Electronic Colloquium on Computational Complexity, Report No. 44 (2000)

On the Distribution of the Number of Roots of Polynomials and
Explicit Logspace Extractors

Tzvika Hartman'’ Ran Raz ?

Abstract

Weak designs were defined in [RRV99a] and are used in constructions of extractors. Roughly
speaking, a weak design is a collection of subsets satisfying some near-disjointness properties.
Constructions of weak designs with certain parameters are given in [RRV99a]. These construc-
tions are explicit in the sense that they require time and space polynomial in the number of
subsets. However, the constrcuctions require time and space polynomial in the number of sub-
sets even when needed to output only one specific subset out of the collection. Hence, the
constructions are not explicit in a stronger sense.

In this work we provide constructions of weak designs (with parameters similar to the ones
of [RRV99a]) that can be carried out in space logarithmic in the number of subsets. Moreover,
our constructions are explicit even in a stronger sense; given an index to a subset, we output the
specified subset in time and space polynomial in the size of the index. Using our constructions,
we obtain extractors similar to the RRV extractors in terms of parameters and that can be
evaluated in logarithmic space.

Our main construction is algebraic. In order to prove the properties of weak designs we
prove some combinatorial-algebraic lemmas that may be interesting in their own right. These
lemmas regard the number of roots of polynomials over finite fields. In particular, we prove that
the number of polynomials (over any finite field) with k& roots, vanishes exponentially in k. In
other words, we prove that the number of roots of a random polynomial is not only bounded
by its degree (a well known fact), but furthermore, it is concentrated exponentially around its
expectation (which is 1). Our lemmas are proved by combinatorial-algebraic arguments. The
main lemma is also proved by a probabilistic argument.

1 Introduction

1.1 Background

Weak designs were defined in [RRV99a]. Roughly speaking, a weak design is a collection of subsets,
satisfying some near-disjointness properties. In particular, we take the exponentiations of the size
of the intersections between every pair of subsets and bound its average (see definition 5).
[RRV99a] provide an explicit construction of weak designs which outputs all the subsets in time
and space polynomial in the number of subsets. However, they require time and space time and
space polynomial in the number of subsets even when needed to output only one subset. In other

fDept. of Applied Math and Computer Science, Weizmann Institute, Rehovot 76100, Israel. E-mail: ran-
raz@Qwisdom.weizmann.ac.il. Phone: +972-8-934-3544

iDept. of Applied Math and Computer Science, Weizmann Institute, Rehovot 76100, Israel. E-mail:
tzviQwisdom.weizmann.ac.il.

ISSN 1433-8092

words, if we consider a stronger notion of explicitness (as in definition 6), where the algorithm
gets as an input an index of a subset and is required to output only the specified subset, then the
constructions are not explicit. This is since the time and space required are exponential in the size
of the index (which is logarithmic in the number of subsets).

In this work we provide constructions of weak designs, which are explicit even in a stronger
sense: The algorithm outputs a specific subset in time and space polynomial in the size of the index
of the subset (the time is actually polynomial also in the size of the subsets). It hence follows that
our algorithm can output all subsets in space logarithmic in the number of subsets.

The main application of weak designs in [RRV99a] is in constructing extractors. Extractors,
defined by Nisan and Zuckerman [NZ96], are functions (which can be viewed as graphs as well) that
have very strong randomness properties. Roughly speaking, these functions convert a “somewhat
random” distribution (which will be defined later) into an almost random one. This is done using
a small number of truly random bits as a catalyst. A large body of work has been done in giving
explicit constructions of extractors, with a steady improvement in its parameters. Extractors have
a wide variety of applications (see section 2.1 and also [NT98]).

A recent breakthrough was made by Trevisan [Tre99], who uses the Nisan-Wigderson pseudo-
random generator [NW94], previously used only in the computational setting, in order to construct
extractors (which are information-theoretic objects). For some setting of parameters, Trevisan’s
extractors are optimal and improve upon previous constructions. The Nisan-Wigderson generator
and hence the Trevisan Extractor are based on a ”combinatorial design”, which is a collection of
subsets of a given universe, in which the intersection between every two subsets is bounded.

The main observation in [RRV99a] is that Trevisan’s construction yields an extractor even if we
replace these combinatorial designs by a weaker notion of combinatorial designs. They introduced
the notion of weak design and proved that the same construction, based on weak designs, induces an
extractor as well. Since the requirements from the weak designs are weaker, they can be constructed
with better parameters. Hence, the parameters of the implied extractors are in many interesting
cases better than the ones of Trevisan’s extractors (specifically, the number of truly random bits
used by the extractor is much smaller).

A construction of weak designs is given by [RRV99a]. The properties of the design are proved
by an application of the Probabilistic Method. The proof is derandomized by the Method of
Conditional Probabilities. This construction, as discussed above, can be done in time polynomial
in the number of subsets. However, this construction requires also polynomial space. This implies
that the evaluation of the RRV extractor cannot be done in small space.

