption (B), we will only
use the fact that if A wants to completely control the coin, he can do so by corrupting just some
(rather than any) one player. Some further relaxations will be clear from the proof we present, but
the point we are making is that our main result is somewhat surprising and certainly non-trivial
even without any of these relaxations. Indeed, in our informal intuition above (of why black-box
reductions look very promising), assumptions (A) and (B) did not seem to create any problems, so
even with these assumptions it is quite interesting to see why the intuition was wrong.

®In fact, it is easy to check that our main Theorem 2 holds on a “concrete level” if we replace II with any of these
protocols.

5Essentially, we are just ruling out the possibility that the static adversary can influence the bit towards 0, but
cannot do (almost) the same for 1.



3 Reduction to Imperfect Random Sources

We reduce the proof of Theorem 2 to the analysis of a novel imperfect random source (IRS). Assume
®(D, f,1I) is adaptively 2b(n)-resilient. We construct the following 2b(n)-bounded adversary for
® satisfying properties (A) and (B). Let b = b(n), v = v(b) and let B be the set of players
of cardinality b achieving v (B) = (b)) = . Before II; starts, A corrupts all the players in
B. Therefore, from now on in each of the D invocations of TI, A can set the 0-probability of z;
anywhere in at least the interval [y,1 —v]. As A will later corrupt more players, this interval can
only expand, but our particular A will not use it.” If A decides to follow rule (B), he will corrupt
a single player and set the corresponding bit x; to the value he wants. Therefore, since @ claims to
be 2b-resilient, A can use rule (B) exactly b times.

Hence, we reduced the behavior of A to the following. For i = 1...D, the adversary A can
generate x; given r1,...,x;—1 using one of the following rules:

(A’) Set z; to 0 with any probability inside the interval [y,1 — ~].

(B’) Set z; to any value A desires. However, this rule can be used at most b times.

Thus, we can view our adversary A as an imperfect random source that emits D history depen-
dent weakly random bits according to rules (A’) and (B’), and can view our function f : {0,1}” —
{0,1} as the bit-extraction procedure trying to extract a single slightly random bit for any such
source A.

Definition 2 Call any A obeying rules (A’) and (B’) above a (vy,b, D)-imperfect random source,
or (v,b,D)-IRS. Given f:{0,1}P — {0,1}, we let

e g(v,b,D, f, A) be the fairness of the coin f(z), where z = x1,... ,xp was produced by A.
e q(v,b,D, f) = ming q(v,b, D, f, A) (taken over all (vy,b,D)-IRS A).
e q(v,b,D) = maxyq(v,b,D, f) (taken over all f : {0, 1}P — {0,1}).

Thus, q(v,b, D) is the best fairness of a coin that can be extracted from any (v,b, D)-IRS. Similar
to collective coin-flipping, we say that one can extract a slightly random bit if q(v,b, D) = Q(1),
and an almost perfect bit if q(y,b, D) = % —o(1).

We will talk more about the relation of our IRS to two classical IRS of [SV86, LLS89], but let
us right away state one of our main impossibility results for our IRS.

Theorem 3 q(v,b,D) < (1)

T (2-29)
In particular, if b- (3 —7) = w(1), then q(7,b,D) = o(1), i.e. it is impossible to extract a slightly
random bit.

The amazing fact about Equation (1) is that it does not depend on the number of generated
bits D! In other words, more generated bits do not help for a given v and b. Tracing back to the
adaptive coin-flipping, once we decided to achieve adaptive 2b(n)-resilience, there is fundamental
limitation on how fair we can make the resulting coin, irrespective of how many times we run the
black-box protocol II. In other words, our informal intuition was wrong, when we claimed that we

"In fact, A that we construct will always set the 0-probability of z; to either -, or to (1 —+), and no other values.



should be able to “overcome” any number b of completely biased bits when having an overwhelming
majority of (D — b) slightly random bits.

Before moving back to our imperfect random source, we right away apply Theorem 3 to establish
the impossibility of black-box reductions given by Theorem 2. Recall that we concluded that it
is impossible to obtain a weakly adaptively 2b-resilient ®(b, D,II) if it is impossible to extract a
slightly random bit from a (v, b, D)-IRS, where v = y;;(b). From the upper bound of Ben-Or and
Linial [BL90] that we mentioned in Section 1, we know that for any coin-flipping protocol II and any
b, some b players can bias the coin to have fairness at most % — Q(%) Thus, v = v(b) < % - Q(%),
ie. b(3 — ) = Q(b%/n). By Theorem 3, it is impossible to extract a slightly random bit whenever
b2 = w(n), i.e. b= w(y/n), establishing Theorem 2.8

4 Analysis of the Imperfect Random Source

In the remainder of the paper, we discuss our new random source, relate it to earlier imperfect ran-
dom sources, and analyze its properties (in particular, prove Theorem 3), which are of independent
interest.

