Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 42 (2000)

The Non-Approximability of Non-Boolean Predicates

Lars Engebretsen*

Department of Numerical Analysis and Computer Science
Royal Institute of Technology
SE-100 44 Stockholm
SWEDEN
E-mail: enge@nada.kth.se

August 2001

Abstract. Constraint satisfaction programs where each constraint depends
on a constant number of variables have the following property: The random-
ized algorithm that guesses an assignment uniformly at random satisfies an
expected constant fraction of the constraints. By combining constructions
from interactive proof systems with harmonic analysis over finite groups,
Héstad showed that for several constraint satisfaction programs this naive
algorithm is essentially the best possible unless P = NP. While most of
the predicates analyzed by Héastad depend on a small number of variables,
Samorodnitsky and Trevisan recently extended Hastad’s result to predicates
depending on an arbitrarily large, but still constant, number of Boolean
variables.

We combine ideas from these two constructions and prove that there
exists a large class of predicates on finite non-Boolean domains such that
for predicates in the class, the naive randomized algorithm that guesses
a solution uniformly is essentially the best possible unless P = NP. As
a corollary, we show that the k-CSP problem over domains with size D
cannot be approximated within DF-OWR) _ €, for any constant € > 0, unless
P = NP. This lower bound matches well with the best known upper bound,
D*~! of Serna, Trevisan and Xhafa.

1 Introduction

In a breakthrough paper, Hastad [6] studied the problem of giving approx-
imate solutions to maximization versions of several constraint satisfaction
problems. An instance of a such a problem is given as a collection of con-
straints, i.e., functions from some domain to {0,1}, and the objective is to

*Part of this research was performed while the author was visiting MIT with support
from the Marcus Wallenberg Foundation and the Royal Swedish Academy of Sciences.

ECCC

ISSN 1433-8092

satisfy as many constraints as possible. An approximate solution of a con-
straint satisfaction program is simply an assignment that satisfies roughly
as many constraints as possible. In this setting, we are interested in proving
either that there exists a polynomial time algorithm producing approximate
solutions some constant fraction from the optimum or that no such algo-
rithms exist.

Typically, each individual constraint depends on a fixed number & of the
variables and the size of the instance is given as the total number of variables
that appear in the constraints. In this case, which is usually called the Max
k-CSP problem, there exists a very naive algorithm that approximates the
optimum within a constant factor: The algorithm that just guesses a solu-
tion at random. In his paper, Hastad [6] proved the very surprising fact that
this algorithm is essentially the best possible efficient algorithm for several
constraint satisfaction problems, unless P = NP. The proofs unify con-
structions from interactive proof systems with harmonic analysis over finite
groups and give a general framework for proving strong impossibility results
regarding the approximation of constraint satisfaction programs. Hastad [6]
suggests that predicates with the property that the naive randomized algo-
rithm is the best possible polynomial time approximation algorithm should
be called non-approrimable beyond the random assignment threshold.

Definition 1. A Maz k-CSP on k wvariables is non-approximable beyond
the random assignment threshold if, for any constant ¢ > 0, it is NP-hard
to approzimate the optimum of the CSP within a factor w — €, where 1/w is
the expected fraction of constraints satisfied by a solution guessed uniformly
at random.

Héastad’s paper [6] deals mainly with constraint satisfaction programs
involving a small number of variables, typically three or four. In most of
the cases, the variables are Boolean, but Hastad also treats the case of lin-
ear equations over Abelian groups. In the Boolean case, Hastad’s tech-
niques have been extended by Trevisan [13], Sudan and Trevisan [10], and
Samorodnitsky and Trevisan [8] to some predicates involving a large, but
still constant, number of Boolean variables. In this paper, we prove that
those extensions can be adapted also to the non-Boolean case—a fact that
is not immediately obvious from the proof for the Boolean case. This es-
tablishes non-approximability beyond the random assignment threshold for
a large class of non-Boolean predicates. Our proofs use Fourier analysis of
functions from finite Abelian groups to the complex numbers combined with
what has now become standard constructions from the world of interactive
proof systems. As a technical tool, Sudan and Trevisan [10] developed a

certain composition lemma. In this paper, we extend this lemma to the
non-Boolean setting. By using the lemma as an integrated part of the con-
struction rather than a black box, we are also able to improve some of the
constants involved.

A consequence of our result is that it is impossible to approximate Max
k-CSP over domains of size D within D¥-O(Vk) _ ¢, for any constant € > 0,
in polynomial time unless P = NP. This lower bound matches well with the
best known upper bound, D¥~1, following from a linear relaxation combined
with randomized rounding [9, 12].

The paper is outlined as follows: We give the general ideas behind our
construction in Sec. 2. Then we discuss Fourier transforms over Abelian
groups and its connection to the so called Long G-Code in Secs. 3 and 4. We
give the technical details of our construction in Sec. 5 and the connection
to Max k-CSP and the non-approximability beyond the random assignment
threshold of several non-Boolean predicates in Sec. 6. Finally, we conclude
with some directions for future research.

2 Outline of the construction

The underlying idea in our construction is the same as in Hastad’s [6]. We
start with an instance of y-gap E3-Sat(5).

Definition 2. u-gap E3-Sat(5) is the following decision problem: We are
giwen a Boolean formula ¢ in conjunctive normal form, where each clause
contains exactly three literals and each literal occurs exactly five times. We
know that either ¢ is satisfiable or at most a fraction p < 1 of the clauses
in ¢ are satisfiable and are supposed to decide if the formula is satisfiable.

It is known |2, 3| that u-gap E3-Sat(5) is NP-hard.

There is a well-known two-prover one-round (2P1R) interactive proof
system that can be applied to p-gap E3-Sat(5). It consists of two provers,
P; and P;, and one verifier. Given an instance, i.e., an E3-Sat formula ¢,
the verifier picks a clause C' and variable z in C' uniformly at random from
the instance and sends z to P; and C to P,. It then receives an assignment
to z from P; and an assignment to the variables in C from P», and accepts
if these assignments are consistent and satisfy C. If the provers are honest,
the verifier always accepts with probability 1 when ¢ is satisfiable, i.e., the
proof system has completeness 1. It can be shown that the provers can fool
the verifier with probability at most (2 + 1)/3 when ¢ is not satisfiable, i.e.,
that the above proof system has soundness (2 + p)/3.

