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Abstract. We show that the k-CSP problem over a finite Abelian group G

cannot be approximated within |G |k_o(‘/E) —e¢, for any constant € > 0, unless

P = NP. This lower bound matches well with the best known upper bound,
|G |’“_17 of Serna, Trevisan and Xhafa. The proof uses a combination of PCP
techniques—most notably a recent recycling construction of Samorodnitsky
and Trevisan—with Fourier analysis of functions from a finite Abelian group
to the complex numbers.

1 Background

In a breakthrough paper, Hastad [3] studied the problem of maximizing
the number of satisfied equations in a system of linear equations. For the
case of linear equations over an Abelian group G where each equation con-
tains exactly three variables, he proved that it is impossible to approximate
the optimum value within |G| — €, for any € > 0, in polynomial time un-
less P = NP. His construction involves a probabilistically checkable proof
(PCP) that queries three bits from the proof and accepts if a linear equation
involving the three queried bits are satisfied. The PCP has completeness
at least 1 — §; and soundness at most 1/|G| + d2, for any constants §; > 0
and §2 > 0. In this paper we study a generalization of systems of linear
equations, constraint satisfaction programs (CSPs).

Definition 1. Max k-CSP-G is the following mazimization problem: Given
a number of functions from G*, where G is a finite Abelian group, to Zs,
find the assignment mazximizing the number of functions evaluating to 1.
The total number of variables in the instance is denoted by n.

Already Hastad’s result implies a lower bound of |G|*/3 —¢, for any constant

e > 0, on the approximability of Max k-CSP-G. To see this, apply the
result to the group G*. This gives a constraint involving 3k variables in G,
completeness at least 1 — &7, and soundness at most 1/|G|* + 6.
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To get a better bound, we must lower the soundness without using too
many extra variables in the constraints. Trevisan [10] extended Héstad’s [3]
construction by recycling free bits in the PCP and analyzed several ap-
plications of the methodology. Samorodnitsky and Trevisan [5] gave an
analysis of the most general application of the methodology introduced by
Trevisan [10] and proved that it is NP-hard to approximate Max k-CSP
within 2¥=O0(Vk) _ ¢ Their proof uses an elegant application of Parseval’s
equality to bound the soundness.

Samorodnitsky and Trevisan [5] only analyzed the Boolean case, and
it is not immediately obvious that their proof translates to a non-Boolean
setting. In this paper, we establish that their construction can be adapted
to a PCP testing properties over an Abelian group G. As a consequence,
we prove that the Max k-CSP-G problem cannot be approximated within
|G|¥~OWk) _ ¢, for any constant € > 0, unless P = NP. This lower bound
matches well with the best known upper bound, |G|*~!, following from a
linear relaxation combined with randomized rounding [9, 6]. As a technical
tool, Samorodnitsky and Trevisan [5] use a composition lemma by Sudan
and Trevisan [7]. In this paper, we extend this lemma to the non-Boolean
setting. By using the lemma as an integrated part of the construction rather
than a black box, we are also able to improve some of the constants involved.

2 Fourier Transforms

To prove a bound on the soundness of their verifiers Hastad [3], as well as
Samorodnitsky and Trevisan [5], use Fourier transforms. In this section we
give a brief account of the methods involved, for more details see Hastad’s
paper [3] or Terras’s book [8].

Definition 2. For a finite Abelian group G, the space L*(G) is the vector
space of all functions from G to C equipped with the inner product

(f1, f2) = |—(1;|Zf1(g)m- (1)
geG

The aim of Fourier transforms is to express functions as linear combinations
of basis functions with certain nice properties. To define the basis functions
for the space L2(G), we use the fact that every finite Abelian group G, can
be represented as

GEZiIX---XZik, (2)
where |G| =41 ---i;. An element g € G is represented as a k-tuple

g~ (9, gW) € Ziy x - x Zy,. (3)



We use multiplication as the group operation and 1 as the group identity.
If two group elements g; and go have the representation

1 k
g1~(g§ )L e, (4)
k
respectively, the element g; g2 has the representation

glg2~( ()—i—g()modil,...,gi) (k) Inodik)- (6)

The group identity is represented by a vector of k zeros.

Definition 3. The set T is the set of all complex numbers of unit norm.
The set of characters of an Abelian group G is the set of all linear homo-
morphisms from G to T.

For an Abelian group G, the characters are
k 2miald) gld)
a(9) = [[ep | =———. (7)
=1 !

They are homomorphisms from G to T since

Ya(9192) = Ya(91)%a(g2)- (8)
Below, we need also the following identities involving the characters of G:
1/)01112 (g) = "ﬁal (g)%z (g)a (9)
”J)lc( ) = 1) (10)
G| ifg=1,
3 vale) = 41 ) (1)
wee otherwise.

In fact, the characters of G form an orthonormal basis for L?(G). This
follows from a completeness argument: The characters are many enough,
and they are orthogonal since if a # d,

ar) Ya' a a’ a a! 12
(a, V') |G|Zw 9)%a(9) |G|Zw 99")%a (99') (12)

geG geaG

for some arbitrary ¢’ € G. The last equality holds since we sum over all
elements in G. By the homomorphism property (8), we can rewrite the last
expression as

|G| Z'Lpa "/’a (g)"/]a’(gl) - Z"/’a dja . ( )

geqG geqG



If we choose g’ such that 1,(g') # ¥a(g'), this is always possible since
a # a/, we have shown that (¢g,¥s) = ¢(tq,y) for some ¢ # 1. Thus,
(Ya,Yar) = 0 if a # a'. Finally, if a = @/,

(Pas Ya) —|G|Z¢a 9)%a(9) lGllea = (14)

geG

since 1)4(g) has unit norm. Thus the characters are orthonormal.
Once we have our orthonormal basis, the definition of the Fourier trans-
form of a function in L?(G) straightforward.