1.2 Overview of Our Results

In this work we use a different approach, an algebraic one, for constructing weak designs. This
approach was introduced by Nisan and Wigderson [NW94] in order to construct standard designs
(see definition 4 and lemma 2.2). By using this approach we obtain constructions of weak designs
that have similar parameters to the ones constructed in [RRV99a), with the advantage that they are
explicit in a stronger sense: We provide an algorithm that gets as an input an index to a subset and
outputs the specified subset in time and space polynomial in the size of the index of the subset (the
time is actually polynomial also in the size of the subsets). This improves upon the constructions of
[RRV99a], in which the time and space required is exponential in the size of the input. Moreover,
our algorithm can output all the subsets in space which is logarithmic in the number of subsets,
whereas the RRV constructions require polynomial space. By plugging these designs into the RRV
extractor we obtain an extractor which can be evaluated in space logarithmic in its input.

In order to obtain our main result, we prove some combinatorial-algebraic lemmas that may
be interesting in their own right. The lemmas regard the number of roots and the number of
linear factors of polynomials over finite fields. Roughly speaking, we prove that the number of
polynomials (over any finite field) with &k roots (or k linear factors) vanishes exponentially in £. In
other words, we prove that the number of roots of a random polynomial is not only bounded by its
degree (a well known and useful fact), but furthermore, is typically much smaller. In particular, it
is concentrated exponentially around its average, which is 1.

The lemmas are proved by combinatorial-algebraic techniques. A slightly different version of
our main lemma (which is used for our main result) is also proved by a probabilistic argument.
This is done using the fact that there is a limited independence between samples generated by a
polynomial. By defining the appropriate random variables, we show that this limited independence
suffices to prove our result.

Our algebraic construction yields a weak design where some of the parameters have specific
values (these specific values are the most interesting values for constructing extractors). In addition,
we provide general tools to take a weak design with specific parameters and construct a new weak
design with other parameters (improving some parameters while paying the price in other ones).
These tools use techniques such as union of subsets of several designs and direct product of designs.
Applying these tools to our main construction yields a more general construction, which matches,
up to a constant factor, the constructions of [RRV99a| (having the advantage of being explicit in
the strong sense).

1.3 Organization of the Paper

In section 2 we give the formal definitions of extractors and describe briefly previous work on
extractors, with emphasis on the Trevisan and RRV extractors. In addition we define combinatorial
designs and give some known constructions. We state our results, which will be proved later on
and describe an application of the results. Section 3 contains some combinatorial-algebraic lemmas,
which will be used in our main construction. In section 4 we prove our main result - an explicit
construction of weak-designs for specific parameters. Then, in 5, we generalize this construction to
get explicit constructions of weak designs with parameters that match, up to constant factors, the
parameters of the probabilistic constructions in [RRV99a]. We conclude with a short discussion in
section 6.

2 Preliminaries

2.1 Extractors
2.1.1 Definitions

Before defining extractors, we need to define some related notions.

Definition 1 (Statistical difference) The statistical difference between two distributions X and
Y over {0,1}™ is defined as

mgx|P7“[D(X) =1]—-Pr[D(Y) =1]|

where the mazimum is taken over all functions (sometimes called “distinguishers”) D : {0,1}™ —
{0,1}. We say that two distributions are € — close if their statistical difference is at most e.

Statistical difference is sometimes called variation difference.

Definition 2 (Min-entropy) A distribution X is said to have min-entropy k if for all z,
PriX =z]<27*

It is useful to think of a distribution of min-entropy k as being uniform over a subset of size 2.
We will denote the uniform distribution on strings of length j by U;. Now we can define our main
object (we define it as a function, a similar definition can be given by a graph):

Definition 3 (Extractor) A function EXT : {0,1}" x {0,1}¢ — {0,1}™ is called an (k,¢) —
extractor if for every distribution X on {0,1}" with min-entropy k , EXT(X,Uy) is € — close to
Un.

This function actually extracts m bits of randomness from the given n bits, as long as these n
bits have min-entropy k. In order to do that, it needs additional d truly random bits. In extractors,
we would like to minimize d (the number of additional truly random bits), while keeping m (the
number of extracted ”almost” random bits) as close to k£ (the amount of randomness in the source)
as possible. It can be shown, non-constructively (by a probabilistic argument), that for every
n,k < n and € > 0 there exists a (k, ¢)-extractor EXT : {0,1}" x {0,1}¢ — {0,1}™, with m = k
and d = O (log(n/e)), i.e., it is possible to extract all the randomness of the source using only a
logarithmic number of additional truly random bits. This gives an optimal non-explicit construction
of extractors. However, we are interested in explicit constructions of extractors.