The soundness can be lowered to ((2 + p)/3)" by repeating the protocol
u times independently, but it is also possible to construct a one-round proof
system with lower soundness by repeating w times in parallel as follows: The
verifier picks u clauses (Cy, ..., Cy) uniformly at random from the instance.
For each Cj, it also picks a variable z; from C; uniformly at random. The
verifier then sends (z1,...,z,) to P; and the clauses (C,...,Cy) to Ps. It
receives an assignment to (z1,...,Z,) from P; and an assignment to the
variables in (C,...,C,) from P», and accepts if these assignments are con-
sistent and satisfy C; A --- A Cy,. As above, the completeness of this proof
system is 1, and it can be shown [7] that the soundness is at most cj;, where
¢, < 1 is some constant depending on g but not on u or the size of the
instance.

In the above setting, the proof is simply an assignment to all the variables.
In that case, the verifier can just compare the assignments it receives from
the provers and check if they are consistent and satisfying. The construction
we use to prove that several non-Boolean constraint satisfaction programs are
non-approximable beyond the random assignment threshold can be viewed
as a simulation of the wu-parallel repetition of the above 2P1R interactive
proof system for u-gap E3-Sat(5). We use a probabilistically checkable proof
system (PCP) with a verifier closely related to the particular constraint we
want to analyze. To find predicates that depend on variables from some
domain of size D and are non-approximable beyond the random assignment
threshold, we work with an Abelian group G of size D. The predicates we
study are ANDs of linear equations involving three variables in G. The proof
is what Hastad [6] calls a Standard Written G-Proof with parameter u. It
is supposed to be a very redundant encoding of a string of length n, which
when ¢ is a satisfiable formula should be a satisfying assignment.

Definition 3. If U is some set of variables taking values in {—1,1}, we
denote by {—1,1}V the set of every possible assignment to those variables.
The Long G-Code of some string = of length |U| is the value of all functions
from {~=1,1}V to G evaluated on the string =; Aus(f) = f(z).

Since there are |G|2|U‘ functions from {—1,1}Y to G, the Long G-Code of
a string of length u has length |G|?". The proof introduced by Hastad [6]
contains the Long G-Code of several subsets containing a constant number
of variables. Each such subset is supposed to represent either an assignment
to the variables sent to P; or the clauses sent to P in the 2P1R interactive
proof system for py-gap E3-Sat(5).

Definition 4. A Standard Written G-Proof with parameter u contains for
each set U C [n] of size at most u a string of length |G|2|U‘ , which we interpret

as the table of a function AU:]:[(]; — G. It also contains for each set W
constructed as the set of variables in u clauses a function AW:fVCI;, - G.

Definition 5. A Standard Written G-Proof with parameter u is a correct
proof for a formula ¢ of n variables if there is an assignment x, satisfying ¢,
such that Ay is the Long G-Code of x|y for any V' of size at most u or any V'
constructed as the set of variables of u clauses.

To check that the proof is a correct proof, we—following the construction
of Samorodnitsky and Trevisan [8]—first query 2k positions from the proof
and then, as a checking procedure, construct k? linear equations, each of
them involving two of the first 2k queried positions and one extra variable.
To give a more illustrative picture of the procedure, let the first 2k queries
correspond to the vertices of a complete k x k bipartite graph. The k? linear
equations that we check then correspond to the edges of this graph.

As for the non-approximability beyond the random assignment thresh-
old, a random assignment to the variables satisfy all k? linear equations
simultaneously with probability |G |_k2—the aim of our analysis is to prove
that this is essentially the best possible any polynomial time algorithm can
accomplish. This follows from the connection between our PCP and the
2P1R interactive proof system for p-gap E3-Sat(5): We assume that it is
possible to satisfy a fraction |G|*’c2 + € for some constant € > 0 and prove
that this implies that there is a correlation between the tables queried by the
verifier in our PCP. We can then use this correlation to explicitly construct
strategies for the provers in the 2P1R proof system for u-gap E3-Sat(5) such
that the verifier in that proof system accepts with probability larger than cj;.
The final link in the chain is the observation that since our verifier uses only
logarithmic randomness, we can form a CSP with polynomial size by enumer-
ating the checked constraints for every possible outcome of the random bits.
If the resulting constraint satisfaction program is approximable beyond the
random assignment threshold, we can use it to decide the NP-hard language
p-gap E3-Sat(5) in polynomial time.

We remark, that by checking the equations corresponding to some sub-
set E of the edges in the complete bipartite graph we also get a predicate
which is non-approximable beyond the random assignment threshold: It is
satisfied with probability |G|~1® by a random assignment and our proof
methodology works also for this case.

3 Fourier Transforms

To prove a bound on the soundness of their verifiers Hastad [6], as well as
Samorodnitsky and Trevisan [8], use Fourier transforms. In this section we
give a brief account of the methods involved, for more details see Hastad’s
paper [6] or Terras’s book [11].

Definition 6. For a finite Abelian group G, the space L*(G) is the vector
space of all functions from G to C eqm’pped with the inner product

(f1, fo) = |G| > filg) (1)

geaG
The aim of Fourier transforms is to express functions as linear combinations
of basis functions with certain nice properties. To define the basis functions
for the space L2(G), we use the fact that every finite Abelian group G, can
be represented as G = Z;, x --- X Z;,, where |G| = i1---i,. An element
g € G is represented as a k-tuple

g~ g, g") € Ziy x - x Zyy.
We use multiplication as the group operation and 1 as the group identity. If

two group elements g1 and go have the representations

gt~ (le)a 7g§k))7

1 k
92"’(9%)a 795))7
respectively, the element g;go has the representation

gi192 ~ (gg) + ggl) mod 41, . .. 7g§k) + gék)

mod ¢ k)-
The group identity is represented by a vector of k zeros.

Definition 7. The set T is the set of all compler numbers of unit norm.
The set of characters of an Abelian group G is the set of all linear homo-
morphisms from G to T.

For an Abelian group G, the characters are

<2mm qu))
H exp .

tj
They are homomorphlsms from G to T since

(2)

Ya(9192) = Pa(91)%a(92)- (3)
Below, we need also the following identities involving the characters of G:
Varaz(9) = Va1 (9)%as (9), (4)

P15(9) =1, (5)
3 Yalg —{ G g =1, (6)

= otherwise.
In fact, the characters of G form an orthonormal basis for L?(G). This
follows from a completeness argument: The characters are many enough,
and they are orthogonal since if a # d/,

(Ya> Par) |G| > alg)va (9) |G| > algg) e (99")

geG e

for some arbitrary ¢’ € G. The last equality holds since we sum over all
elements in G. By the homomorphism property (3), we can rewrite the last
expression as

7 _ Ya(g")%a (g')
|G| Z Yalg wa'(J%ar (g') = |G| Z Yalg "pa’

geG geG

If we choose ¢’ such that 1,(g") # v (g'), this is always possible since
a # a', we have shown that (,,%a) = c(ta, s) for some ¢ # 1. Thus,
(Ya,Ya) =01if a 7é a'. Finally, if a = a'

<¢a>¢a = Z ¢a = Z |1/Ja

QEG gEG

since 1)4(g) has unit norm. Thus the characters are orthonormal.
Once we have our orthonormal basis, the definition of the Fourier trans-
form of a function in L?(G) straightforward.

