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SECURITY OF THE MOST SIGNIFICANT BITS OF THE

SHAMIR MESSAGE PASSING SCHEME

MARIA ISABEL GONZÁLEZ VASCO AND IGOR E. SHPARLINSKI

Abstract. Boneh and Venkatesan have recently proposed a polynomial time
algorithm for recovering a “hidden” element α of a finite field IFp of p elements
from rather short strings of the most significant bits of the remainder modulo
p of αt for several values of t selected uniformly at random from IF∗p. Unfortu-
nately the applications to the computational security of most significant bits of
private keys of some finite field exponentiation based cryptosystems given by
Boneh and Venkatesan are not quite correct. For the Diffie-Hellman cryptosys-
tem the result of Boneh and Venkatesan has been corrected and generalized in
our recent paper by González Vasco and Shparlinski. Here a similar analysis
is given for the Shamir message passing scheme. The results depend on some
bounds of exponential sums.

1. Introduction

Let p be an n-bit prime and let IFp be a field of p elements.
For integers s and q ≥ 1 we denote by (s rem q) the remainder of s on division

by q. We also use log z to denote the binary logarithm of z > 0.
The Shamir message passing scheme can be described in the following way,

see [2], as well as Protocol 12.22 from [8].
To send a message m ∈ [0, p− 1] from Alice to Bob:

◦ Alice selects a random a ∈ [0, p − 2] with gcd(a, p − 1) = 1, computes A =
(ma rem p) and sends A to Bob.

◦ Bob selects a random b ∈ [0, p − 2] with gcd(b, p − 1) = 1, computes B =(
Ab rem p

)
and sends B to Alice.

◦ Alice finds u ∈ [0, p − 2] satisfying the congruence au ≡ 1 (mod p − 1),
computes C = (Bu rem p) and sends C to Bob.
◦ Bob finds v ∈ [0, p−2] satisfying the congruence bv ≡ 1 (mod p−1), computes
m = (Cv rem p).

Given a primitive root g ∈ IFp, Boneh and Venkatesan [2] have proposed a

method of recovering a “hidden” element α ∈ IFp from about n1/2 most significant

bits of (αgxi rem p), i = 1, . . . , d, for d =
⌈
2n1/2

⌉
integers x1, . . . , xd, chosen uni-

formly and independently at random in the interval [0, p− 2]. This result has been
applied to proving security of reasonably small portions of bits of private keys of
several cryptosystems. In particular, Theorem 3 of [2] claims the security of the
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2 MARIA ISABEL GONZÁLEZ VASCO AND IGOR E. SHPARLINSKI

⌈
n1/2

⌉
+ dlog ne most significant bits of the message in the Shamir message pass-

ing scheme. Unfortunately the proof of this result is not quite correct because the
exponent x of the corresponding multiplier gx (where g will in fact be mb, m and b
chosen in the scheme) must satisfy the additional condition gcd(bx+ 1, p− 1) = 1,
thus gx runs through some special subset of IF∗p (even if g is a primitive root) rather
than through the whole IF∗p and therefore Theorem 1 of [2] does not apply. The
proof of Theorem 2 in [2], dealing with security of most significant bits of the Diffie–
Hellman key, suffers from a similar problem. In [4] the result of Theorem 1 of [2]
has been extended to case when g is not necessary a primitive root but an element
of multiplicative order T , provided that T ≥ p1/3+ε for any prime p and T ≥ pε

for almost all p. It has also been shown that this statement allows to close the gap
in the proof of Theorem 2 of [2]. Namely it is shown that having an oracle which
computes

⌈
n1/2

⌉
+ dlog ne most significant bits of the private key

(
gab rem p

)
from

the values of the public keys A = (ga rem p) and B =
(
gb rem p

)
one can construct

a probabilistic polynomial time algorithm for computing the whole key
(
gab rem p

)

for all pairs (a, b) ∈ [0, T − 1]2, where T is the multiplicative order of g.
The method of [4] relies on some bounds of exponential sums and results about

the distribution of exponential functions in residue classes. Here we use a similar
approach to study the bit security of the Shamir message passing scheme.