A family of extractors { EXT; : {0,1}™ x {0,1}% — {0,1}™i };cy is called explicit if EXT; can
be evaluated in time poly(n;). Notice that we did not consider the parameters d; in the complexity
measurement since an extractor is interesting mainly if d; is smaller than n;. For the sake of
readability, we state our definitions and theorems in terms of individual extractors rather than
families of extractors (although it is actually meaningless of an individual extractor being explicit).

The following is a stronger notion of explicitness: An explicit (k, €)-extractor EXT : {0,1}" x
{0,1}¢ — {0,1}™ will be called an explicit logspace extractor if EXT is computable in space
s = O(logn).

2.1.2 Previous work and Applications

Extractors were first defined and constructed by Nisan and Zuckerman [NZ96]. This followed a large
body of work in the late 1980’s, regarding weak notions of randomness [SV86, VV85, CG88, Zuc90].
Improved constructions of extractors appeared in [WZ95, GW97, SZ98, Zuc97, NT98]. A new
approach to constructing extractors was recently initiated by Trevisan [Tre99] (and then [RRV99al),
who uses the Nisan-Wigderson pseudo-random generator [NW94] for constructing extractors (these
constructions will be discussed in detail in subsubsection 2.1.3).

Besides the natural application of simulating randomized algorithms with weak random sources
[Zuc96], explicit constructions of extractors have a wide variety of applications, including con-
structing oblivious samplers [Zuc97]; constructive leader election [Zuc97]; randomness efficient
error-reduction in randomized algorithms and interactive proofs [Zuc97]; explicit constructions
of expander graphs, superconcentrators, and sorting networks [WZ95]; hardness of approxima-
tion [Zuc96]; pseudorandom generators for space-bounded computation [NZ96, RR99]; derandom-
izing BPP under circuit-complexity assumptions [STV99] and other problems in complexity the-
ory [GZ97].

For a detailed survey on previous work on extractors and their applications, see [NT98|. The
following table summarizes the best known constructions of extractors:

‘ reference min-entropy k ‘ output length m ‘ additional randomness d ‘

[GW9IT] any k m=k d= O(n —k+log(1/e))
[Zuc97] k=Q(n) m=(1—-a)k O(log(n/e))
[Tre99, RRV99D] any k m = k1= d= O(log n/logk +log(1/e))
[RRV99a, RRV99b| | any k m=(1-a)k d = O(log®n + log(1/¢))
[RRV99a, RRV99b] | any k m=k d = O((log® n + log(1/¢)) - log k)

‘ optimal ‘ any k ‘ m=k ‘ d = O(log(n/e)) ‘

Above, « is an arbitrarily small constant.

Figure 1: Best constructions of extractors

2.1.3 The Trevisan and RRV Extractors

Trevisan’s Extractor The Trevisan extractor is based on the Nisan-Wigderson pseudorandom
generator [NW94]. This generator is built out of any predicate P and its security is closely related
to the hardness (on the average) of P. Let S = (S1,...,Sn) be a collection of subsets of [d], each
subset of size [, that satisfy some nearly-disjointness property (these collections are called standard
designs, see definition 4). Let P:{0,1}} — {0,1} be any predicate. For a string y € {0,1}¢, define
y|s; to be the string in {0,1}' obtained by projecting y onto the coordinates specified by S;. Then
the Nisan-Wigderson generator NWg p: {0,1}¢ — {0,1}™ is defined as

NWs p(y) = P(yls,) --- P(yls,.)-

In the “indistinguishability proof” of [NW94], it is shown that for any function D:{0,1}™ —
{0,1} which distinguishes the output of NWg p(y) (for uniformly selected y) from the uniform
distribution on {0,1}™, there is a “small” circuit C (or procedure of small “description size”) such
that CP(-) (i.e., C with oracle access to D) approximates P(-) reasonably well. Thus, a distinguisher
D with small circuit size implies a function C' with small circuit size which approximates P, in
contrast to the assumption that P is ”hard”.

Roughly speaking, the pseudorandomness property of the output is due to the fact that each bit
is determined by a different subset of the collection. Therefore, if we choose subsets that are nearly
disjoint, we get small dependencies between the bits of the output and the output is pseudorandom.
Specifically, the size of the circuit C is bounded by m - 202%i#i [5i05i] g0 we just need a collection
such that max;x; |S; N .S;| is small.

We now give a rough description of the Trevisan extractor

EXT:{0,1}" x {0,1}* — {0,1}™.