Definition 4. For a finite Abelian group G, the Fourier coefficients { fa}aeg
of a function in L?(G) are fo = (f, %), where {¢a}aca are the characters
of G.

As an illustration of these concepts, we state and prove the only theorem
from classical Fourier analysis that we use in this paper, namely Parseval’s
equality. Using only the concept of orthonormality, the theorem provides a
relationship between a function and its Fourier coefficients.

Theorem 5. Suppose that f is a function in L?(G) with the Fourier coef-
ficients {fa}aeG- Then <f7 f) = ZaeG |fa|2'

Proof. If we expand f in its Fourier series, we get

=33 fafulda da)- (15)

aeGa'eG

Since (@q, Par) # 0 only when a = d/, this double sum reduces to

AT AR (16)

aceG aeG

which is the relation we set out to prove. O

3 The Long G-Code

To prove our lower bound, we need the Fourier transform of the so called
Long G-Code. The techniques in this section was first used by Hastad [3];
Terras [8] surveys and analyzes several other applications of the Fourier
transform. What makes the Fourier transform extremely useful in combina-
tion with the Long G-Code seems to be that the characters of G can be used
both to form a Fourier basis of functions from the Long G-Code to C and to
form certain predicates needed in the analysis of certain tests on codewords.



Definition 6. If U is some set of variables taking values in {—1,1}, we
denote by {—1,1}V the set of every possible assignment to those variables.
Define

F§={f:{-1,1}Y - G}. (17)

For a function f € F§, we denote by |f| the number of = such that f(z) #
1a.

Definition 7. The space L2(.7-"g ) is the vector space of all functions from
.7-"5" to C equipped with the inner product

1

(F1, F») = W

Y F()E(). (18)

fer§

To shorten the notation, we frequently write the above expression as

(F1, F2) = Egepg [F1()F2(F)], (19)

where it is understood that the probability distribution involved is the uniform
distribution.

Definition 8. The Long G-Code of some string x of length |U| is the value
of all functions from U to G evaluated on the string z.

Avz(f) = f(2). (20)

Since there are |G|2|U| functions from {—1,1}V to G, the Long G-Code has
length |G|2|U|.

From now on, we drop the subscripts U and z, it is understood that the
function A: F§ — G corresponds to some string z € {—1,1}V, which is
interpreted as assignments to the variables in U.

In Section 4 we want to estimate the probability that certain tests over
the group G accept. It turns out that an important technical tool in these
efforts is the Fourier transform on functions in the space L2(F§). To obtain
our Fourier basis, we need an expression for the characters of .7-'3 . To derive

that expression, we note that we can identify this space with L2(G2|U|)
by identifying a function f with a table of the values f(z) for every = €
{—1,1}Y. Thus, the characters of F are

Xa(f) = H d)a(z) (f(w))’ (21)

ze{-1,1}V

where 1,(g) is the corresponding group character of G. In this definition,
a is a function from {—1,1}V to G. In the same way as the characters of G,



the characters of .7-'3 satisfy the following identities:

Xa(f1f2) = Xa(f1)Xalf2), (22)
Xazaz (f) = X1 (£)Xaz (f), (23)
xi(f) =1, (24)

1 ifa=1,

. (25)
0 otherwise.

Efe]:g [Xa(f)] = {

We can now define the Fourier coefficients as usual, £, = (F, Xa), for some
function F € L? (fg ). This function then has the Fourier expansion

F= )" Fuxa- (26)
ae]:g

In Section 4, we also need some technical lemmas regarding the Fourier
transform of the Long G-Code in various settings.

3.1 A Projection Lemma

Suppose that U C W and that y € {—1,1}". Since y gives an assignment
to all variables in W, we can use y to form an assignments to all variables
in U.

Definition 9. Let U C W and y € {-1,1}"V. Form yly € {-1,1}V as
follows: For every variable in U, choose the assignment prescribed by y.

Definition 10. Let U C W and 3 € fVGV. Form my(B) € .’Fg as follows:
(rv@) (@)= ] 8. 27)
yyluy=c

Using the projection equality (27) and the fact that G is Abelian, we see
that 7y (871) = (mv(8)) 7.

Lemma 11. Let U C W and let § € .7-"%, be arbitrary. Let f € Fg be some
arbitrary function and define a function g € .7-"]/?, such that g(y) = f(ylv)-

Then x5(9) = Xny(a)(f)-
Proof. By the definition of y,

xs(@0)= ] s (s®) (28)

yE{—l,l}W

Let us study the partition of {—1,1}" into sets of the form {y : y|y = z}.
On those sets, g(y) = f(z), which means that we can write

xo@) = II Il s (F@) (29)

ze{-1,1}V y:y|ly=z



Since 1), is linear in a,

IT w80 (£(@) = ¥mp(ap@ (@), (30)
yylu=z
and thus
xs(0)= JI “ew@)@ (@) =X (), (31)
ze{-1,1}U
where 7y () is defined as in Definition 10. O

Note that the above lemma proves a relation between xg, which is a char-
acter of L2 (.7-"19‘,), and X, (), which is a character of L? (Tg ).

