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A Note on Approximating MAX-BISECTION
on Regular Graphs

Uriel Feige* Marek Karpinskif Michael Langberg?

Abstract

We design a 0.795 approximation algorithm for the Max-Bisection problem re-
stricted to regular graphs. In the case of three regular graphs our results imply an
approximation ratio of 0.834.

1 Introduction

Given an undirected graph G = (V, E), the Maximum Cut of G is a partition of the vertex
set V into two arbitrarily sized sets (X, Y) such that the number of edges with one end point
in X and the other in Y is maximal. The Maximum Bisection of G = (V, F') is a partition
of V into two equally sized sets (X,Y’) that maximizes the number of edges between X and
Y. In the following work we analyze the ratio between the Maximum Bisection of any given
regular graph ¢, and its Maximal Cut. For general graphs it is not hard to see that this
ratio can be arbitrarily close to 1/2. For regular graphs we show that this ratio is at least
approximately 0.9027, and that there are infinitely many regular graphs which obtain a ratio
arbitrarily close to 0.9027.

We then use this property to present a 0.795 approximation algorithm for the Max-
Bisection problem restricted to regular graphs. In the case of three regular graphs our
results 1imply an approximation ratio of 0.834. The best known approximation ratio for
Max-Cut on regular graphs is 0.87856 [GW95]. Observe that 0.87856 - 0.9027 ~ 0.793, and
our approximation ratio for Max-Bisection on regular graphs slightly improves over this. The
best known approximation ratio for the Max-Bisection problem on general graphs is 0.701
achieved by Halperin and Zwick [HZ00]. Their work is an extension of the works of [FJ97]
and [Ye99).

2 Max Cut vs. Max-Bisection

Let G = (V. E) be a A regular graph, where V = {v;...v,}. For every X C V and
Y =V \ X, let w(X) be the number of edges cut by the partition (X,Y). We call w(X) the
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value of the partition (X,Y). Let Cut(G) be the value of the Max-Cut of G, and Bis((G)
be the value of the Max-Bisection of G. Given a partition (X,Y), the oul-degree of any
v € V is the number of neighbors that v has on the opposite side of the partition, and the
in-degree is the number of neighbors that v has on its own side of the partition. We say
that a partition (X,Y') is locally optimal if there is no vertex v with out-degree smaller than
in-degree. Clearly if (X,Y') is not locally optimal one may obtain a partition of value strictly
greater than w(X) by moving a vertex with out-degree smaller than its in-degree from one
side of the partition to the other.

Theorem 2.1 Given a regular graph G and any partition (X,Y) of G with value w(X), one
can efficiently find a bisection (X,Y) of G of value 0w (X), where 6 ~ 0.9027. Specifically
we have that Bis(G) > 0Cut(G).

Proof : Let G = (V| E) be a A regular graph and (X,Y) be any cut in G of value w(X).
As a preliminary step we would like to turn the partition (X,Y’) into a locally optimal one.
This is done by iteratively moving vertices with out-degree strictly smaller than their in-
degree from one side of the partition to the other. Note that the new partition is of value
greater than or equal to the original partition. We keep our original notation and denote
this improved partition as (X,Y). Let cn be the size of X where ¢ > 1/2, and z|F| be the
value of the partition (X,Y), i.e. w(X) = z|E|.

;From the definition of ¢, we conclude that cnA/2 < w(X) < A(1—c¢)n as there are only
(1—c¢)n Vertices in Y, and the partition (X,Y) is locally optimal. Hence ¢ < z < 2—2¢ (and
¢ < 2/3). We would now like to move vertices from X to Y in order to obtain a bisection of
(7, i.e. a partition (X Y) for which | X| = V| = n/2.

Let X be a random subset of X of size n/2 and Y be V\X In the following we compute
the expected value of the bisection (X,Y). Afterwards, using a greedy derandomization
scheme, we show that a bisection of GG with this expected value can be efficiently obtained
from (X,Y).