4.1 Bit-Fixing Source of Lichtenstein, Linial and Saks [LLS89]

Lichtenstein, Linial and Saks [LLS89] considered the case of v = %, i.e. essentially A can only use
rule (B’). Thus, there is a sequence of D truly random bits, b of which can be deterministically
fixed by A. This source is called bit-fizing. As usual, the question is whether we can extract at
least one slightly random random bit from this source. Notice, that if we let f to be the majority
function, we can tolerate b = O(v/D) since any cv/D bits (for small enough constant ¢) do not
influence the resulting majority with probability 1 — o(1). Remarkably enough, Lichtinstein, Linial
and Saks [LLS89] actually showed that this is the best bit extraction possible. Namely,

Theorem 4 ([LLS89]) ¢(3,c1vD,D) = 1 — o(1), while q(3,c2v/D, D) = o(1) (for some c; and
co). Moreover, majority is the best bit-extraction function f.

Notice that this result implies Theorem 1 we mentioned earlier. Indeed, in the coin-flipping
protocols honest player send truly unbiased coin flips, while dishonest players send arbitrary bits.
Thus, we have exactly the source in the above theorem, except adversary A cannot make arbitrary
interventions, he can only intervene if the player is faulty. However, when each player sends at
most 1 bit (i.e, n bits are sent overall) A can indeed intervene arbitrarily and we get Theorem 1.
Unfortunately, the reasoning does not extend when players send more than 1 bit. Thus, using
completely different reasoning, our approach and that of [LLS89] coincidentally reduced different
problems at hand about adaptive coin-flipping to similar looking IRS.

As a side note, a random function f : {0,1}” — {0,1} is a terrible bit-extraction function for
the bit-fixing source even for b = w(1), since with high probability the first (D — b) bits do not fix
f, so A can simply wait and set the last b bits to fix f to either 0 or 1. Another terrible function
(even for b = 1) is any parity function: A can fix it by fixing the last bit of this parity.

To summarize, when v = J we can tolerate b = O(v/D), and the majority is the best such

2
function. However, a random function will not do the job even if b = w(1).

8If we want to extract almost random bit, it is impossible to do it if b = Q(/n).



4.2 Slightly-Random Source of Santha and Vazirani [SV86]

Sédntha and Vazirani [SV86] looked at the case b = 0, i.e. A can only use rule (A’). Thus, A can
set Pr(z; = 0| z1...z;_1) anywhere within [y,1 — v]. This source is sometimes referred to as the
slightly-random source or also SV -source.

On a negative side, Santha and Vazirani showed that one cannot extract 4-nontrivial bits for
any 7 > . Thus, the adversary A can always make sure that the resulting bit f(z1,... ,zp) is not
better than any of the individual bits z;. On the positive side, there are many f’s that produce
~-fair bits, for example f(z1,...,zp) = z; (for any 4), or, more generally, any non-trivial parity
function of the input bits. Thus,

Theorem 5 ([SV86]) ¢(v,0,D) =+. Thus, one can eztract a slightly random bit iff v = Q(1).

Notice, similarly to our Theorem 3, the number of bits D does not help. However, it is com-
pletely trivial to extract a slightly random bit (just output 1) if v = Q(1). In fact, Boppana and
Narayanan [BN96], following the ideas of Alon and Rabin [AR89] and elegantly extending their
techniques, showed much more.

Theorem 6 ([AR89, BN96]) For any (constant) v > 0 there ezists a constant g > 0 such
that with probability ezponentially close to 1, a random function f : {0,1}Y — {0,1} satisfies
Q(Fy’OaDaf) > Yo-

Thus, a vast majority of functions extract a slightly random bit from any SV-source. Un-
fortunately, majority is not one of these functions. Indeed, if the adversary always sets the 1-
probability of the next bit to be 1 — +, the resulting bit will be 1 with probability 1 — o(1). In
fact, Alon and Rabin [AR89] showed that majority is the worst bit-extracting function. Namely,
q(v,0, D, majority) < q(v,0, D, f), for any f.

Hence, if b = 0, a random function is a good bit extractor, while the majority is the worst.