3.2 A Folding Lemma
Definition 12. We say that o function A: .7-"3 — G is folded over G if

A(L'f) =TA(f) (32)
forallT' € G and dll f € .7:[(];.

Lemma 13. Suppose that the function A: .7:3 — G is folded over G. Let
Aaﬁ be the Fourier coefficients of the function 1,0 A for some~y € G. Then
Aqy = 0 unless

H a(z) =17. (33)

ze{-1,1}V

Proof. Since the expectation in the definition of the inner product is taken
over all functions in .7-"3 we can write A, as

Aa,fy = <¢’y oA, Xa> = Efe]—‘gv [¢7(A(Ff))Xa(Ff)] (34)

for any I' € G. By the folding equality (32) and the homomorphism prop-
erty (8),

Py (ATS)) = 1y (TA(S)) = 1y (D)4 (A(S)), (35)
and by the homomorphism property (22),
Xa(L'f) = Xa(I')xa(f)- (36)
Thus,
(5 0 A, Xa(f)) = %3 (D)xa(T) (W5 © 4, Xa(f)) (37)



for any I" € G, which means that ¢, (I')xo(I') = 1 for all T € G if flaﬁ # 0.
Since xo(I') has unit norm, xo(I') = (x«(T')) ™", and thus

by =xal)= ][] Yag(T) (38)

ze{-1,1}V

for all T € G if A, # 0. Since ¥ is linear in a,

II e @) =9a(D) (39)

ze{-1,1}U

where a = [[ (1 1yv @(x). Thus ¢(T') = 44(T) for all T € G if Aqy # 0.
This can be true only if

y=a= H a(z), (40)
ze{—1,1}U
which completes the proof. O

Corollary 14. Suppose that the function B: ]:V(;’Y, — G, where U C W, is
folded over G. Let Bﬂﬁ be the Fourier coefficients of the function 1., o B
for some v € G\ {1g}. Then, for all B such that Eg # 0 there exists an
z € {—1,1}V such that (ry(B))(z) # 1g-

Proof. Since Bﬂﬁ # 0, Lemma 13 implies that Hye{fl,l}W B(y) = . We
now express this product in G as

11 11 Bly) = (41)

a’e{_Ll}U ye{_lal}W:mU:w

and use the definition of the function 7y (5) to obtain

II Gu®d)@ =r (42)

ze{-1,1}U
Since v # 1g, this implies that there exists at least one z € {—1,1}V such
that (m(8))(z) # 1g- O
3.3 A Conditioning Lemma

If f is a function in 5 and h is some Boolean function on {—1,1}Y, we
define the function f A h as

(F AR (@) = {f(w) if h(z) = True, (43)

1lq otherwise.



Definition 15. The function A: Fg — @ s conditioned upon h if

A(f) = A(f A ). (44)

Lemma 16. Suppose that the function A: .7-"G — G is conditioned upon h.
Let Aa.y be the Fourier coefficients of the function 1, o A for some 7y €
G\ {lg}. Then Ao“7 = 0 for any a such that there exists an x with the
property that a(z) # 1g and h(z) = False.

Proof. Suppose that there exists an g such that a(zg) # 1g and h(zg) =
False. Write

Aa,'y = <1/)'Y [¢) A,Xa = 2|U| Z Z 'll)'y fa Xa fa) (45)
| fe]:G a€eG
(:1:0) 1

where f, is defined from f as

fule) = { o= o, (46)

f(z) otherwise.

Since A is conditioned upon h and h(zg) = False, we can rewrite the expres-
sion (45) for Aow as

Aa = W S (A S Xalfa). (47)
fe]—'G aeG
f(=o)=1

By the definition of f,,

xalf)=Y I tawfil@) (48)

aeG a€G ze{-1,1}U
= H d’a(z)(f(w)) Z wa(mo)(a)' (49)
ze{-1,1}V a€G
TH#zo

By the definition of inner product in L?(G),

D Ya(eo) (@) = [Gl{Wageo) Y1c)- (50)

aeG

Since a(zg) # 1g and the functions {¢,}.cq are orthogonal in L?(G),

<wa(m0)7'¢)1> = 0. (51)
We conclude that A, = 0 for all o such that there exists an zo such that
a(zo) # 1g and h(zg) = False. O



4 The Proof of the Lower Bound

The underlying idea in our construction is the same as in Hastad’s [3]. We
start with an instance of u-gap E3-Sat(5).

Definition 17. u-gap E3-Sat(5) is the following decision problem: We are
given a Boolean formula ¢ in conjunctive normal form, where each clause
contains exactly three literals and each literal occurs exactly five times. We
know that either ¢ is satisfiable or at most a fraction p < 1 of the clauses
in ¢ are satisfiable and are supposed to decide if the formula is satisfiable.

It is known [1, 2] that p-gap E3-Sat(5) is NP-hard.

The construction we use is essentially a reduction from p-gap E3-Sat(5).
We adapt the PCP construction of Samorodnitsky and Trevisan [5] to give
a PCP with an acceptance predicate that is a function of roughly k2 + 2k
variables in G. Then we prove that if the soundness of our PCP is high, we
can decide p-gap E3-Sat(5).

On a slightly more detailed—Dbut still high—Ilevel, the construction con-
sists of the following steps:

1. Establish that there exists a two-prover one-round interactive proof
system for p-gap E3-Sat(5) with the following properties:

(a) The queries to the provers and the answers from the provers have
constant length.

U

1, Where

(b) The protocol has perfect completeness and soundness ¢
u is essentially the size of the queries to the provers.