We now analyze E[w(X)], i.e. the expected value of the partition (X,)A/) Let p = i
The expected number of edges that were cut by the partition (X,Y’) that are still cut in
()% YA/) is w(X)p = zp|E|. As each vertex in G is of degree A, we have that the number of
edges in the subgraph induced by X is (Acn — z|F|)/2 = ( ¢ —z)|E|/2. We conclude that
the expected number of these edges cut by the partition (X Y) is (2¢ — )| E|p(1 — p) (to be
precise this expected value is slightly greater due to the fact that we are choosing a subset
of X of size n/2, for example consider the fact that any bisection of the graph K, is of size
4 instead of half the edge set which is 3).

Thus, given any partition (X,Y) of value w(X) we may obtain a partition ()E',Y) such
that

w(X)] _ aplE|+ @e—a)[Ep(l—p) o+ 2e—2)(1-5) 2e-1 1
E[wm] -

z|F| B 2cx 2cx + 42

The expression above, as a function of z is decreasing, and is thus minimal when z = 2 — 2¢.

We conclude that
w(X) 1 —=x 1
E >
lwm] “@-or  @-ap
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Using basic computations that are presented in the appendix, it can be seen that the above
expression obtains a minimal value of 6 ~ 0.9027 when z* ~ 0.7932 (¢* = 1 — 2*/2 ~
0.6034 < z*).

It is left to show that given a partition (X,Y) of value w(X) a bisection (X,Y) with
value at least the expected can be obtained efficiently. Consider the random process analyzed
above, that fixes a bisection by setting X to be a random subset of X of size n/2. Note that
choosing a random subset X C X of size n/2 is equivalent to removing a random subset
of size | X| — n/2 from X and setting X to be the remaining vertices of X. Furthermore,
the latter is equivalent to the random process which iteratively removes one vertex in X
at a time, uniformly at random, until X is of size n/2. For ¢ € [0,|X]| — n/2] let (X;,Y))
be the partition obtained by this last random process at step ¢ (the size of X; is | X| — 1),
and set (X, )A/) to be the bisection (X|X|_n/2, Y|x|-ns2). Let E[w(X;)] be the expected value
of the partition (X;,Y;). Given the value w(X;), the value of E[w(X;41)] can be explicitly
computed. A random vertex in X; has expected out-degree of d = w(X;)/|X;| and expected
in-degree A — d thus

Plol(Xin) | w60] = 0% (1= 75 ) +
We conclude that
, , 2
Emwmﬂ=mmmxﬂﬂwum=Emum(LTEQ+A

In the following we prove that the greedy process which at each step removes the vertex
in X with lowest out-degree until the set X is of size exactly n/2, will obtain a bisection of
value at least E[w(X;)] for each 1 € [0,|X]| — n/2]. As X is set to be X; for i = |X| —n/2,
this completes our proof.

Let (A;, B;) be the partition obtained by the above greedy process at step i, and let w(A;)
be the value of the partition (A;, B;). Clearly w(Ag) = Flw(Xy)] = w(X). Furthermore,
using the fact that for each i there is a vertex in A; with out-degree at most w(A;)/|A;| we
have that

w( A1) > w(A;) (1 _ |j—|) +A.

We now conclude our proof using induction on ¢ :

2
| X

o) 2 0(4) (1= 2]+ 22 B0 (1 -

T ) + A = Efw(Xi)].

In the Section 4 we show that our result is tight, namely :

Proposition 2.2 There are infinitely many reqular graphs G for which the ratio between
Bis(G) and Cut(G) is arbitrarily close to 6.



3 Approximating Max-Bisection on regular graphs

Given a graph (7, we say that an algorithm A approximates the Max-Cut (Max-Bisection) of
G within an approximation ratio of r, if by running A on the graph G we obtain a partition
(bisection) (X, Y) of value w(X) which is at least r times the value Cut(G) (Bis(G)). Note
that r < 1.

In a recent breakthrough, Goemans and Williamson [GW95] present a 0.87856 approx-
imation algorithm based on semidefinite programming for the general Max-Cut problem.
Extending this work, [FJ97] obtains a 0.6511 approximation algorithm for the general Max-
Bisection problem. A further line of extensions by [Ye99, HZ00] improve this ratio to 0.701.