4.3 Owur Combined Source

We see that (v, b, D)-source generalizes both of the bit-fixing and the SV-sources (which roughly
correspond to using only one of rules (A’) or (B’)). While for the interesting settings of parameters
(e.g., b = O(V/D) for bit-fixing, and constant § > 0 for SV), we can extract slightly random bits
from both of these sources, the functions achieving this are drastically different. For the bit-fixing
source the best function was majority, and a random function (or any parity function) was terrible,
while for the SV-source a random function was good (and any parity function is optimal), while
the majority was the worst. So best extractor becomes the worst and vice versa! One may wonder
if it is indeed possible to combine “the best of two worlds” and extract a slightly random bit from
our combined source. Unfortunately, Theorem 3 says that this is impossible for essentially any
interesting setting of parameters. The most striking such setting, perhaps, is b = w(1) and any
constant v < % If we interpret b = w(1) as b — oo, this says that no matter how large we make D
(given b), it is still impossible to extract even a single slightly random bit when y < %

We now state our results more precisely. In what follows from here on, v will never change, so
we omit it from all the notation. Note that given the extraction function f, the optimal adversary
does the following. First A tries (in his mind) to minimize the probability that the resulting coin
o = 0, then he does the same with o = 1, and then chooses the smaller of the above. Therefore, it
is more convenient for us to analyze A that, given f, tries to avoid a particular o, say ¢ = 0. In
this case, however, the success of A will crucially depend on how biased towards 1 the function f



is: if f = 0, nothing could be done, while if f = 1, nothing needs to be done. This motivates the
following definition.

Definition 3 Given f : {0,1}P — {0,1}, denote by Ones(f) = |{z € {0,1}P s.t. f(z) = 1}|. We
let
p(t,D,b) = max mfi‘n Pr(f(z) = 0)

where the mazimum is taken over all f : {0,1}P — {0,1} with Ones(f) = t, and the minimum is
taken over all adversaries A producing © = x1...xp and satisfying rules (A’) and (B’). In other
words, we restrict ourselves to extracting functions having t preimages of 1, and see how biased
towards 1 the adversary of our source can make the resulting coin.

In the terminology of [LLS89], we can define the language L associated with f as L = {z |
f(z) =1}. Then we can view our adversary as trying to force z € L. The quantity p(¢, D, b) tells
us how the probability of failure (x ¢ L, i.e. f(x) = 0) of the adversary over the worst possible
languages L (over D-bit strings) of cardinality ¢.

Theorem 7 2 1
t,D,b) < —« ———— 2

We notice that ¢/2P is simply the fraction of z such that f(z) = 1. Thus, Equation (2) says for
any f:{0,1}” — {0,1}, we can upper bound the probability of adversary’s failure to fix f(z) = 1
by a function depending only on the density(f) & Ones(f)/2P, i.e. only the fraction of “ones” of
f matters! Since any function either has a majority of “ones” or “zeros”, by replacing, if necessary,
0 and 1 we can assume that Ones(f) > 2P~ ie. 2P/t < 2. This immediately implies Theorem 3.
In fact, to make the coin not e-fair, it suffices for the adversary to have the number of interventions

b= O(1j27) -log(%). We now prove Theorem 7.

Proof: The statement is true for v = % or b= 1, since p(,-,+) <1 < 2P/t, so assume v < % and
b> 1. Let a = t/2P be the fraction of “ones” of f, and define g(a,b) = m We need to show
that p(t, D,b) < g(a,b) forany D >1,1<b< D and 0 < t < 2P. We prove this by induction on
D. For D =1, p(0,1,b) =1 < 00 = ¢(0,b), and p(1,1,b) = p(2,1,b) = 0 < g(a,b) (here we used
b > 1, so that we can take the branch leading to 1). Assume now the claim is true for (D — 1) and
we want to show it for D.

Take any f such that Ones(f) = t. Let fo : {0,1}P~1 — {0,1} be the restriction of f when
zo = 0. Similarly for fi. Let £ = Ones(fy) and r = Ones(f1). Clearly, £ + r = ¢. Without loss of
generality assume £ > r (if not, we reverse £ and r everywhere in the proof). Given such f, our
particular adversary A will consider two options: either he will use rule (B’) (he can do it since
we assumed b > 1) and fix zy = 0, reducing the question to that of analyzing the function fy with
Ones(fo) = £ on D — 1 variables and also reducing b by 1, or he will use rule (A’) making the
0-probability of z( equal to 1 — v and leaving the same b. By the definition of function p(¢, D, b),
we know that in the first case the failure probability of A will be at most p(¢, D —1,b— 1), and in
the second case it will be at most - p(r,D —1,b) + (1 — ) - p(¢, D — 1,b). Given f, our adversary
will choose the best (i.e., the smallest) of these two quantities. Since the choice of £ > r such that
£+ r =t is outside of our control, we will take the maximum over all such choices and obtain the
following recurrence.