Definition 8. For a finite Abelian group G, the Fourier coefficients {fa}aea
of a function in L*(G) are fo = (f,%a), where {1y} acq are the characters
of G.

As an illustration of these concepts, we state and prove the only theorem
from classical Fourier analysis that we use in this paper, namely Parseval’s
equality. Using only the concept of orthonormality, the theorem provides a
relationship between a function and its Fourier coefficients.

Theorem 1. Suppose that f is a function in L*(G) and that its Fourier
coefficients are {fatacc- Then (f,f) = Xoeq fal-

Proof. If we expand f in its Fourier series, we get
AT~ A A)
f) = Z Z fafa'<¢aa¢a’> = Z Jafa = Z'fa')
a€G d eG a€qG a€G
where the second equality follows since the characters are orthonormal. "

4 The Long G-Code

To prove our lower bound, we need to use the Fourier transform of the
Long G-Code. The techniques in this section were pioneered by Héstad [6];
Terras [11] surveys and analyzes several other applications of the Fourier
transform. What makes the Fourier transform extremely useful in combina-
tion with the Long G-Code seems to be that the characters of G can be used
both to form a Fourier basis of functions from the Long G-Code to C and to
form certain predicates needed in the analysis of certain tests on codewords.

Definition 9. If U is some set of variables taking values in {—1,1}, we
denote by {—1,1}V the set of every possible assignment to those variables.
Define

F§ ={f:{-1,13V = G}. (7)
For a function f €]—"g, we denote by |f| the number of x such that f(x) #
1o

Definition 10. The space L? (.7:[(];) 1s the vector space of all functions from
]-"g to C equipped with the inner product

o Y ROED. ®)

|G|2|U| feF§

(F1, Fp) =

To shorten the notation, we frequently write the above expression as

<F17F2) :Efefg[Fl(f)m]a (9)

where it is understood that the probability distribution involved is the uniform
distribution.

We can view the Long G-Code as a function A:}'[(J; — G From now on, it
is understood that this function corresponds to some string z € {—1,1}Y,
which is interpreted as assignments to the variables in U.

In Section 5 we want to estimate the probability that certain tests over the
group G accept. It turns out that an important technical tool in these efforts
is the Fourier transform on functions in the space L?(Fg). To obtain our
Fourier basis, we need an expression for the characters of .7-"3 . To derive that
expression, we note that we can identify this space with L2(G2|U|) by iden-
tifying a function f with a table of the values f(z) for every z € {—1,1}Y.
Thus, the characters of .7-"[(]; are

Xa(f) = H "pa(w)(f(x))v (10)

ze{-1,1}V

where 1),(g) is the corresponding group character of G. In this definition,
« is a function from {—1,1}V to G. In the same way as the characters of G,
the characters of]-'[(]; satisfy the following identities:

Xa(f1f2) = Xa(f1)Xa(f2), (11)
Xaiaa () = Xa1 (f)Xas (f), (12)

1 fa=1,

0 otherwise. (14)

Byergxa(f)] = {

We can now define the Fourier coefficients as usual, F,, = (F,xq), for some
function F € L2(FJ). This function then has the Fourier expansion

F= Z FaXa- (15)
aeFg

In Section 5, we also need some technical lemmas regarding the Fourier
transform of the Long G-Code in various settings.

4.1 A Projection Lemma

Suppose that U C W and that y € {—1,1}. Since y gives an assignment
to all variables in W, we can use y to form an assignments to all variables
inU.

Definition 11. Let U C W and y € {-1,1}". Form y|y € {-1,1}V as
follows: For every variable in U, choose the assignment prescribed by y.

Definition 12. Let U C W and B € FS,. Form ny(B) € F§ as follows:
(ru(B)@) = [B). (16)

yylv==
Using the projection equality (16) and the fact that G is Abelian, we see
that my (871) = (7 (8)) .

Lemma 1. Let U C W and let 8 € .7-"1,61;, be arbitrary. Let f € .7-"5; be some
arbitrary function and define a function g € FS, such that g(y) = f(y|v)-

Then x5(9) = Xny(8)(f)-

Proof. By the definition of ¥,
xs@) =TI %se(a).

yE{—l,l}W

Let us study the partition of {—1,1}" into sets of the form {y : y|y = z}.
On those sets, g(y) = f(x), which means that we can write

xs(9)=]I I ¢s0)(f(2).
ze{-1,1}V yyly=x
Since 1, is linear in a,
I %) (f (@) = Yy)@ (@),
yylu=z
and thus

xs(9) = I Yy (F @) = Xeps) ()

ze{-1,1}V

where 77(3) is defined as in Definition 12. .

Note that the above lemma proves a relation between x g, which is a character

of L*(F), and xr, (), which is a character of L*(F).

4.2 A Folding Lemma

Definition 13. We say that a function A:]-"g — G is folded over G if
A(l'f) = I'A(f) (17)

forall € G and all f € F§.

Lemma 2. Suppose that the function A: .7:[(]; — G is folded over G. Let

~

Aqn,y be the Fourier coefficients of the function 1,0 A for some v € G. Then
Aqny =0 unless

H alz) =7.

ze{-1,1}V

10

Proof. Since the expectation in the definition of the inner product is taken
over all functions in .7-"5; we can write Ay, as

~ JE—

Aa,’y = <¢7 © AaXa) = Efefg [va(A(Ff))Xa(Ff)]

for any I' € G. By the folding equality (17) and the homomorphism prop-
erty (3),
Py (A(Lf)) = Yy (TA(S)) = Py (T4 (A(f)),
and by the homomorphism property (11),
Xa(Ff) = Xa(F)Xa(f)'
Thus,
<¢7 oA, xa(f)) = ¢7(F)Xa(r)<¢7 o A, xa(f))

for any I' € G, which means that 1, (I")xo(I") = 1 for all I" € G if fiaﬁ # 0.
Since xo(I") has unit norm, x4 (I') = (x(I'))~!, and thus

flp’Y(F) = Xa(F) = H "pa(z) (F)

ze{-1,1}V

for all I € G if A, # 0. Since 1, is linear in a,
H d)a(w) (F) = (F)

ze{-1,1}V

where a = [[yc(_113v a(z). Thus 9, (') = ¢a(I') for all I € G if Ay #0.
This can be true only if

Yy=a= H a(z),
ze{-1,1}V
which completes the proof. "

Corollary 1. Suppose that the function B:]—"V(f, — G, where U C W, s
folded over G. Let Bﬂﬂ be the Fourier coefficients of the function 1, o B
for some v € G\ {1g}. Then, for all B such that Bg # 0 there exists an
z € {—1,1}V such that (ny(B))(x) # 1g.