On the negative side, it has been shown by [Has97] that approximating the Max-Cut and
Max-Bisection problems on general graphs beyond the ratio of % is N P-hard. Furthermore,
[BK98] show that approximating Max-Cut on 3-regular graphs beyond some explicit constant
factor r strictly less than one is also N P-hard.

In the following we extend the result of [BK98] to the Max-Bisection problem restricted
to regular graphs, and use the work of [GW95] with the results of the previous section to
achieve an approximation ratio of 0.795 on this restriction of Max-Bisection.

Proposition 3.1 There exists some explicit constant r < 1 for which it is NP-hard to
approximate the Mazx-Bisection of 3-reqular graphs.

Proof : Let G = (V, E) be a 3-regular graph on n vertices. Consider the graph (¥ consisting
of two disjoint copies of GG. Clearly 2Cut(G) = Bis(é). Thus approximating the Max-
Bisection of (¢ within an approximation ratio of r yields an approximation of the Max-Cut
of GG within the same ratio. Combining this with the result of [BK98] stated above, our proof

is complete. O

Theorem 3.2 The Max-Bisection problem on reqular graphs can be approvimated within a
ratio of 0.795.

Proof : Consider the well known Max-Cut algorithm based on semidefinite programming
presented in [GW95]. In this algorithm, given a graph G = (V, E), a semidefinite relaxation
of the Max-Cut problem on ( is solved yielding an embedding of G on the n dimensional unit
sphere. This embedding is then rounded using the random hyperplane rounding technique,
into a partition of (G. In general, it is shown in [GW95] that the expected value of this
partition is at least @ = 0.87856 times the value of the optimal cut in G.

Given a A regular graph GG = (V. F), using the algorithm of [GW95] one may obtain a
partition (X,Y) of GG of value w(X) > aCut(G). Applying Theorem 2.1 on this partition
naively, a bisection ()A(, Y) of value at least fw(X) > afCut(G) > adBis(G) ~ 0.793Bis((G)
may be obtained. We conclude that a 0.793 approximation algorithm for Max-Bisection
on regular graphs is achieved by combining the algorithm of [GW95] and Theorem 2.1. A
slight improvement in this ratio may be achieved by noticing that the worst case value of 8
is obtained when w(X) is of value z*|FE| = 0.7932|F|, while the worst case approximation

ratio a of the [GW95] algorithm is obtained when w(X) is of value 0.742|E|. Details follow.



Denote the value of the semidefinite relaxation of G as §|F|. It is shown in [GW95] that
the value w(X) of the partition (X,Y) is at least z(d)|E| where

o(6) = acosl1=280) 5 > (0.8445
T §-0.87856 4 < 0.8445

Assume that w(X) is exactly of value (d)[E|. Recall, using Theorem 2.1, that we may
obtain a bisection (X,Y) of value at least

1 —z(6) N 1
(2 —2(6)x(6) (2 —=(5)*

We conclude that in such a case, the value of the bisection (X, SA/) is at least z(8)0(z(5))|E| >
MBLS(G). Using basic calculations which are described in the appendix it can be seen
that the above is minimal when § >~ 0.8748, yielding an approximation ratio of 0.7953.

It is left to show that if the partition (X,Y) is of value greater than that promised by

the analysis of [GW95], we obtain a strictly higher approximation ratio. Assume that w(X)

(2(5)) =

is of value y|E| for some y greater than z(§). In such a case we may obtain a bisection of
G of value %ﬂBis(G). We conclude that in order to prove our claim it is enough to show
that the function z6(z) is increasing. Using basic calculations, which are described in the
appendix, it can be seen that this is true. O

Two remarks regarding the result and proof of Theorem 3.2 are in place. The result above
holds for regular graphs of arbitrary degree. Using the work of [FKL00], further improved
approximation ratios for the Max-Bisection problem can be achieved when we assume the
degree is constant. For instance, [FKL00] show that the Max-Cut problem on 3-regular
graphs can be approximated within an approximation ratio of 0.924. Thus, combining this
result with the result of Theorem 2.1, we conclude an 0.834 approximation ratio on the
Max-Bisection problem restricted to 3-regular graphs.