A survey of similar results for other functions of cryptographic interest has re-
cently been given in [3].

Throughout the paper the implied constants in symbols ‘O’ may occasionally,
where obvious, depend on the small positive parameter ε and are absolute otherwise;
they all are effective and can be explicitly evaluated.

2. Distribution of Exponential Functions
Modulo p

As in [4] the following bound of exponential sums plays the central role in our
arguments.

Let e(z) = exp(2πiz/p).
The following estimate is well known, see the proof of Lemma 2 in [7] or Theo-

rem 8.2 in [9].

Lemma 2.1. For any ε > 0 there exists δ > 0 such that for any element ϑ ∈ IFp
of multiplicative order τ the bound

max
0≤H≤τ−1

max
gcd(c,p)=1

∣∣∣∣∣∣
∑

0≤x≤H
e (cϑx)

∣∣∣∣∣∣
= O

(
p1/2 log p

)

holds.

We denote by ν(k) the number of prime divisors of k ≥ 2.
Let us fix an element g of multiplicative order T modulo p. Combining Lemma 2.1

with the sieve of Eratosthenes we derive.

Lemma 2.2. For any b with gcd(b, p− 1) = 1 the bound

max
gcd(c,p)=1

∣∣∣∣∣∣∣

∑

x∈[0,T−1]
gcd(bx+1,p−1)=1

e (cgx)

∣∣∣∣∣∣∣
= O

(
2ν(p−1)p1/2 log p

)
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holds.

Proof. Let µ(k) denote the Möbius function. We recall that µ(1) = 1, µ(k) = 0 if
k ≥ 2 is not sqyare-free and µ(k) = (−1)ν(k) otherwise.

Using the Möbius function µ(d) over the divisors of p−1 to detect the co-primality
condition and interchanging the order of summation, we obtain (see Section 3.d of
Chapter 2 of [12])

∑

x∈[0,T−1]
gcd(bx+1,p−1)=1

e (cgx) =
∑

d|p−1

µ(d)
∑

x∈[0,T−1]
bx+1≡0 (mod d)

e (cgx) .

Since gcd(a, p−1) = 1, we can find for each d|p−1 the condition bx+1 ≡ 0 (mod d)
can be written in the form x = dy + αd with some integer αd, 1 ≤ αd ≤ d − 1.
Therefore ∑

x∈[o,T−1]
bx+1≡0 (mod d)

e (cgx) =
∑

0≤dz+αd≤T−1

e
(
cgdz+αd

)

Denoting by τd the multiplicative order of ϑd = gd and remarking that τd ≥ T/d,
we derive from Lemma 2.1

∑

0≤dz+αd≤T−1

e
(
cgdz+αd

)
=

∑

0≤z≤(T−1−αd)/d

e (cgαdϑzd) = O
(
p1/2 log p

)
.

Taking into account that ∑

d|p−1

|µ(d)| = 2ν(p−1)

(see Section 3.b of Chapter 2 of [12]), we obtain the desired result. ut

For integers λ, b, r and h let us denote by Nλ,b(r, h) the number of x ∈ [0, T − 1]
with gcd(bx + 1, p − 1) = 1 and such that (λgx rem p) ∈ [r + 1, r + h]. We also
denote by Nb the the number of x ∈ [0, T − 1] with gcd(bx + 1, p − 1) = 1. Note
that if T = p− 1 and gcd(b, p− 1) = 1 then Nb =ϕ(p− 1).

We need the following asymptotic formula which shows that Nλ,b(r, h) is close

to its expected value Nbh
p .

Lemma 2.3. The bound

max
0≤r,h≤p−1

max
gcd(λ,p)=1

max
gcd(b,p−1)=1

∣∣∣∣Nλ,b(r, h)− Nbh

p

∣∣∣∣ = O
(

2ν(p−1)p1/2 log2 p
)

holds.