11

Proof. Since Bﬂﬂ # 0, Lemma 2 implies that []yc_q,13w B(y) = . We now
express this product in G as

11 Il Bw=v
ze{-1,1}V ye{-1,1}Wy|ly=x
and use the definition of the function 7 (8) to obtain
I[I (ww@®)()="r
ze{-1,1}V

Since y # 1g, this implies that there exists at least one z € {—1,1}Y such

that (7y(8))(z) # 1c. .

4.3 A Conditioning Lemma

If f is a function in FY and h is some Boolean function on {—1,1}V, we
define the function f A h as

_J f(z) if h(z) = True,
(f Ah)(z) = { l¢ otherwise. (18)

Definition 14. The function A: F§ — G is conditioned upon h if A(f) =

A(f N R).

Lemma 3. Suppose that the function A: fg — G is conditioned upon h. Let

Any beA the Fourier coefficients of the function o0 A for somey € G\ {1g}.

Then Ay, = 0 for any « such that there exists an x with the property that
afz) # 1g and h(z) = False.

Proof. Suppose that there exists an zy such that a(zg) # 1g and h(zg) =
False. Write

Aa,’y = <"/J'y 0 A, Xa) = a 2\U| Z Z "/”y (fa))Xa fa) (19)
‘ | fE}—G aceG
flao)21

where f, is defined from f as

.mmz{“ i @ = o, (20)

f(z) otherwise.

Since A is conditioned upon h and h(z() = False, we can rewrite the expres-
sion (19) for AOW as

Aa,fy |G|2|U| Z "p’y)) Z Xa(fa)'

fe_’]-'G acG
f($0)=1

12

By the definition of f,,

Z Xa(fi) = Z H /‘pa(w)(fz(x))

a€G a€G ge{-1,1}U
= H ’@ba(w)(f(x)) Z "/’a(wo)(a)'
ze{-1,1}V acG
TF#To

By the definition of inner product in L?(G),
Z "»ba(:vo)(a') = |G|<¢a(m0)>¢lg)'

acG

Since a(zg) # 1g and the functions {1, }ace are orthogonal in L%(G),
<¢a(x0),1/11) =0.

We conclude that fla = 0 for all o such that there exists an xy such that
afzg) # 1 and h(zg) = False. .

5 The Proof of the Lower Bound

The construction we use is essentially a reduction from p-gap E3-Sat(5).
We adapt the PCP construction of Samorodnitsky and Trevisan [8] to give
a PCP with an acceptance predicate that is a function of roughly k? + 2k
variables in G. Then we prove that if the soundness of our PCP is high, we
can decide p-gap E3-Sat(5). On a slightly more detailed—but still high—
level, the construction consists of the following steps:

1. Establish that there exists a two-prover one-round interactive proof
system for p-gap E3-Sat(5) with the following properties:

(a) The queries to the provers and the answers from the provers have
constant length.

U

11, where

(b) The protocol has perfect completeness and soundness ¢
u is essentially the size of the queries to the provers.

2. Construct a PCP as follows:

(a) The proof contains encodes answers to all possible queries in the
above proof system for u-gap E3-Sat(5).

(b) The verifier, parameterized by the arbitrary constant §; > 0,
accepts if a cleverly chosen constraint over G is satisfied.

13

The verifier uses certain conventions when accessing the proof. These
conventions imply that certain bad proofs are accepted only with a
small probability, and that Step 4 below is possible.

3. Assume that the verifier accepts an incorrect proof with probability
1/|G|+ 62, where d2 > 0 is some arbitrary constant, and prove that this
implies that the tables in the proof are correlated. This correlation can
be quantified by bounding a certain expression, involving the Fourier
coefficients for some of the tables in the proof, by a function of da.

4. Use the correlation between the tables to design a randomized strat-
egy for the provers in the interactive proof system for p-gap E3-Sat(5).
Prove that if the provers follow this strategy, the verifier in the interac-
tive proof system for p-gap E3-Sat(5) accepts with probability greater
than some function of d; and dy. Conclude that the soundness of the
interactive proof system for p-gap E3-Sat(5) is at least c;, 5,, which
does not depend on u.

5. Choose the constant uw in Step 1 such that ¢j; < ¢s,,4, and conclude
that we have arrived at a contradiction.

We now do the above steps in detail.

5.1 An Interactive Proof System for u-gap E3-Sat(5)

There is a well-known two-prover one-round interactive proof system that can
be applied to u-gap E3-Sat(5). It consists of two provers, P; and P, and
one verifier. Given an instance, i.e., an K3-Sat formula ¢, the verifier picks
a clause C and variable z in C uniformly at random from the instance and
sends z to P; and C to P». It then receives an assignment to = from P; and
an assignment to the variables in C from P,, and accepts if these assignments
are consistent and satisfy C. If the provers are honest, the verifier always
accepts with probability 1 when ¢ is satisfiable.

Lemma 4. There exists provers that make the verifier accept a satisfiable
instance of p-gap E3-Sat(5) with probability 1.

Proof. Let 7 be an assignment satisfying the instance and let both provers
answer according to this assignment. .

Lemma 5. The provers can fool the verifier to accept an unsatisfiable in-
stance of p-gap E3-Sat(5) with probability at most (2 + p)/3.

14

Proof. The strategy of P; defines an assignment m to all variables in the
instance. Since the provers coordinate their strategies, we can assume that
this assignment is known to P». Given this assignment, it is optimal for P
to proceed as follows: If it obtains a clause satisfied by m, it answers ac-
cording to mw. If it obtains a clause not satisfied by 7 it must answer with
an assignment satisfying the clause, since verifier accepts if the assignment
returned by P» satisfies the clause and is consistent with the assignment
returned by P;. Given a clause that is not satisfied by 7, the probability
that the verifier accepts is maximized if P, answers according to « for two
of the three variables and inverts the answer of one variable. The variable
P; inverts is chosen uniformly at random. Then the verifier accepts with
probability 2/3.