p(t,D,b) < max min[p({,D —1,b—1), v-p(r,D —1,b) + (1 —v) - p(¢, D — 1,b)] (3)

0<r<t/2
l=t—r



Let £/2P~! =+ and r/2P~! = a — 3, where 8 > 0 (since £+ r =t = a2P and £ > r). Using
our inductive assumption on (D — 1), we get

p(t,D,b) < max  min(g(a+B,b—1), yg(a—B,b)+(1—7)gla+B,b) < gla,b) (4)
0<pB<min(a,l—a)

Recalling the definition of g, it thus suffices to show that

. 1 ¥ 1—v ) 1
max min , + < —X
0<p<min(a,1-a) ((a +8)2=27)"1 7 (a=B)2-27)"  (a+pB)(2-27)° a(2 —27)
(2 2y Y 1—v 1
= 0<p<minial a) ( atB ' a—f a+ ﬂ) T a

To show the last equation, we see when it is the case that 2(1;4_2% = a_zﬁ + CIL%%, i.e. the expressions

under the min are equal. It is not hard to see that this happens when 8 = (1 — 2y)a. We now
consider two cases.

e Case 1. Assume 8 > (1 —27)a. Then min (2{1;25 ) aZ,B + i;g) = 2(1;25 and it suffices to show

that 2=2Y < L. But it is easy to see that the latter is ezactly equivalent to our assumption on
aip a Yy Yy eq

B, so it holds.

e Case 2. Assume < (1 — 2y)a. Then min (2727 1+ 177) =2 4 and it suffices

1—y
atp ’ a—B ' at+B a—pB ' atp
< % But this is again ezactly equivalent to our assumption on 3, so

to show that ﬁ +
it holds.

™R

1_
a+

4.4 Expected Number of Interventions to Fix the Outcome

Finally, we analyze another property of our IRS. Assume that rather than having at most b applica-
tions of rule (B’) and trying to minimize the fairness of the coin, the adversary tries to fix the coin
to some value he desires (with probability 1) and wants to minimize the expected number of “in-
terventions”, i.e. applications of rule (B’) (while rule (A’) can be used “for free”). In other words,
given an extraction function f, A computes the expected number of interventions to force 0, than
does the same for 1, and chooses the smaller of the two. We let v(vy, D) be this smallest expected
number of interventions taken over the worst possible extraction function f : {0,1}? — {0,1}.

1
Theorem 8 <
rem v(~y, D) _O<1—27> (5)

In particular, if v < %, a constant expected number of interventions suffice irrespective of D!

We again see a similar trend to Theorem 5 and Theorem 3: large number of repetitions D does
not help. In other words, our “combined” random source gives much more power to the adversary
than one would imagine: if (constant) v < % and no matter how large is D, a super-constant
number of interventions b makes it impossible to extract a slightly random bit, and a constant
expected number of interventions suffices to fix the bit no matter what extraction function we use.
We also remark that Theorems 3 and 8 about our IRS are complimentary to each other (i.e. one
does not imply the other), even though both suffice to establish our main Theorem 2. Indeed, we

already saw that Theorem 2 follows from the claim that b(3 — ) = w(1) = g(7,b, D) = o(1) (which
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was immediate from Theorem 3). But this claim also follows from Theorem 8 by applying Markov’s
inequality and getting that b = O(1/(e(1 — 2v)) suffices to make ¢(v,b, D) < &, which gives the
needed b(1 — ) = w(1) = ¢(7,b,D) = o(1).

Similarly to the proof of Theorem 3, it is more convenient to analyze A that always forces a
particular outcome (say, 1) with probability 1 and tries to minimize the number of interventions b.
We again consider extraction functions f with Ones(f) =t and omit 7 from the notation below.

Definition 4 We let
e(t,D) = max min E[b]
f A

where the mazimum is taken over all f : {0,1}P — {0,1} with Ones(f) = t, the minimum is
taken over all adversaries A following rules (A’) and (B’) and necessarily producing x = z1 ...zTp
satisfying f(z) = 1, and E[b] stands for the expected number of applications of rule (B’) by A
(taken over the random choices involved in using rule (A’)). In other words, we restrict ourselves
to extracting functions having t preimages of 1, and see how many interventions A needs on average
to ensure f(z) = 1.