Regarding the proof of Theorem 3.2, we use the results of [GW95] which are based on a
semidefinite relaxation for the Max-Cut problem. As we are interested in approximating the
maximum bisection, one may add additional constraints to this semidefinite relaxation as is
done in [FJ97]. It would be interesting to see if such an addition can improve our results.

4 Upper bound

Proposition 2.2 There are infinitely many reqular graphs G for which the ratio between
Bis(G) and Cut(G) is arbitrarily close to 0.

Proof : We construct a constant degree regular graph G = (V. F) = (X,Y; E) where X
and Y are a partition of V', X is of size c¢n, and the ratio between Bis(G) and Cut(G) is
arbitrarily close to 8 ~ 0.9027. In general, our construction is random and consists of two
steps. In the first step we construct a random regular multi-graph H, on the vertex set X,
and a random regular bipartite multi-graph H,, on the vertex sets X and Y, such that for
their union H the ratio between Bis(H) and Cut(H) is close to §. Afterwards we show that
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H can be converted into a graph without multiple edges GG that still has the above property.
Using the notation of Theorem 2.1 let # ~ 0.7932 and ¢ = 1 — /2.

We start by randomly constructing a Ay regular multi-graph H, on the vertices of X.
The construction is as follows. Consider the graph m, consisting of | X| = ¢n disjoint sets
{5 ... S|X|} of Ay vertices each, i.e. a set of Ay vertices corresponding to each vertex of H,.
Define the edge set of H, to be a random perfect matching on its vertices. Note that H, has
exactly Ay]|X|/2 edges. Define H, to be the multi-graph obtained by shrinking each set S;
of vertices in H, into a single vertex ¢ of H,. That is H, is the graph with a single vertex

corresponding to each set S; in which each edge connecting S; and S; in H is expressed as
an edge (¢,7) in H,. Following we analyze some properties of H,.

Lemma 4.1 For every constant ¢ > 0 there exists a constant Ay such thal with constant
probability the following holds. (a) H, will not include self loops or multiple edges, and (b)
the number of edges in every partition (A, X \ A) of H, is al most % +cAjcn.

Proof : Part (a)of Lemma4.1 is proven in [Bol85] where it is shown that with some constant
probability (depending on Ay) H, will not include self loops or multiple edges. For part (b),
let A be some subset of X of size at most | X|/2 and define B to be X \ A. The probability
that the cut (A, X \ A) has value k is exactly

K ( A4 ) ( MlB ) M(A|A| = k)M(A|B| = k)
Pr(w(A)=k) =
= W(AX)
Where M(i) = —2— is the number of perfect matchings in a graph of size 7. Using basic

i) o?

calculations WhiE:h>are described in the appendix it can be seen that Pr(w(A) = k) is at most
581 for some constant § < 1 (dependent on ¢) for any A|A] > k > % + eAqen.
As there are at most 2°” subsets A of X and the range of £ is polynomial in n, we conclude
by choosing A; large enough that with overwhelming probability (1 — 6™ ) part (b) of our
lemma holds. Hence both properties (a) and (b) hold for the random graph H, with some
constant probability. O

We now construct the multi-graph H,,, a bipartite graph on the vertex sets X and
Y in which the degree of each vertex in Y is A and the degree of each vertex in X is
A(1/e¢—1). The construction is similar to the construction of H, presented above. Consider
the graph ny consisting of | X| = en disjoint sets {S;...S|x|} each of A(1/c — 1) vertices,
and |Y| = (1 — ¢)n disjoint sets {Ry... Ry} each of A vertices. Define the edge set of
ny to be a random bipartite perfect matching between the vertices in {S;...S)x|} and
{R; ... R|y|}. Define H;, to be the multi-graph obtained by shrinking each vertex set .S; into
a single vertex 1 € X and each vertex set R; into a single vertex 1 € Y. We denote a pair of
edges in Hy, as parallel if they are both adjacent to the same vertices in Hy,.