2. Construct a PCP as follows:

(a) The proof contains encoded answers to all possible queries in the
above proof system for u-gap E3-Sat(5).

(b) The verifier, parameterized by the arbitrary constant é; > 0,
accepts if a cleverly chosen linear constraint over G is satisfied.

The verifier uses certain conventions when accessing the proof. These
conventions imply that certain bad proofs are accepted only with a
small probability, and that Step 4 below is possible.

3. Assume that the verifier accepts an incorrect proof with probability
1/|G| 4 62, where d2 > 0 is some arbitrary constant, and prove that
this implies that some other expression is bounded by a function of ds.

4. Notice that this other expression is in fact the probability of an event,
and use this to design a randomized strategy for the provers in the in-
teractive u-gap E3-Sat(5). Prove that if the provers follow this strat-
egy, the verifier in the interactive proof system for u-gap E3-Sat(5)

10



accepts with probability greater than some function of d; times the
expression that was bounded in Step 3. Conclude that the soundness
of the interactive proof system for u-gap E3-Sat(5) is at least cs, s,,
which does not depend on w.

5. Choose the constant v in Step 1 such that ¢}, < cs, 5, and conclude
that we have arrived at a contradiction.

4.1 An Interactive Proof System for u-gap E3-Sat(5)

There is a well-known two-prover one-round interactive proof system that
can be applied to pu-gap E3-Sat(5). It consists of two provers, P; and P», and
one verifier. Given an instance, i.e., an E3-Sat formula ¢, the verifier picks
a clause C and variable z in C uniformly at random from the instance and
sends x to P; and C to P». It then receives an assignment to x from P; and
an assignment to the variables in C' from P,, and accepts if these assignments
are consistent and satisfy C. If the provers are honest, the verifier always
accepts with probability 1 when ¢ is satisfiable.

Lemma 18. There exists provers that make the verifier accept a satisfiable
instance of u-gap E3-Sat(5) with probability 1.

Proof. Let m be an assignment satisfying the instance and let both provers
answer according to this assignment. m|

Lemma 19. The provers can fool the verifier to accept an unsatisfiable in-
stance of p-gap E3-Sat(5) with probability at most (2 + p)/3.

Proof. The strategy of P; defines an assignment 7 to all variables in the
instance. Since the provers coordinate their strategies, we can assume that
this assignment is known to P». Given this assignment, it is optimal for P,
to proceed as follows: If it obtains a clause satisfied by =, it answers ac-
cording to . If it obtains a clause not satisfied by 7 it must answer with
an assignment satisfying the clause, since verifier accepts if the assignment
returned by P» satisfies the clause and is consistent with the assignment
returned by P;. Given a clause that is not satisfied by w, the probability
that the verifier accepts is maximized if P, answers according to 7 for two
of the three variables and inverts the answer of one variable. The variable
P, inverts is chosen uniformly at random. Then the verifier accepts with
probability 2/3.

To sum up the above discussion, the provers can always fool the verifier
when the verifier happens to choose a clause satisfied by 7, and the fool the
verifier with probability 2/3 when the verifier happens to choose a clause

11



not satisfied by 7. If we let p denote the fraction of clauses satisfied by ,

the verifier accepts with probability
2 2+p

l—p)- = ——. 52

p+(1-pg=—3 (52)

Finally, we note that we always have p < u, by the definition of u-gap

E3-Sat(5). This implies that the provers can make the verifier accept an

unsatisfiable instance with probability at most (2 + u)/3. O

To summarize the above analysis in the language of PCPs, the above proof
system has completeness 1 and soundness (2 + u)/3.

The soundness can be lowered to ((2 + p)/3)* by repeating the proto-
col u times independently, but it is also possible to construct a one-round
proof system with lower soundness as follows: The verifier picks u clauses
{C4,...,Cy} uniformly at random from the instance. For each Cj, it also
picks a variable x; from C; uniformly at random. The verifier then sends
{z1,...,24} to P; and the clauses {Ci,...,Cy} to P,. It receives an as-
signment to {z1,...,z,} from P; and an assignment to the variables in
{C4,...,Cy} from P,, and accepts if these assignments are consistent and
satisfy Cq A --- A Cy. As above, the completeness of this proof system is 1,
and it can be shown [4] that the soundness is at most cj;, where ¢, < 1 is
some constant depending on g but not on w or the size of the instance.

4.2 The PCP

The proof is what Hastad [3] calls a Standard Written G-Proof with pa-
rameter u. It is supposed to represent a string of length n. When ¢ is a
satisfiable formula this string should be a satisfying assignment.

Definition 20. A Standard Written G-Proof with parameter u contains
for each set U C [n] of size at most u a string of length |G|2|U|, which
we interpret as the table of a function Ay: .7-"3 — G. It also contains
for each set W constructed as the set of variables in u clauses a function

Definition 21. A Standard Written G-Proof with parameter u is a correct
proof for a formula ¢ of n variables if there is an assignment x, satisfying ¢,
such that Ay is the Long G-Code of x|y for any V' of size at most u or any V'
constructed as the set of variables of u clauses.

In Sec. 3.2 we saw that if a function from .’Fg to G is folded over G, many of
its Fourier coefficients vanish. It turns out that we need to have the above
tables folded over G in order for the proof of the lower bound to work. This
is not a problem, since the folding property can easily be enforced by the
verifier as follows: When the verifier is supposed to query some position
Ay (f) from the proof, it instead queries Ay (I'~'f), where T € G is chosen

12



according to a fixed convention. Then the verifier uses the value ' Ay (T~ f)
as Ay (f). An analogous procedure is used for the table representing Ay

The verifier is parameterized by the integers £ and m, a set E C [{] x [m],
and a constant §; > 0; and it should accept with high probability if the proof
is a correct Standard Written G-Proof for a given formula ¢.