To sum up the above discussion, the provers can always fool the verifier
when the verifier happens to choose a clause satisfied by 7, and the fool the
verifier with probability 2/3 when the verifier happens to choose a clause not
satisfied by . If we let p denote the fraction of clauses satisfied by =, the
verifier accepts with probability p + (1 — p)% =(2+p)/3.

Finally, we note that we always have p < u, by the definition of u-gap
E3-Sat(5). This implies that the provers can make the verifier accept an
unsatisfiable instance with probability at most (2 + u)/3. .

To summarize the above analysis in the language of PCPs, the above proof
system has completeness 1 and soundness (2 + p)/3.

The soundness can be lowered to ((2 + p)/3)" by repeating the proto-
col u times independently, but it is also possible to construct a one-round
proof system with lower soundness as follows: The verifier picks u clauses
(C1,...,Cy) uniformly at random from the instance. For each Cj, it also
picks a variable z; from C; uniformly at random. The verifier then sends
(z1,...,1y) to Py and the clauses (Cy,...,Cy) to P,. It receives an as-
signment to (z1,...,%,) from P; and an assignment to the variables in
(C1,...,Cy) from Py, and accepts if these assignments are consistent and
satisfy C1 A --- A Cy. As above, the completeness of this proof system is 1,
and it can be shown [7] that the soundness is at most c};, where ¢, < 1 is
some constant depending on g but not on u or the size of the instance.

5.2 The PCP

The proof is a Standard Written G-Proof with parameter w. It is supposed
to represent a string of length n. When ¢ is a satisfiable formula this string
should be a satisfying assignment. In Sec. 4.2 we saw that if a function from

15

.7-"[(]; to G is folded over G, many of its Fourier coefficients vanish. It turns
out that we need to have the above tables folded over G in order for the
proof of the lower bound to work. This is not a problem, since the folding
property can easily be enforced by the verifier as follows: When the verifier
is supposed to query some position Ay (f) from the proof, it instead queries
Ay(I'=1f), where I' € G is chosen according to a fixed convention. Then
the verifier uses the value I'Ay(I'"1f) as Ay(f). An analogous procedure
is used for the table representing Aw

The verifier is parameterized by the integers £ and m, a set E' C [¢] x [m],
and a constant §; > 0; and it should accept with high probability if the proof
is a correct Standard Written G-Proof for a given formula ¢.

1. Select uniformly at random w variables x1,...,z,. Let U be the set of
those variables.

2. For j = 1,...,m, select uniformly at random u clauses Cj1,...,Cj,
such that clause C; contains variable z;. Let @; be the Boolean for-
mula Cj1 A+ ACjy. Let W be the set of variables in the clauses

Cits--,Cjy-
3. For i =1,...,¢, select uniformly at random f; € fg .
4. For j =1,...,m, select uniformly at random g; € .7:1,?,],.

5. For all (i,j) € E, choose e;; € .7-"1%, such that, independently for all
yeWw,

(a) With probability 1-— (51, €ij (y) = 1g.
(b) With probability 61, e;;(y) is selected uniformly at random from G.

6. Define hij such that hi;(y) = (fi(ylv)g;(v)ei; (v)) "

7. Iffor all (4,5) € E, Au(fi)Aw, (g5 A®;)Aw; (hij A®;) = 1, then accept,
else reject.

Lemma 6. The completeness of the above test is at least (1 — &) Fl.

Proof. Given a correct proof, the verifier can only reject if one of the error
functions e;; are not 1¢ for the particular string encoded in the proof. Since
the error functions are chosen pointwise uniformly at random, the probability
that they all evaluate to 1¢ for the string encoded in the proof is (1 — d1)I"!.
Thus, the verifier accepts a correct proof with probability at least (1 — 51)|E 1

16

5.3 Expressing the Acceptance Probability
To shorten the notation, we define the shorthands A(f) = Ay(f) and
Bj(g) = Aw, (9 A ;).
Lemma 7. The test in the PCP accepts with probability
1

W%E[TSL (21)
where
o= I (X #(AUB;0)B;0)): (22

(i,j)eS yeG\{1}
We use the convention that Ty = 1.
Proof. The PCP tests if |E| linear equations of the form
A(fi)Bj(g;)Bj(hij) =1
over the group G are satisfied. We index the equations by (7, 7), and note

that the fact (5) that 91,(g9) = 1 and the summation relation (6) together
imply that the expression

1
Pi= (14 5 0 (A)Bi6)Bihy)
|G| .
7EG\{1}
is one when the equation corresponding to (7, 7) is satisfied and zero other-
wise. Since the test accepts if all equations are satisfied,

1 if the test in the PCP accepts,

e 0 otherwise.
iy

Since the equations are chosen at random, P is an indicator random variable
and we can write

Pr[The PCP accepts] = E[P].

If we expand the product in the definition of P, we arrive at the expression
in (21) and (22).]

17

5.4 Identifying a Large Term

Lemma 8. If the probability that the above test accepts is |G| 1El + &, for
some &g > 0, then |E[Ts]| > 62 for some S # 0 such that S C E.

Proof. Suppose that | E[Ts]| < d2 for all S # @ such that S C E. Then

146 G|IFl -1 _
e 3 IR e R
SCB |G

Prlaccept] <
|Gl

which is a contradiction. n

5.5 Bounding the Large Term

Lemma 9. Suppose that |E[Ts]| > 62 > 0 for some set S # 0 such that
S C E. Number the vertices in this set S in such a way that there is at least
one edge of the form (1,7) and all edges of that form are (1,1),...,(1,d).
Let

Q= Z |,21a‘2‘5}1”31|2 ... |]_E;d”3d|2(1 _ 51)2(|ﬂ1|+---+\ﬁd\), (23)
,B1,B4
a=my(B1)mu(Ba)
where

= {variables in D}, (24)

(f) = Au(f), (25)

() = Bw; (g A ®5), (26)

< “7d © A, Xa), (27)

BJ,/J’; = W’vj o Bj, Xxg;)- (28)

Then there exists y1,...,7vq € G\ {1} such that
Evg,,..2,Q) > 85/(1G| — 1)), (29)

Proof. We split the product in the definition of Ts into the two factors

= I (X #0865 h)

(17])6571‘_/&1 7€G\{1G}

and

=ﬁ(> (AU B;9)Bi ()).

veG\{lg}

18

Since C is independent of f; and ey,1,..., ek, we use conditional expecta-
tion to rewrite E[Ts]. If we let E;[-] denote the expected value taken over
the random variables fi and ey 1,..., ek, we obtain

E[Ts] = E[E;[Ts]] = E[C1 Eq[Ch]].
This implies that
[ETs]> < B[|C1P[Ed[Clf?]-

By expanding the product in the definition of C, we obtain
|S|—d

1neG\{lg} vs/-a€G\{lg} =1

2
|C1]? =

7

where we have suppressed the argument to 4,;. Since 1, () is a complex
root of unity, and a product of roots of unity is also a root of unity,

|S|—d 2
(TR DR DI | RO ([e
neG\{lag} vs-a€G\{lg} J=1
Thus,
[B[T5]* < (|G - 1) B[[E1[Ca]?].
Now we expand the product in the definition of Co,
d
Co= > - 2 I¥AU)B;(9)Bj(hy)).