Lemma 4.2 For every constant ¢ > 0 there exists a constant A such that with constant
probability the following holds. (a) H,, has less than 2A* pairs of parallel edges, and (b) the
number of (multiple) edges in H,, between every two subsets A C X and B CY is at most

—A|‘fq|1|B| + 5A(1 — c)n.



Proof : Let N = A(l — ¢)An = A|Y|. For any i, j the probability that a specific pair of

edges is chosen in H,, between the sets 5; and R; is . Each such pair induces a pair

1
N(N—-1)
of parallel edges in H,,. We conclude that the expected number of pairs of parallel edges in
H,, is approximately A*(1/c¢ —1). Hence, with probability at least 1/2 the number of such

pairs is less than 2A2,
Let A be some subset of X and B be some subset of Y. Let A(1/c — 1)|A| = aN, and
A|B| = BN. The probability that there are k edges between A and B in H,, is exactly

oy ) ( N )k! ( W ) (BN = B)!(N = BN)!
N

Pr(w(A,B)=k) = (

Similarly to Lemma 4.1, basic calculations which are described in the appendix yield that
Pr(w(A, B) = k) is at most 6" for some constant § < 1 (dependent on ¢) for any k > %-I—
eA(1 — ¢)n. As there are at most 22" subsets A,B of X,Y respectively and the range of k is
polynomial in n, we conclude that part (b) of our lemma holds with overwhelming probability.
Hence both properties (a) and (b) hold for the random graph H,, with probability arbitrarily
close to 1/2. O

Set A; to be (2—1/¢)A and define H to be the union of the two graphs H, and H,,. It
is not hard to verify that H is a A regular multi-graph, and that the value of the partition
(X,Y) in H is A(1 — ¢)n. Thus Cut(H) is at least this value. Assume that H, and H,,
have the properties stated in Lemma 4.1 and 4.2 (this happens with constant probability).
We show that the maximum bisection of H is at most (6 + 8¢)C'ut(H ), and that H can be
turned into a regular graph without multiple edges with a similar property.

Let (U, V) be some bisection of H, where U = X;VY;, V = X, VY5, the sets X, are some
partition of X, and the sets Y; are some partition of Y. Denote the size of the set X; as yn,
the size of X; as (¢ — v)n, the size of Y7 as (1/2 — v)n, and the size of Y3 as (1/2 —c+y)n
for v € [¢/2,1/2]. Let p, be w and p,, be 2. We have that the value of the bisection
(U,V) is at most

n’ <7(C — ) (P — 2pay) + = '2p“”’> + 3enA.

Which is maximal when v = 1/2. Thus we conclude using the fact that ¢ = 1 — /2 that

Bis(H)< 1—220;21 b8 = 1—=x N 1 S~ 048
Cut(H) =\ 2 T\ T T

It is left to show that the A regular multi-graph H can be turned into a A regular graph
without multiple edges. This can be done by turning each multiple edge of multiplicity m
in H into m — 1 paths of length two. Le. for each edge (u,v) of multiplicity m in H we
add m — 1 new vertices wy ...wy,—1 to H and replace (u,v) by the pairs (u, w;), (w;,v) for
i = 1...m — 1. Recall that we assume H has at most 2A? pairs of parallel edges, thus in
this process we have added at most 2A? new vertices and edges. The resulting graph H’ is
almost regular. It is not hard to see that by adding at most an additional A new vertices
and 3A® new edges to H' we can obtain a A regular graph . As the graph G differs from
the original graph H by a constant number of edges and vertices we conclude that Cut(G)
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and Bis((@) differ for Cut(H) and Bis(H) by only a constant value respectively. Thus the
Bis(G)
Cut(G)

ratio remains arbitrarily close to 6. O
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Appendix

Recall that

o(8) = { 2coo(1220) 5 > 0.8445
0-0.87856 ¢ < 0.8445
1—x 1
(2 —z)x + (2 — )%

Bounding f(z) (Theorem 2.1) :
x> =222 + 62 —4
B ?(x — 2)3

Using computer assisted analysis, it can be seen that §'(z) is zero only when z* ~ 0.7932,
yielding a lower bound of approximately 0.9027. Note that 6(z) is decreasing when = <

0'(x) =

0.7932 and increasing otherwise.