Proof. We remark that Nλ,b(r, h) is the number of solutions x ∈ {0, . . . , T − 1} of
the congruence

λgx ≡ y (mod p), y = r + 1, . . . , r + h,

provided that gcd(bx+ 1, p− 1) = 1.
Using the identity (see Exercise 11.a in Chapter 3 of [12])

p−1∑

c=0

e (cu) =

{
0, if u 6≡ 0 (mod p);
p, if u ≡ 0 (mod p);
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we obtain

Nλ,b(r, h) =
1

p

T−1∑

x=0
gcd(bx+1,p−1)=1

r+h∑

y=r+1

p−1∑

c=0

e (c (λgx − y))

=
1

p

p−1∑

c=0

T−1∑

x=0
gcd(bx+1,p−1)=1

e (λgx)

r+h∑

y=r+1

e (−cy) .

Separating the term Nbh/p corresponding to c = 0 we obtain

∣∣∣∣Nλ,b(r, h)− Nbh

p

∣∣∣∣ ≤
1

p

p−1∑

c=1

∣∣∣∣∣∣∣

T−1∑

x=0
gcd(bx+1,p−1)=1

e (cλgx)

∣∣∣∣∣∣∣

∣∣∣∣∣
r+h∑

y=r+1

e (−cy)

∣∣∣∣∣

=
1

p

p−1∑

c=1

∣∣∣∣∣∣∣

T−1∑

x=0
gcd(bx+1,p−1)=1

e (cλgx)

∣∣∣∣∣∣∣

∣∣∣∣∣
r+h∑

y=r+1

e (cy)

∣∣∣∣∣ .

Using Lemma 2.2 and the estimate

max
0≤r,h≤p−1

p−1∑

c=1

∣∣∣∣∣
r+h∑

y=r+1

e (cy)

∣∣∣∣∣ = O(p log p),

see Exercise 11.c in Chapter 3 of [12], we obtain the desired result. ut

We also need to estimate Nb. The following statement is a simple consequence
of the sieve of Eratosthenes.

Lemma 2.4. For any b with gcd(b, p− 1) = 1 the bound

Nb =
ϕ(p− 1)

p
T +O(2ν(p−1)).

holds

Proof. Indeed, as in the proof of Lemma 2.2, using the Möbius function µ(d) over
the divisors of p − 1 to detect the co-primality condition and interchanging the
order of summation, we obtain

T−1∑

x=0
gcd(bx+1,p−1)=1

1 =
∑

d|p−1

µ(d)

(
T

d
+O(1)

)
= T

∑

d|p−1

µ(d)

d
+O


∑

d|p−1

|µ(d)|




from which the result follows at once (see Section 3.d of Chapter 2 of [12]). ut

Because ν(p − 1)! ≤ p − 1 we conclude that 2ν(p−1) ≤ po(1). Thus combining
Lemma 2.3 and Lemma 2.4 we obtain

Lemma 2.5. For any ε > 0 there exists δ > 0 such that for T ≥ p1/2+ε the bound

max
0≤r,h≤p−1

max
gcd(λ,p)=1

max
gcd(b,p−1)=1

∣∣∣∣Nλ,b(r, h)− ϕ(p− 1)hT

p2

∣∣∣∣ = O
(
T 1−δ)

holds.
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3. Lattices

As in [2], our results rely on rounding techniques in lattices. We therefore review
a few related results and definitions.

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRs. The set of
vectors

L = {z : z =

s∑

i=1

tibi, t1, . . . , ts ∈ ZZ}

is called an s-dimensional full rank lattice. The set {b1, . . . ,bs} is called the basis
of L.

In [1] Babai describes a polynomial time algorithm which, for given a lattice L
and a vector r = (r1, . . . , rs) ∈ IRs, finds a lattice vector v = (v1, . . . , vs) satisfying
the inequality
(

s∑

i=1

(vi − ri)2

)1/2

≤ 2s/4 min





(
s∑

i=1

(zi − ri)2

)1/2

, z = (z1, . . . , zs) ∈ L



 .