In the terminology of [LLS89], we can define the language L associated with f as L = {z |
f(x) = 1}. Then we can view our adversary as trying to ensure that z € L with the smallest
number of interventions. The quantity e(¢, D) tells us this expected number of interventions that .4
over the worst possible languages L (over D-bit strings) of cardinality ¢. In order to state a bound
on e(t, D), we need the following easily verified analytical lemma.

Lemma 1 For any 0 < v < % the equation

1 1 4
z7+1=2-27 (6)
has a unique solution z, € (1,2). In addition, z, is a continuous decreasing function of vy such that
limy_,0 2z, = 2, limy_)% zy =1, logy 2z, = O(1 — 2v), and for all 1 < w < z, we have w'/7 1<
2. wt/r1,

Theorem 9 2b log, (2P /1) 1 D
e(t.0) < tog,, (%) =200 o (LY oge”p )

Again, Equation (7) says for any f : {0,1}” — {0, 1}, we can upper bound the expected number
of interventions to force f(z) = 1 by a function depending only on the density(f) = Ones(f)/2P,
i.e. only the fraction of “ones” of f matters! Since any function either has a majority of “ones”
or “zeros”, by replacing, if necessary, 0 and 1 we can assume that Ones(f) > 2P~1, ie. 2P/t < 2.
This immediately implies Theorem 8. We now prove Theorem 9 using almost the same technique
we used in Theorem 7.

Proof: Let a = t/2P be the fraction of “ones” of f, z = z, and define h(a) = log,(1/a). We
need to show that e(t, D) < h(a) for any D > 1 and 0 < ¢t < 2P. We prove this by induction on D.
For D =1, e(0,1) = oo = h(0), and e(1,1) = 1 < log, 2 = h(3) (since z < 2, and here a = 3) and
e(2,1) =0 = h(1). Assume now the claim is true for (D — 1) and we want to show it for D.

Let f, fo, fi, v, £ have the same meaning they had in the proof of Theorem 7. In fact, our
adversary A will be the same as well! In other words, he will consider spending one intervention to

set £p = 0 versus saving the intervention and making the 0-probability of zy equal to 1 — . The
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only difference is that in the setting of Theorem 7 A could “run out” of his b interventions and also
minimized a different quantity p(¢, D,b) with different initial conditions, while in our case A will
use an extra intervention if this pays off. We get the following recurrence.

e(t,D) < max, minle(/,D —1)+1, v-e(r,D—-1)+(1—7)-e(¢,D —1)] (8)
i=t—r

= 02135252( e,D—-1)4+min[1, v-{e(r,D—-1)—e((,D—-1)}]) (9)
I=t—r

Let £/2P~! = o+ B and r/2P~1 = a — 3, where 8 > 0 (since £+ 1 =t = a2P and £ > r). Using
our inductive assumption on (D — 1), we get

2

e(t.D) < max (ha+f)tmin[1, v-{ha—B)~hatH}]) < hl)  (10)

Recalling the definition of h, it thus suffices to show that

1 a+p 1
log, —— in|1 log, —— < log, —
A e R = IO
It will now be convenient to make change of variable and let 8 = a - ﬁ;—i for some ¢ > 1 (this is
always possible because 0 < 8 < a). Noticing that a — 8 = 2/(c+ 1), a+ 8 = 2¢/(c + 1) and
1 =log, #z, we get that it suffices to show that

c+1 . 1
I?Zalf((logz<2c-a>—l—m1n[logzz,fy-logzc]) < Inga =
. [e+1)z (e+ 1)
max min : < - =
c>1 2c-a 2c-a a
1
max ( et -min [z, c"] ) <1
e>1 2c

We now make the final change of variable, letting ¢ = w'/7. Then it suffices to show that

w7 +1
wst ( Towl/y T [z,w] | <1 (11)

To show the last equation, we consider two cases.

e Case 1. Assume w < z. Then min[z,w] = w and it suffices to show w!'/7 + 1 < 2uw!/7-1,
which follows from Lemma, 1 since 1 < w < z by our assumption.

e Case 2. Assume w > z. Then min[z,w] = z and it suffices to show (w'/? + 1)z < 2w'/7,
which is the same as w'/7 > z/(2 — z). But since z = z, is the solution to Equation (6), it is
easy to see that z/(2 — z) = z'/7, so it suffices to show w'/? > z1/7, which is the same as our
assumption w > z.

|
To summarize the properties of our “combined” imperfect random source, we have shown that
it gives too much power to the adversary, perhaps more than one would expect.
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5 Conclusions

We have seen that Theorems 1 and 2 give very different evidences in support of Conjecture 1.
However, the status of coin-flipping with adaptive adversaries is still open and it would be very
interesting to resolve it.
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