1. Select uniformly at random w variables x1,...,x,. Let U be the set of
those variables.

2. For j = 1,...,m, select uniformly at random u clauses Cj1,...,Cjq
such that clause Cj; contains variable z;. Let ®; be the Boolean
formula Cj1 A---ACjy. Let W; be the set of variables in the clauses
Cj,l, ceey Cj,u-

3. Fori=1,...,¢, select uniformly at random f; € fg .

4. For j =1,...,m, select uniformly at random g; € j:v(l;lj-

5. For all (i,j) € E, choose e;; € fvc{‘,j such that, independently for all
yew,
(a) With probability 1-— (51, €ij (y) = 1g.
(b) With probability d1, e;;(y) is selected uniformly at random from G.

6. Define h;; such that h;; (y) = (fi(y|U)gj (y)eij(y))_l.

7. If for all (’L,]) € FE, AU(fz')AWj (gj/\q)j)AWj (hij/\q)j) = 1, then accept,
else reject.

Lemma 22. The completeness of the above test is at least (1 — &;)1Pl.

Proof. Given a correct proof, the verifier can only reject if one of the error
functions e;; are not 1¢ for the particular string encoded in the proof. Since
the error functions are chosen pointwise uniformly at random, the proba-
bility that they all evaluate to 1g for the string encoded in the proof is
(1 — 61)/El. Thus, the verifier accepts a correct proof with probability at
least (1 — &;)El, m|

4.3 Expressing the Acceptance Probability

To shorten the notation, we define the shorthands A(f) = Ay(f) and
Bj(g9) = Aw; (g A ©;).

13



Lemma 23. The test in the PCP accepts with probability
E Z (53)
|G|' e
where
11 ( > Wy (A(fi)Bj(gj)Bj(hij)))- (54)
(1,4)eS “yeG\{1}
We use the convention that Ty = 1.

Proof. The PCP tests if |E| linear equations of the form

A(fi)Bj(95)Bj(hij) = 1 (55)

over the group G are satisfied. We index the equations by (%, j), and note
that the fact (10) that ¢1,(g) = 1 and the summation relation (11) together
imply that the expression

P, |@+ S (A @W()U (56)
yeG\{1}

is one when the equation corresponding to (3, ) is satisfied and zero other-
wise. Since the test accepts if all equations are satisfied,

1 if the test in the PCP accepts,
Po ] ﬁ:{ (57

(e 0 otherwise.

Since the equations are chosen at random, P is an indicator random variable
and we can write

Pr[The PCP accepts] = E[P]. (58)
If we expand the product in the definition of P, we arrive at the expression
n (53) and (54). O
4.4 Identifying a Large Term

Lemma 24. If the probability that the above test accepts is |G|~1El + 65 for
some 62 > 0, then |E[Ts]| > §; for some S # 0 such that S C E.

Proof. Suppose that | E[Ts]| < d3 for all S # @) such that S C E. Then

1 + 6o(|GI1El — 1 _
Prlaccept] < |E| Z | E[Ts]| (] ) < |G|l +5,, (59)

Gl 2 [z

which is a contradiction. O

14



4.5 Bounding the Large Term

Lemma 25. Suppose that |E[Ts]| > §2 > 0 for some set S # 0 such that
S C E. Number the vertices in this set S in such a way that there is at least
one edge of the form (1,7) and all edges of that form are (1,1),...,(1,d).
Let

Q=" 1AalPBig, -+ |Bag,|*(1 = 8121+ 10D, (60)
aaﬂlv"'vﬂd
a=my(B1)-Tu (Bq)
where
W; = {variables in ®;}, (61)
A(f) = Au(f), (62)
Bj(g9) = Bw, (9 A ®;), (63)
Ag = (Yy1.yy © A, Xa),s (64)
Bjp; = (1, 0 Bj, xg;)- (65)
Then there exists vy1,...,7q4 € G\ {1} such that
Proof. We split the product in the definition of T into the two factors
o= II (T »@wsiesm)) 67)
(1,5)€S,i#1 veG\{1lc}
and
d
a=TI( T o@m56)5m,). (68)
J=1 yeG\{lg}
Since C1 is independent of f; and ey 1,..., ek, we use conditional expecta-
tion to rewrite E[Ts]. If we let E1[-] denote the expected value taken over
the random variables f1 and ey 1,...,e1 %, we obtain
E[Ts] = E[E41[Ts]] = E[C1 E1[Cy]]. (69)

This implies that
[BITs)|” < B[ [C1P[EalCal|’] (70)

By expanding the product in the definition of C, we obtain

|S|—d

Z Z H P (*)

11€G\{lc}  vs5-4¢€G\{lg} =1

2

|Cl|2 = ) (71)
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where we have suppressed the argument to v,,. Since 1,,(-) is a complex
root of unity, and a product of roots of unity is also a root of unity,

|S|—d
S|—d
calr< > o Y T w0 =(61-)P ()
meG\{lg}  s5-4€G\{lg} =1
Thus,
2 S|—d 2
ETs)|” < (161 - 1) B|[Eacal ). (73)
Now we expand the product in the definition of Cs,
d
Co= > - > JI%xs(A1)B;(9)B;(hy))- (74)
11€G\{le}  714€G\{lg}i=1
If we write
d
Cs = [ [ ¥v; (A(f1)Bj(g;) Bj(h1;)), (75)
j=1

we can write

2
| E1[Cy]* =

Z Z E1[Cs]