That is, a given vector can be rounded in polynomial time to an approximately
closest vector in a given lattice. The above algorithm uses the lattice basis reduction
algorithm of Lenstra, Lenstra and Lovász [6], see also [11] for some more recent and
stronger results.

For integers g and x1, . . . , xd, selected in the interval [0, p − 2], we denote by
Lg (x1, . . . , xd) the d+ 1-dimensional lattice generated by the rows of the following
(d+ 1)× (d+ 1)-matrix




p 0 0 . . . 0 0
0 p 0 . . . 0 0

...
...

0 0 0 . . . p 0
t1 t2 t3 . . . td 1/p




(3.1)

where ti = (gxi rem p), i = 1, . . . , d.
The following result is a generalization of Theorem 5 of [2] (which corresponds

to the case T = p− 1).
Also, for b ∈ [1, p− 2] with gcd(b, p− 1) = 1 we denote by Xb the set of integers

x ∈ [0, p− 2] with gcd(bx+ 1, p− 1) = 1. In particular, #Xb = ϕ(p− 1).

Lemma 3.1. Let d = 2
⌈
n1/2

⌉
and µ = n1/2/2 + 3, p sufficiently large prime

number. Let α be a fixed integer in the interval [0, p−1]. For any ε > 0, any element
g ∈ IFp of multiplicative order T ≥ p1/2+ε and any b ∈ [1, p − 2] with gcd(b, p −
1) = 1 the following statement holds: Chosen integers x1, . . . , xd uniformly and

independently at random in the set Xb, then with probability P ≥ 1−2−n
1/2

for any
vector u = (u1, . . . , ud, 0) with

(
d∑

i=1

((αgxi rem p)− ui)2

)1/2

≤ p2−µ,

all vectors v = (v1, . . . , vd, vd+1) ∈ Lg,p (x1, . . . , xd) satisfying
(

d∑

i=1

(vi − ui)2

)1/2

≤ p2−µ,
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are of the form

v = ((βgx1 rem p), . . . , (βgxd rem p), β/p)

with some β ≡ α (mod p).

Proof. As in [2] we define the modular distance between two integers β and γ as

dist p(β, γ) = min
b∈ZZ
|β − γ − bp| = min {((β − γ) rem p) , p− ((β − γ) rem p)} .

Let z be an integer chosen uniformly at random in the set Xb. Because T |p − 1
x = (z remT ) is also uniformly distributed in the set of integers x ∈ [0, T − 1] with
gcd(bx+ 1, p− 1) = 1. Hence, it follows from Lemma 2.5 that for any β and γ such
that β 6≡ γ (mod p) the probability P (β, γ) of

dist p(βg
x, γgx) > p2−µ+1

for an integer x chosen uniformly at random in the set Xb is

P (β, γ) = 1− 2−µ+2 +O
(
T−δ

)

for some δ > 0, depending only on ε. Thus

P (β, γ) ≥ 1− 5

2µ

provided that p is large enough.
Therefore, for any β 6≡ α (mod p),

Pr
[
∃i ∈ [1, d] | dist p(βg

xi , αgxi) > p2−µ+1
]

= 1− (1− P (α, β))d ≥ 1−
(

5

2µ

)d
,

where probability is taken over integers x1, . . . , xd chosen uniformly and indepen-
dently at random in the set Xb.

Since for β 6≡ α (mod p) there are only p − 1 possible values for (β rem p) we
obtain

Pr
[
∃β 6≡ α (mod p), ∃i ∈ [1, d] | dist p(βg

xi , αgxi) > p2−µ+1
]

≥ 1− (p− 1)

(
5

2µ

)d
> 1− 2−n

1/2

because

d(µ− log 5) >
⌈
n1/2

⌉
n1/2 + 2

⌈
n1/2

⌉
(3− log 5) > log p+ n1/2.

The rest of the proof is identical to the proof of Theorem 5 of [2], we outline it
for the sake of completeness.