Monotonicity of xz6(z) (Theorem 3.2) :

;o 2x
(#0()) = =

It can be easily seen that (z6(x))" is positive for every x € [0.5, 1] (the range of our interest).

Bounding M (Theorem 3.2) :
We consider three cases, the first in which § € [0.5,0.8445], the second in which § is in the

range [0.8445,0.8981], and the last in which § € [0.8981,1]. In the first case we have that
20D s equal to 0.87856 - (8 - 0.87856). As & - 0.87856 € [0.4392,0.7419], and 6(z) is

monotone decreasing when = < 0.7932, we conclude that ﬂéﬂéﬂﬂl is decreasing in this range
and

2(8)0(2(6
w > 0.87856 - (0.7419) > 0.7983.

In the third case, in which § € [0.8981, 1], we have that z(d) € [0.7932,1]. Using the fact
that 2/(6) > 0 we have

<ac(5))' _ ( 2z(0) (5))>I _ 2(1 = cos(mz(8)) — wx(8) sin(wz(d))) ') > 0.

) 1 — cos(mz !

(1 —cos(mz(d)))? =
(5)0(=(3))
s

As 6(z) is monotone increasing when z > 0.7932, we conclude that =
in the range [0.8981,1] and is of a minimal value of 0.7972 when § = 0.8981.
The final case in which ¢ € [0.8445,0.8981] is proven using computer assisted analysis. A

is increasing

plot of w in the above range is displayed in Figure 1. It can be seen that the function
obtains a minimal value of approximately 0.7953 when § ~ 0.8748. We thus conclude that
w is bounded by 0.7953 in the range 6 € [0.5,1].
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Figure 1: The function x(a)egx(a)) in the range § € [0.8445,0.8981].

Lemma 4.1 :

Recall that |X| is of size cn, AC X, k > % +eAqcn, and

B ( A4 ) ( AP ) M(AL|A| = k)M(A|B| = k)
Pr(w(A)=k) =
=0 VAT
Where M(i) = —“—. Let N = Ayen, Aj|A| = aN and k = B3N. The condition above on

()22
k implies that 3 > a(1 — @) + ¢. Ignoring factors which are polynomial in n we conclude
using Stirling’s formula that

o a®(1 — a)t==) "
Pr(w(A) = k) ~ (ﬁﬁ(a - B)QT_SU . /8>1—a—5)

The above formula is decreasing in 3 (as long as 3 > a(a—1)). Furthermore, using computer
assisted analysis, it can be seen that by setting 8 to be a(1 — «) + ¢ the resulting formula
is increasing in « (as long as o < 1/2). We conclude that

Pr(w(A) = k) < (2 <i +€> Tte <% B 5) %_E) -N

Setting d(e)" to be the above probability we have that for any constant ¢ > 0, §(¢) is a
constant strictly less than 1.

Lemma 4.2 :

Recall that X is of size en, Y is of size (1 —¢)n, AC X, BCY,and k > %+6A(1 —c)n.
Let N = (1 —¢)An, A(1/e —1)|A| = aN, A|B| = 8N, and k = yN. The condition above
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on k implies that v > af + . Ignoring factors which are polynomial in n we conclude using
Stirling’s formula that

a®BP(1 = 3)1=A)(1 — a)t==)
V(o =) E=N(B = 7)F=D(1 — a = B + ~)(=2=F+7)

Pr(w(A,B) =k) ~

Using computer assisted analysis it can be seen that the above formula is maximal when
a=03=1/2and v = a8 + . In such a case we obtain

mam-s (o) (-9)

Setting d(e)" to be the above probability we have that for any constant ¢ > 0, d(¢) is a
constant strictly less than 1.
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