1neG\{leg}  71€G\{1lc} (76)

< > Y RGP

neG\{leg}  71€G\{lg}

and summarize our calculations so far as

BT < (6 -t Y > B[R] ()

neG\{lg}  71€G\{lc}

Thus, there exists some v1,...,74 € G\ {1g} such that
E[Ts)|” < (1G] - 1) E[|E1[C’3]|2]. (78)

From now on, we fix these 71,...,74 € G\ {lg} and try to bound the

corresponding
2
B4 [Cs)|” (79)

_ B, {H s, (A(F1)B;(g;)B (hl,]))]

by a sum of Fourier coefficients. By the homomorphism property (8) and
the fact (9) that v, is linear in a,

C3=¢71---7d (f1) H¢w 5(95) ¢7;( j(hl,j))' (80)
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Since 4, (B;(g;)) are independent of f; and ey 1, ..., €1, We can move them
outside El[] Since |4, (B;(g;))| = 1, this 51mp11ﬁes the expectation (79) to

d 2
2
‘El[oi}” = |E1 |:'¢'71-~~7d H"vbfy] hl,] :| (81)
The remaining factors are expressed using the Fourier transform:
¢’)’1"")’d (A(fl)) = Z AaXa(f1)7 (82)
ae.?-'g
d’%( (hl,J)) = Z Bjn@jxﬂj(hlaj)’ (83)
ﬂjE]:g;Vj
where
‘a = <¢71...7d o A, Xa), (84)
7[3] <1/)'Y] Xﬂ] > . (85)

Note that the first of the above inner products is in L?(F§) while the latter
is in LZ(}"V%,). When we insert the Fourier expansions (82) and (83) into
the expectation (81) and expand the products, we obtain one term for each
possible combination of o and S, ..., Bq:

2

Z Z Z E1[AaBig, - Bap,Cd]|, (86)

acF§ ﬂ1€fcl BaEF

\EI[C?,

where

Cs = Xa(f1)xp: (h1,1) - - Xy (h1,0)- (87)

Note that the Fourier coefficients can be moved out from E;[- - -] since they
are independent of f; and eq,1,...,e1 . This simplifies the expectation (86)
even further to

2
|Es [03

=|>. > -+ > AuBig -+ Bap,FalCi]

G G G
aeFy BieFy, BacFyy,

< Z Z Z |fia|2|1§1,ﬂl|2"'|Bd,5d|2|E1[C’4H2.

aEFG BIEFG,  Ba€FY,

(88)

Fortunately many of the terms in the above sum vanish. Since h;; =
(figjei;) L, it follows from the homomorphism property (22), the fact (23)
that x, is linear in o, and Lemma 11 that

d

Ct = Xa(my (81)-mw (8 (1) 1T X8, (957) x5 (e1)- (89)
=1
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Since all factors in the above product are independent, we can take the
expectation of each factor separately. From the summation identity (25),

1 fa=ny(B)- - 7v(Ba),
E - - = 90
1 [Xa(my (81)-m0 (82~ (1)] {0 otherwise. (90)
The factors xg, (gj_l) are independent of fi and ey 1, ..., ek, which implies
that
-1 -1
Eq [Xﬂj (gj )] = XB; (gj ) (91)
By the definition of the functions e; ; we obtain
E1 [Xﬂj (61_,;)] = (1 - 51)|ﬂ7| (92)
To summarize,
1 — &)2UB1l+~+IBal)  if o = ,
malc = {0 fo =) gy
0 otherwise.
With this in mind, we can rewrite the expectation (88) as
2 A ~ -
[E1[Cs]]” < Y [Aal’1Big, P+ |Bays, [P (1 = 61)2UAT+18aD - (04)

avﬂlv--'ngd
a=mny (B1)7u(Ba)

Thus, there exists some v1,...,74 € G \ {1g} such that
S 2 S
6 < (161 - 1) B[ [Ercal’] < (161 - 1) Y Bue,,..0a@)  (95)
awBla'-'an
a=ny(B1)--7u(Ba)

where @ is defined as in the formulation of the lemma. O

4.6 Designing Efficient Provers

Lemma 26. Suppose that E[Ts] > d3 > 0 for some set S # 0 such that S C
E. Then there exists provers that make the two-prover one-round protocol
for u-gap E3-Sat(5) from Sec. 4.1 accept with probability at least 6162 /(|G| —
1Sl

Proof. To construct their strategy, the provers first compute the vy, ...,7v4
maximizing

Ev.e,,..9,(Q] (96)

where @ is defined as in (60). They then fix these 71, .. ., 74 for the remaining
computation. After these initial preparations, the provers proceed as follows:
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Prover P receives a set U of u variables. For j = 2,...,d, P; selects

uniformly at random u clauses Cj 1, ..., Cj, such that clause Cj;; contains
variable z;. Let ®; be the Boolean formula Cj1 A --- A Cj,. Let W; be the
set of variables in the clauses Cj1,...,Cj,. Then Py computes the Fourier
coefficients

Aa = <1/)71"'7d oA, Xa) (97)
and

Bj,ﬂj = (1y; 0 Bj,xp;) forj=2,...,d, (98)

selects («, B2, ..., Bq) randomly such that

Pr((e, B2, ..., Ba)] = |Aal?|Bag,* - - | Bag,|? (99)

forms the function

o = a(my(Be) -7 (Ba)) " (100)

and returns an arbitrary z such that o'(z) # lg. If no such z exists,
Py returns an arbitrary z € {—1,1}Y.
Prover P, receives ®; consisting of u clauses, computes

Bl,ﬂl = <1/J"/1 0 Bj7Xﬂ1>7 (101)

selects a random (3; with the distribution
Pr[ﬂl] = |Bl,51|2a (102)

and returns a random y such that 3i1(y) # lg. By Lemma 13 such a y
always exists, and by Lemma 16 such assignments satisfy ®;.