Let us fix some integers x1, . . . , xd with

min
β 6≡α (mod p)

min
i∈[1,d]

dist p(βg
xi , αgxi) > p2−µ+1.(3.2)

Let v be a lattice point satisfying
(

d∑

i=1

(vi − ui)2

)1/2

≤ p2−µ.

Clearly, since v ∈ Lg,p (x1, . . . , xd), there are integers β, z1, . . . , zd such that

v = (βt1 − z1p, . . . , βtd − zdp, β/p),
where, as in (3.1), ti = (gxi rem p), i = 1, . . . , d.
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If β ≡ α (mod p), then for all i = 1, . . . , d we have βti − zip = (βti rem p), for
otherwise there would be j ∈ {1, . . . , d} so that |vj − uj | > p2−µ.

Now suppose that β 6≡ α (mod p). In this case we have

(
d∑

i=1

(vi − ui)2

)1/2

≥ min
i∈[1,d]

dist p(βti, ui)

≥ min
i∈[1,d]

( dist p(βti, αti)− dist p(ui, αti))

> p2−µ+1 − p2−µ = p2−µ

that contradicts to our assumption. As we have seen, the condition (3.2) holds with

probability exceeding 1− 2−n
1/2

and the result follows. ut

For an integer k ≥ 1 we define fk(t) by the inequalities

(fk(t)− 1)
p

2k
≤ (t rem p) < fk(t)

p

2k
.

Thus, roughly speaking, fk(t) is the integer defined by the k most significant bits
of (t rem p).

Using Lemma 3.1 in the same way as in [2] Theorem 5 is used in the proof of
Theorem 1, we obtain

Lemma 3.2. Let d = 2
⌈
n1/2

⌉
and k =

⌈
n1/2

⌉
+ dlog ne. For any ε > 0, any

element g ∈ IFp of multiplicative order T ≥ p1/2+ε and any b ∈ [1, p − 2] with
gcd(b, p − 1) = 1 the following statement holds: There exists a deterministic poly-
nomial time algorithm A such that for any integer α ∈ [1, p− 1] given 2d integers

ti = (gxi rem p) and si = fk (αti) , i = 1 . . . , d,

its output satisfies

Pr
x1,... ,xd∈Xb

[A (t1, . . . , td; s1, . . . , sd) = α] ≥ 1− 2−n
1/2

if x1, . . . , xd are chosen uniformly and independently at random in the set Xb.
Proof. We follow the same arguments as in the proof Theorem 1 of [2] which we
briefly outline here for the sake of completeness. We refer to the first d vectors in
the defining matrix of Lg,p (x1, . . . , xd) as p-vectors.

Let us consider the vector r = (r1, . . . , rd, rd+1) where

ri = si
p

2k
, i = 1, . . . , d, and rd+1 = 0.

Multiplying the last row vector (t1, . . . , td, 1/p) of the matrix (3.1) by α and sub-
tracting certain multiples of p-vectors, we obtain a lattice point

uα = (u1, . . . , ud, α/p) ∈ Lg,p (x1, . . . , xd)

such that

|ui − ri| < p2−k, i = 1, . . . , d.

Therefore,
(
d+1∑

i=1

(ui − ri)2

)1/2

≤ p(d+ 1)1/22−k.
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Now we can use the Babai algorithm [1] to find in polynomial time a lattice vector
v = (v1, . . . , vd, vd+1) ∈ Lg,p (x1, . . . , xd) such that

(
d∑

i=1

(vi − ri)2

)1/2

≤ 2(d+1)/4 min





(
d+1∑

i=1

(zi − ri)2

)1/2

, z = (z1, . . . , zd, zd+1) ∈ L





≤ 2(d+1)/4p(d+ 1)1/22−k ≤ p2−µ,
where µ = n1/2/2 + 3, provided that n is sufficiently large. We also have

(
d∑

i=1

(ui − ri)2

)1/2

≤ pd1/22−k ≤ p2−µ.