1neG\{lg} 1a€G\{lg}i=1

If we write
d
Cs = [[v+, (A(f1)Bj(g5) Bj(h1,)),
j=1

we can write

2
| E1[Cy]]” =

Z Z E1[Cs]

meG\{lg} 1€G\{lc}

19

< > Y R

1neG\{lg} 1eG\{lg}
and summarize our calculations so far as
BT < (6 -~ S Y E[EG]]
1eG\{lg} 14€G\{1c}

Thus, there exists some 71,...,74 € G \ {lg} such that
|B[T5]* < (|G| - 1)* B[[C4]]

From now on, we fix these yi,...,74 € G\ {lg} and try to bound the
corresponding
2

|E1[C5]|? (30)

= |E; [H Py (A(f1)Bj(j)Bj(hl,j))]

by a sum of Fourier coefficients. By the homomorphism property (3) and
the fact (4) that 1), is linear in a,

C3 = 1hyy.nq (A(f1)) H ¢7] 9]))¢7j(Bj(hi,5))-

Since v, (B;(g;)) are 1ndependent of fi and e11,..., €1k, we can move them
outside F[-]. Since |1, (B;(g;))| = 1, this simplifies the expectation (30) to
2
2
BAICalf* = [B1 [y (A1) H Wy (B (1) G
The remaining factors are expressed using the Fourier transform:
Yyna(A(F)) = D2 Aaxalfy), (32)
ae]’g
’lp’Y] ((hl,])) Z Bj,,@j XBj (hl,j)a (33)
,BjEfVCf,j
where
Aa = <¢’71---’yd © A’XO1>’ J ,3; <¢’YJ ﬂj>'

Note that the first of the above inner products is in L? (}"g) while the latter
is in LZ(fVCI;,j). When we insert the Fourier expansions (32) and (33) into

20

the expectation (31) and expand the products, we obtain one term for each
possible combination of a and S, ..., By:
2

Z Z Z El[AaBI,ﬂl"'Bd,ﬂdC4] , (34)

aEFG PeFy, BTy,

|E:1[Cs]) =

where

Cs = xa(f1)xp1 (h1,1) -+ x4 (h1,a)-

Note that the Fourier coefficients can be moved out from E;[---] since they
are independent of f; and ey 1,...,e1 . This simplifies the expectation (34)
even further to

A R 2
Z Z Z AaBig, -+ Bag, E1[Cy]

aefg ﬂlEfV?,I ﬂdej"'v?/d

<3 S o Y JAaPBig, P |Baysa P IE1[C4]IE35)

aEFG PeFE, BaeF,

|E:[Cs])” =

Fortunately many of the terms in the above sum vanish. Since h;; =
(figjei;) ", it follows from the homomorphism property (11), the fact (12)
that x4 is linear in «, and Lemma 1 that
d
-1 -1
Ct = Xamo (8r)-mu (8~ (F1) 11 X8, (95)xs; (e15)-
i=1
Since all factors in the above product are independent, we can take the
expectation of each factor separately. From the summation identity (14),

1 fa=ny(B1) - 7u(Bq),
0 otherwise.

E1[Xa(ry (81)-m0(8a))~1 (f1)] = {

The factors xp, (gj_l) are independent of f; and ey 1,...,e;, which implies
that

Eilxs;(g;)] = xs,(9; 1)-

By the definition of the functions e; ; we obtain
Ei[xg; (er)] = (1 - 61) %L,

To summarize,

1 — §)20B1++BaD) if o =
]
otherwise.

21

With this in mind, we can rewrite the expectation (35) as

[E1[Cs]* < 37 |Aal? B, [P+ [Bag, [P(1 — 81)Pr++1BaD,

awBla'"’ﬂd
a=ny(f1)-mu(Ba)

Thus, there exists some 7i,...,74 € G\ {1¢} such that

0% < (1G] -) EB[IE[Cs]] < (1G] - 1)1 Eug,,.0,[Q),
Ot,,Bl,...,,Bd
a=ny(B1)my(Ba)

where () is defined as in the formulation of the lemma. "

5.6 Designing Efficient Provers

Lemma 10. Suppose that E[Ts] > 6o > 0 for some set S # () such that S C
E. Then there exists provers that make the two-prover one-round protocol for
p-gap E3-Sat(5) from Sec. 5.1 accept with probability at least 6163 /(|G|—1)15".

Proof. To construct their strategy, the provers first compute the v1,...,74
maximizing By, .. s,[Q], where Q is defined as in (23). They then fix these
Y1,--.,74 for the remaining computation. After these initial preparations,
the provers proceed as follows:

Prover P; receives a set U of w variables. For j = 2,...,d, P; selects
uniformly at random wu clauses Cj1,...,Cj, such that clause Cj; contains
variable x;. Let &; be the Boolean formula Cj1 A --- A Cj,. Let W; be
the set of variables in the clauses Cj1,...,Cj,. Then P; computes the
Fourier coefficients A, = (Yny1.yy © A, Xa) and ﬁj’ﬂj = (94, o Bj,xp;) for
Jj=2,...,d, selects (e, fBo, ..., By) randomly such that Pr[(c, S2,...,84)] =
|Aa|?|Bag,|? - - - | Bag,|?, forms the function o = a(mp(Be) - - - mr(Bg)) ~* and
returns an arbitrary z such that o/(z) # 1g. If no such z exists, P; returns
an arbitrary = € {-1,1}Y.

Prover P» receives @, consisting of u clauses, computes Bml = (1, ©
Bj, xp,), selects a random f; with the distribution Pr[f;] = |B1,ﬂ1|2, and
returns a random y such that £1(y) # 1g. By Lemma 2 such a y always
exists, and by Lemma 3 such assignments satisfy @;.

Let us now analyze the acceptance probability of this strategy. In the
analysis we bound Pr[accept | U, @, ...,P,,] from below. This is enough to
prove the lemma, since

Pr[accept] = E[Pr[accept | U, D1, ..., D4]].