Let us now analyze the acceptance probability of this strategy. In the
analysis we bound

Prlaccept | U, @1, ..., Pm) (103)
from below. This is enough to prove the lemma, since
Pr[accept] = E[Pr[accept | U, ®4,..., <I>d]]. (104)

Thus, we assume from now on that U and ®q,...,®P, are fixed and try to
estimate the acceptance probability under these assumptions.

Since Lemma 25 proves a lower bound on E[Q], we want to express the
acceptance probability in terms of (). Note that Lemma 13 implies that
a # 0, since the provers never choose an a such that A, = 0, and in the
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same way Corollary 14 ensures that the selected 3; has the property that
7y (B;) # 0. This means, that if the provers obtain (a, 51, ..., 084) such that

a=my(61) - 7 (Ba), (105)

there exists  such that (7 (61))(z) # lg, and for every such z the function

o = a(my(Be) - 7v(Ba)) (106)

sends = to an element in G \ {1g}. Put another way:

o (2) # 1lg <= (mv(B1))(z) # le- (107)

This implies that there exists a y such that z = y|y and £1(y) # 1g. Given
the x chosen by P;, the probability that P» chooses a y such that y|y =
and (1(y) # lg is at least 1/|B1|. All this put together implies that the
acceptance probability can be bounded from below by

A 2By al2.- |Bya|?
Pr[accept | U, @1, ..., P, > Z [4al"1B1,3:] | Bap| (108)
avﬁla"'aﬁd |61|
a=my(B1)7mu(Ba)
Since € > 1+ z > x for any real positive x,
alsl 6,18
€ 1
> 22 =g, 109
> =1 (109
or equivalently,
1
— > 61 %P > 5, (1 - 6p)P (110)

18l

where the second inequality follows from e~ > 1 — x, which is true for any
real positive x, we obtain

Priaccept | U, ®1,...,8m] > 61 |Aal?|B1g,|* -+ - |Bag,/>(1-61)7. (111)

aaﬁlr'ﬂﬂd
a=my (B1)--mu (Ba)

By Lemma 25, this implies that

5162

2 T gl
Prlaccept | U, @1,...,®p] > (|G| - D)

(112)

since 0 < §; < 1. O
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4.7 Putting the Pieces Together

Lemma 27. Suppose that the test in Sec. 4.2 accepts with probability at
least 1/|G|IF| 4 85. Then there exist provers that make the two-prover one-
round protocol for u-gap E3-Sat(5) from Sec. 4.1 accept with probability at
least 8163 /(|G| — 1)IP1.

Proof. By Lemma 24 the assumptions in the lemma implies that | E[Ts]| >
do for some S # () such that S C E. By Lemmas 25 and 26, this implies that
there exists provers that make the two-prover one-round protocol for u-gap
E3-Sat(5) from Sec. 4.1 accept with probability at least §;62/(|G| — 1)I51.
Since |S| < |E|, the lemma follows. O

5 The Reduction to Max k-CSP-G

Lemma 28. For every constant 2 > 0, it is possible to select a constant u
such that the soundness of the PCP in Sec. 4.2 is at most 1/|G|I®| + 6,.

Proof. Suppose that the PCP in Sec. 4.2 has soundness 1/|G|/Zl 485 for some
constant 6 > 0. By Lemma 27, this implies that the two-prover one-round
interactive proof system for u-gap E3-Sat(5) has soundness 6163/ (|G| —1)I"1.
But we know [4] that the soundness of this proof system is at most cj;, where
¢y < 11is a constant and u is the cardinality of U. If we select

log 671652 + log(|G| — 1)/l
u > 1089176 +og§|| ) ’

- (113)
log c,,

note that this latter quantity is a constant since 61, 2, |E|, |G|, and ¢, are
constants, we obtain

5165 u
—— >, 114
(1G] — 1) ~ (1)
which is a contradiction. O

Now it is time to construct an instance of Max k-CSP-G that is hard to
approximate. The tool is the above PCP. As for the soundness s and the
completeness ¢ of this PCP, we have shown that

s> (1-6)", (115)
¢ < |G|l 4 5y, (116)
for arbitrarily small constants 61,2 > 0.

Theorem 29. Let £ and m be arbitrary positive integers. Let E C [£] X [m)].
Let k = |E| + £+ m. Then it is NP-hard to approzimate Max k-CSP-G
within |G|IP! — € for any constant € > 0.
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Proof. Select the constants §; > 0 and d2 > 0 such that

(1—6,)7
|G| 1Bl 4 &,

Then select the constant u such that 6,63/(|G| — 1)IFl > c;- Now consider
applying the PCP from Sec. 4.2 to an instance of the NP-hard problem
u-gap E3-Sat(5).