Applying Lemma 3.1, we see that v = uα with probability at least 1− 2−n
1/2

, and
therefore, α can be recovered in polynomial time. ut

4. Security of the Most Significant Bits of the Shamir Scheme

We are ready to prove the main results.
For an integer k we suppose that we are given an oracle Ok such that for any

given values of A, B, C it outputs the k most significant bits of m if the triple
(A,B,C) corresponds to a proper usage of the Shamir message passing scheme and
an error message, otherwise.

More precisely, given A, B and C, the oracle Ok outputs:

◦ fk(m), if A = (ma rem p), B =
(
Ab rem p

)
and C = (Bu rem p), where au ≡ 1

(mod p−1) for some m ∈ [1, p−1] and a, b ∈ [0, p−2] with gcd(ab, p−1) = 1;
◦ an error message, otherwise.

Theorem 4.1. Assume that we are given an oracle Ok as above, with

k =
⌈
n1/2

⌉
+ dlog ne .

Then there exists a probabilistic polynomial time algorithm which computes the
message m, for all except O

(
p1/2+ε

)
messages m ∈ [1, p − 1], from the values

of A = (ma rem p), B =
(
Ab rem p

)
and C = (Bu rem p), where a, b ∈ [0, p − 2]

with gcd(ab, p− 1) = 1 and au ≡ 1 (mod p− 1), which uses the expected number of
O
(
n1/2 log n

)
calls of the oracle Ok.

Proof. We exclude from the consideration the messages m ∈ [1, p−1] of multiplica-
tive order less than p1/2+ε. Obviously, the number E of such excluded messages
does not exceed

E ≤ τ(p− 1)p1/2+ε,(4.1)

where τ(p − 1) is the number of positive integer divisors of p − 1. Indeed, for any
divisor D|p− 1 there are at most D values of m ∈ [1, p− 1] of multiplicative order
D. Using the bound τ(p− 1) = O

(
pε/2

)
, see Theorem 5.2 of Chapter 1 of [10], we

obtain from (4.1) that the exceptional set is of size E = O
(
p1/2+ε

)
.

Let us consider a message m of multiplicative order T ≥ p1/2+ε.
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For x ∈ Xb we put ax = a define bx ∈ [1, p− 2] from the congruence

bx(bx+ 1) ≡ b (mod p− 1).

We also put
mx =

(
m1+bx rem p

)
.

We remark that

Ax = (max
x rem p) , Bx =

(
maxbx
x rem p

)
, Cx =

(
mbx
x rem p

)

can be computed as

Ax = (ACx rem p) , Bx = B, Cx = C.

Although the value of b is not known, one can select elements x ∈ Xb uni-
formly and independently at random by querying the oracle Ok with the triples
(Ax, Bx, Cx) where the elements x are selected uniformly and independently at
random in the interval [0, p−2]. If gcd(bx+1, p−1) > 1 the oracle returns an error
message, otherwise x ∈ Xb. Now we chose d = 2

⌈
n1/2

⌉
elements x1, . . . , xd ∈ Xb

uniformly and independently at random. Because

p− 1

#Xb
=

p− 1

φ(p− 1)
= O(log log p),

see Theorem 5.1 of Chapter 1 of [10], we see that the expected number of choices
of x ∈ [0, p − 2] before we get d elements in Xb is O(d log log p) = O(n1/2 log n).
We remark that these elements are independent and uniformly distributed in Xb.
Moreover, every output of the oracle provides k most significant bits of mx. Re-
marking that mx ≡ mCx (mod p) and that C ≡ mb (mod p) is of multiplicative
order T (because gcd(b, p− 1) = 1), we see that Lemma 3.2 applies and the result
follows. ut

5. Remarks

First of all we note that the constants in above estimates are effective and can
be explicitly evaluated.

We also remark that one can consider an oracle which instead of returning an
error message for “inconsistent” inputs (A,B,C) returns just a random element
from IFq. In this case repeating each query twice one can easily distinguish between
an x ∈ Xb and other values.
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