Thus, we assume from now on that U and @1,...,®4 are fixed and try to
estimate the acceptance probability under these assumptions.

22

Since Lemma 9 proves a lower bound on E[Q], we want to express the
acceptance probability in terms of (). Note that Lemma 2 implies that
o # 1g, since the provers never choose an « such that A, = 0, and in the
same way Corollary 1 ensures that the selected ; has the property that
7 (Bj) # lg. This means, that if the provers obtain (o, fi,...,Bq) such
that a = 7y (B1) - - - my(Ba), there exists z such that (wy(51))(z) # 1g, and
for every such z the function o = a(ny(B2)---my(B4))~! sends z to an
element in G \ {1g}. Put another way:

d(z) #1la <= (ru(B1))(z) # La-

This implies that there exists a y such that z = y|y and £1(y) # 1g. Given
the z chosen by Pj, the probability that P, chooses a y such that y|y = =
and B1(y) # 1l¢ is at least 1/|B1]. All this put together implies that the
acceptance probability can be bounded from below by

|A ‘ |Bl7,31 |Bdaﬁd|2

Prlaccept | U, ®1,...,Pm] > >

5/315 7/3d |ﬁl|
a=ny(B1)-7mu(Ba)

Since e > 14 x > x for any real positive z,
661‘ﬂ| S 51|18|
01 01

or equivalently,

=18l,

1 > e Bl > g, (1 — 6p)18,

|8l

where the second inequality follows from e™® > 1 — z, which is true for any
real positive x, we obtain

Prlaccept | U, P, ..., Pn] > 512|Aa|2|5’1,,61|2”'\Bd,ﬂd\Z(l — §y)/l.

aaﬂl:---a/gd
a=mny (B1)-mu(Ba)

By Lemma 9, this implies that
8103
(1G] - 1)
since 0 < §; < 1. "

Prlaccept | U, D1, ...,Pm] >

23

5.7 Putting the Pieces Together

Lemma 11. Suppose that the test in Sec. 5.2 accepts with probability at least
1/|G|'Fl 4 6,. Then there exist provers that make the two-prover one-round
protocol for p-gap E3-Sat(5) from Sec. 5.1 accept with probability at least
6183/(|G| =)Pl

Proof. By Lemma 8 the assumptions in the lemma implies that | E[Ts]| > do
for some S # () such that S C F. By Lemmas 9 and 10, this implies that
there exists provers that make the two-prover one-round protocol for u-gap
E3-Sat(5) from Sec. 5.1 accept with probability at least §;65/(|G| — 1)51.
Since |S| < |E|, the lemma follows. .

Lemma 12. For every constant d9 > 0, it is possible to select a constant u
such that the soundness of the PCP in Sec. 5.2 is at most 1/|G|/E 4 6,.

Proof. Suppose that the PCP in Sec. 5.2 has soundness 1/|G/| ¥/ 44, for some
constant do > 0. By Lemma 11, this implies that the two-prover one-round
interactive proof system for u-gap E3-Sat(5) has soundness 6,62 /(|G|—1) £/,
But we know [7] that the soundness of this proof system is at most ¢, where
¢y < 1is a constant and u is the cardinality of U. If we select

. log 071652 + loggG\ — 1)|E|’

log c;i
note that this latter quantity is a constant since d1, d2, |E|, |G|, and ¢,, are
constants, we obtain

8162
12 Cpis
(G| -1)F

which is a contradiction. n

6 The Reduction to Non-Boolean CSPs

We now show how the above PCP can be connected with CSPs to prove
that the corresponding CSPs are non-approximable beyond the random as-
signment threshold. As for the completeness ¢ and the soundness s of the
PCP from the previous section, we have shown that ¢ > (1 — &)/l and
s < |G|~El + 6, for arbitrarily small constants &;,dy > 0.

24

Theorem 2. Let G be any finite Abelian group, £ and m be arbitrary positive
integers, and E C [€] x [m]. Then the predicate

N (wizjzi; = aig),
i,5:(1,5)€EE
where a; ; € G and x;, x;, and z; ; assume values in G, is non-approzimable
beyond the random assignment threshold.

Before proving the theorem, we restate it in slightly different words.

Definition 15. Max k-CSP-G is the following mazximization problem: Given
a number of functions from G*, where G is a finite Abelian group, to Zs,
find the assignment mazimizing the number of functions evaluating to 1. The
total number of variables in the instance is denoted by n.

Theorem 2, rephrased. Let G be any finite Abelian group, ¢ and m be
arbitrary positive integers, E C [£] X [m], and k = |E| + £+ m. Then it is
NP-hard to approximate Max k-CSP-G within |G|‘E | — € for any constant
e > 0.

Proof. Select the constants d; > 0 and d9 > 0 such that

(167!
|G|~ 1P| + &,

Then select the constant u such that 6,63/(|G| — 1)I® > ¢, Now consider
applying the PCP from Sec. 5.2 to an instance of the NP-hard problem
p-gap E3-Sat(5).

Construct an instance of Max k-CSP-G as follows: Introduce variables
zy,; and yg, 4 for every A(f) and Bj(g), respectively. For all possible com-
binations of a set U, clauses @1, ..., ®,,, and functions fi,..., f¢, g1,-- -, Gm,
hi1,...,hem, introduce a constraint that is one if zy,f,y0, 9, = Yo;,n;; for
all (1,7) € E. Set the weight of this constraint to the probability of the
event that the set U, the clauses &1,...,®P,,, and the functions fi,..., fe,
9is---s9m, and hy1,...,hyy, are chosen by the verifier in the PCP. Each
constraint is a function of at most |E| + £ + m variables. The total number

> |GIF e

of constraints is at most

ni5mu | G | £2¥ +m23% 4-fm23v

bl

which is polynomial in n if £, m, |G|, and u are constants. The weight of
the satisfied equations for a given assignment to the variables is equal to the
probability that the PCP from Sec. 5.2 accepts the proof corresponding to

25

this assignment. Thus, any algorithm approximating the optimum of the
above instance within

— 5,
(A -6y > |G| P - e
|G|~ 1Bl + &,
decides the NP-hard problem p-gap E3-Sat(5). .

Corollary 2. For any integer k > 3 and any constant € > 0, it is NP-hard
to approrimate Max k-CSP-G within |G[F—2VEHI+L _ ¢

Proof. As a warmup, assume that k& = s% 4 2s for some positive integer s.
Then we can choose £ =m = s and E = [{] x [m] in Theorem 2 and obtain
that it is NP-hard to approximate Max k-CSP-G within |G|** — ¢, for any
constant € > 0. To express this as a function of k, note that

k=s?4+2s <= s=vVk+1-1,
which implies that

S=k+1+1-2Wk+1=k—2Vk+1+2.