Construct an instance of Max k-CSP-G as follows: Introduce variables
zy,; and ys, 4 for every A(f) and Bj;(g), respectively. For all possible com-
binations of a set U, clauses @1, ..., ®,,, and functions f1,..., fz, g1,-- -, Gm,
and hi,1, ..., hem, introduce a constraint that is one if zy,1,ys;. 4, = Ya, by
for all (i,7) € E. Set the weight of this constraint to the probability of the
event that the set U, the clauses ®4,...,®,,, and the functions fi,..., fo,
91s-+-19m, and hi1,...,hy ., are chosen by the verifier in the PCP. Each
constraint is a function of at most |E| + £ 4+ m variables. The total number
of constraints is at most

> |G -, (117)

Rt | G|Z2“+m23”+€m23“ , (1 18)

which is polynomial in n if £, m, |G|, and u are constants. The weight of
the satisfied equations for a given assignment to the variables is equal to
the probability that the PCP from Sec. 4.2 accepts the proof corresponding
to this assignment. Thus, any algorithm approximating the optimum of the
above instance within

(1—61)E
|G| 1Bl 4 &,
decides the NP-hard problem p-gap E3-Sat(5). O

> |G|'Fl - ¢ (119)

Corollary 30. For any integer k > 3 and any constant € > 0, it is NP-hard
to approzimate Max k-CSP-G within |G|F~2VE+1+1 _ ¢,

Proof. As a warmup, assume that k = s2 + 2s for some positive integer s.
Then we can choose £ = m = s and E = [¢] X [m] in Theorem 29 and obtain
that it is NP-hard to approximate Max k-CSP-G within |G’|s2 — ¢, for any
constant € > 0. To express this as a function of k, note that

k=s?+2s = s=vk+1-1, (120)
which implies that
=k+1+1-2Vk+1=k—-2Vk+1+2. (121)

Thus, it is NP-hard to approximate Max k-CSP-G within |G[F—2Vk+142 _¢
for any constant € > 0, when k = s 4+ 2s for some positive integer s. To
investigate what happens when

s +2s<k<(s+1)2+2(s+1)=s>+45+3, (122)

we proceed in two stages.
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In the first stage, we assume that k = s+ 2s + 1 where s is an arbitrary
positive integer. In that case, we can set £ = s, m = s+ 1, and E to any
subset of [¢] x [m] containing s? edges. Then Theorem 29 implies that it is
NP-hard to approximate Max k-CSP-G within |G|** — ¢, for any constant
€ > 0, in this special case. Then we rewrite this as a function of k£ by using
the relation

k=s>+2s+1 < s=vVk—1, (123)
which implies that
s2=k—2VE+1. (124)

Thus, it is NP-hard to approximate Max k-CSP-G within |G|k*2‘/’;+1 — €,
for any constant € > 0, when k = s + 2s + 1 for some positive integer s.

In the second stage, we assume that k = s2 + 25 + 2 + t where s is an
arbitrary positive integer and ¢ is an integer satisfying 0 < ¢ < 2s. In that
case, we can set £ = m = s+1 and let E be any subset of [¢] X [m] containing
s? +t edges. Then Theorem 29 implies that it is NP-hard to approximate
Max k-CSP-G within |G|**+ —¢, for any constant € > 0, in this special case.
To express this as a function of k£, note that

k=s*4+2s+24+t < s=vEk—t+1-1, (125)
which implies that
S rt=k—2Vk—t+1+2>k—-2VEk+1+2. (126)

Thus, it is NP-hard to approximate Max k-CSP-G within |G[F—2Vk+142 _¢
for any constant € > 0, when

§24+25+2<k<s? 4542 (127)

for some positive integer s.
To conclude, it is NP-hard to approximate Max k-CSP-G within

|G|k—2w/k+1+1 —, (128)
for any constant € > 0 and any positive integer k > 3. a

From the details of the proof of Corollary 30, we see that we can rephrase
the result in a slightly stronger form.

Corollary 31. For any integer s > 2 and any constant € > 0, it is NP-hard
to approzimate Maz s2-CSP-G within |G|(*~D* — . For any integer k > 3
that is not a square and any constant € > 0, it is NP-hard to approximate
Mag k-CSP-G within |G|F~2VFH1+2 _ ¢
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6 Conclusions

We have shown that it is possible to combine the harmonic analysis intro-
duced by Hastad [3] with the recycling techniques used by Samorodnitsky
and Trevisan [5] to obtain a lower bound on the approximability of Max k-
CSP-G. The proof of results of this type typically study some predicate on a
constant number of variables such that a random assignment to the variables
satisfies the predicate with probability 1/a. Starting from the two-prover
one-round interactive proof system for u-gap E3-Sat(5) reviewed in Sec. 4.1,
instances such that it is NP-hard to approximate the number of satisfied
constraints within a — ¢, for any constant € > 0, are constructed. Qur proof
is no exception to this rule.

The current state of the art regarding the approximability of predicates
is that there are a number of predicates—such as linear equations mod p
with three unknowns in every equation, E3-satisfiability, and the predicate
of this paper—that have the property that they are hard to approximate in
the above sense. There exists also some predicates—such as linear equations
mod p with two unknowns in every equation and E2-satisfiability—where
there are polynomial time algorithms beating the bound obtained from a
random assignment.

A very interesting direction for future research is to try to determine
criteria identifying predicates that are hard to approximate in the sense
outlined above, i.e., predicates such that a random assignment to the vari-
ables satisfies the predicate with probability 1/« but it is NP-hard to ap-
proximate the corresponding maximization problem within o — €, for any
constant € > 0.
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