Thus, it is NP-hard to approximate Max k-CSP-G within |G[F—2VA+1+2 _¢
for any constant € > 0, when k& = s + 2s for some positive integer s. To
investigate what happens when s2+2s < k < (s +1)2+2(s+1) = s +4s5+3
we proceed in two stages.

In the first stage, we assume that k = s? +2s + 1 where s is an arbitrary
positive integer. In that case, we can set £ = s, m = s + 1, and F to any
subset of [£] x [m] containing s? edges. Then Theorem 2 implies that it is
NP-hard to approximate Max k-CSP-G within |G|** — ¢, for any constant
€ > 0, in this special case. Then we rewrite this as a function of k by using
the relation

k=s>4+2s+1 < s=vVk—1,
which implies that
s2=k—2VE + 1.

Thus, it is NP-hard to approximate Max k-CSP-G within \G|k’2‘/E+1 — €,
for any constant € > 0, when k = s + 2s + 1 for some positive integer s.

In the second stage, we assume that k = s? 4+ 2s 4+ 2 + ¢ where s is an
arbitrary positive integer and ¢ is an integer satisfying 0 < ¢ < 2s. In that
case, we can set £ = m = s+1 and let E be any subset of [¢] X [m] containing
s? +t edges. Then Theorem 2 implies that it is NP-hard to approximate

26

Max k-CSP-G within |G|***? — ¢, for any constant € > 0, in this special case.
To express this as a function of k, note that

E=s?+2s+24+t <= s=vVEk—t+1-1,
which implies that

SPHt=k—-2Vk—t+1+2>k—-2Vk+1+2.

Thus, it is NP-hard to approximate Max k-CSP-G within |G[F—2VA+1+2 _¢
for any constant € > 0, when 52 4+ 2s 42 < k < 52 4 45 + 2 for some positive
integer s. Therefore, it is NP-hard to approximate Max k-CSP-G within
|G’|k_2‘/m+1 — ¢, for any constant € > 0 and any positive integer k > 3.

From the details of the proof of Corollary 2, we see that we can rephrase the
result in a slightly stronger form.

Corollary 3. For any integer s > 2 and any constant € > 0, it is NP-hard
to approzimate Maz s*-CSP-G within |G|(3_1)2 — €. For any integer k > 3
that is not a square and any constant € > 0, it i.s NP-hard to approrimate
Maz k-CSP-G within |G|F=2VF+H1+2 _ ¢

7 Conclusions

We have shown that it is possible to combine the harmonic analysis intro-
duced by Hastad [6] with the recycling techniques used by Samorodnitsky
and Trevisan [8] to obtain a lower bound on the approximability of Max k-
CSP-G. The proof of results of this type typically study some predicate on a
constant number of variables such that a random assignment to the variables
satisfies the predicate with probability 1/w. Starting from the 2P1R inter-
active proof system for pu-gap E3-Sat(5) reviewed in Sec. 5.1, instances such
that it is NP-hard to approximate the number of satisfied constraints within
w — €, for any constant € > 0, are constructed. Our proof is no exception to
this rule.

The current state of the art regarding the (non-)approximability of predi-
cates is that there are a number of predicates—such as linear equations mod p
with three unknowns in every equation, E3-satisfiability, and the predicates
of this paper—that are non-approximable beyond the random assignment
threshold [6, 8]. There also exists some predicates—such as linear equations
mod p with two unknowns in every equation and E2-satisfiability—where

27

there are polynomial time algorithms beating the bound obtained from a
random assignment [1, 4, 5].

A very interesting direction for future research would be to try to de-
termine criteria identifying predicates that are non-approximable beyond
the random assignment threshold. Some such attempts have been made for
special cases. For predicates of three Boolean variables, it is known that
the predicates that are non-approximable beyond the random assignment
threshold are precisely those that are implied by parity [6, 14]. However, the
general question remains completely open.

Acknowledgments

The author thanks Johan Héastad for many clarifying discussions on the
subject of this paper.

28

References

1.

10.

11.

12.

13.

14.

Gunnar Andersson, Lars Engebretsen, and Johan Hastad. A new way of using semidef-
inite programming with applications to linear equations mod p. Journal of Algorithms,
39(2):162-204, May 2001.

. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mari6 Szegedy.

Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501-555, May 1998.

. Uriel Feige. A threshold of Inn for approximating set cover. Journal of the ACM,

45(4):634-652, July 1998.

Uriel Feige and Michel X. Goemans. Approximating the value of two prover proof
systems, with applications to MAX 2SAT and MAX DICUT. In Proceedings of 3rd
Israel Symposium on Theory of Computing and Systems, pages 182-189. 1995.

. Michel X. Goemans and David P. Williamson. Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42(6):1115-1145, November 1995.

. Johan Hastad. Some optimal inapproximability results. In Proceedings of the Twenty-

Ninth Annual ACM Symposium on Theory of Computing, pages 1-10. El Paso, Texas,
4-6 May 1997. Accepted for publication in Journal of the ACM.

Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763-803,
June 1998.

. Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with opti-

mal amortized query complexity. In Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pages 191-199. Portland, Oregon, 21-23 May
2000.

. Maria Serna, Luca Trevisan, and Fatos Xhafa. The (parallel) approximability of

non-Boolean satisfiability problems and restricted integer programming. In Michel
Morvan, Christoph Meinel, and Daniel Krob, editors, Proceedings of the 15th Annual
Symposium on Theoretical Aspects of Computer Science, volume 1373 of Lecture Notes
in Computer Science, pages 488-498. Springer-Verlag, Paris, 25-27 February 1998.

Madhu Sudan and Luca Trevisan. Probabilistically checkable proofs with low amor-
tized query complexity. In 39th Annual Symposium on Foundations of Computer
Science, pages 18-27. IEEE, Palo Alto, California, 8-11 November 1998.

Audrey Terras. Fourier Analysis on Finite Groups and Applications, volume 43 of
London Mathematical Society student texts. Cambridge University Press, Cambridge,
1999.

Luca Trevisan. Parallel approximation algorithms by positive linear programming.
Algorithmica, 21(1):72-88, May 1998.

Luca Trevisan. Recycling queries in PCPs and in linearity tests. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, pages 299-308. Dallas,
Texas, 23-26 May 1998.

Uri Zwick. Approximation algorithms for constraint satisfaction programs involving
at most three variables per constraint. In Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 201-210. San Francisco, California,
25—27 January 1998.

29

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