For a string u € {0,1}", let @ € {0,1}" be an encoding of u in an error-correcting code and define
| = logm. We view @ as a Boolean function 7:{0,1}* — {0,1}. As above, we fix a collection
S = (S1,...,Sm) of nearly disjoint subsets of [d] of size [(with properties as above). Then the
extractor is simply

EXTs(u,y) = NWsz(y) =u(yls,) - - @(yls,)-

Intuitively, the function is an extractor since we use a stronger assumption (that the predicate
is "weakly” random, instead of computationally hard) and obtain a stronger conclusion (that the

output is statistically close to, rather than indistinguishable, from the uniform distribution). The
analysis of this extractor in [Tre99] shows that the output of this extractor is close to uniform as
long as the source min-entropy required is greater than the size of the circuit built in the security
reduction of [NW94]. Hence, one needs to keep this circuit size small while minimizing the number
d of truly random bits needed, which is equal to the seed length of the Nisan—Wigderson generator.
Specifically, by using constructions of standard designs with certain parameters (see subsection
2.2.2), Trevisan [Tre99] obtains an extractor that works for low min-entropy (n¥) and extracts
only a small fraction (k'~®) of the source min-entropy using only O(logn) truly random bits.

The RRV Improvements In [RRV99a] there are two main improvements to Trevisan’s ex-
tractors: They observed that the size of the circuit C is actually bounded by max;},; 218ins; |,
Therefore, the standard designs which are used by Nisan-Wigderson are not the best option. In par-
ticular, they defined a different combinatorial design, called weak design in which max; 3 ; 2/5:"5|
is small (in contrast to standard designs, in which max;; |S;NS;| is bounded). They show that with
weak designs, one can achieve better parameters than is possible with the corresponding standard
designs. In particular, in some cases d is much smaller, which means that the extractors needs less
truly random bits (see section 2.2).

This yields two improved extractors: The first extractor extracts a constant fraction of the min
entropy. The weak designs underlying this construction are constructed using an application of the
Probabilistic Method, which is derandomized using the Method of Conditional Expectations (see
[ASE92] and [MRY5] ch. 5). A simple iteration is applied to these weak designs to construct new
weak designs, which are used to construct an extractor which improves upon previous construction
in case we want to extract all the min entropy of the source.

The shortcome of these probabilistic constructions of weak designs is in the space complexity.
The constructions require space which is polynomial in the number of subsets (see subsection
2.2.2). This implies that computing the RRV-extractor requires polynomial space. In this work we
remedy this shortcome. We provide explicit constructions of weak designs, which are constructions
that require space that is logarithmic in the number of subsets. In terms of parameters, these
constructions match, up to constant factors, the probabilistic constructions given in [RRV99a].
Hence, we obtain extractors whose parameters are similar to those of the RRV extractor, but can
be evaluated in logarithmic space.

The second improvement of [RRV99a] (which we will not deal with in this work) is achieved
by using some specific error-correcting code rather than an arbitrary one. More specifically, they
use multilinear error correcting codes over finite fields. This improves the dependency on the error
parameter e: The number of truly random bits d depends linearly on log(1/e) (improving upon
the quadratic dependence in [Tre99]). In a more recent paper [RRV99b], they introduce a general
method to obtain an even better dependency on ¢ (and the new method holds for any extractor).

2.2 Combinatorial Designs
2.2.1 Definitions

Roughly speaking, a combinatorial design is a collection of subsets of a given universe such that
the subsets are ”"nearly disjoint”. The difference between the types of designs is the definition of
"nearly disjoint” (i.e., the condition restricting the intersections between the subsets).

The first combinatorial design, in which the intersection of every two subsets is bounded, was
defined by Nisan and Wigderson:

Definition 4 (Standard Design [NW94]) A family of sets S = S1,...,Sm C [d] is called a
standard (m, 1, p, d)-design if

1. For all1 <i<m, |S;| =1L
2. For all1 <i# j <m, |S;NS;| <logp.

Standard designs underly the construction of the Nisan-Wigderson generator and the Trevisan
extractor. [RRV99a] observed that a weaker notion of combinatorial design, which they call weak
design suffices for the constructions.

Definition 5 (Weak Design [RRV99a]) ! A family of sets S = Si,...,Sm C [d] is called a
weak (m, 1, p, d)-design if

1. Forall1 <i<m, |Si|=1.

2. For alll <1 <m,
¥ <i 2150531

m

<p

Notice that every standard (m,l, p,d)-design is in particular a weak (m,l, p,d)-design. The
advantage of weak designs is that they can be constructed with better parameters (see subsection
2.2.2). Our results (except theorem 9) actually hold for a stronger version of weak-designs, in which
the second condition is:

Forall1 <: <m,

Ej;éz 2\SiﬂSj\
m

<p

However, for the sake of simplicity, we will not give a different name to this type of weak-designs.

In the following we consider some possible notions of ”explicitness” in the construction com-
binatorial designs. We may require from the constructing algorithm to output all subsets of the
design. In this view, a construction will be called explicit if the time and space needed is polynomial
in the number of subsets. Another possibility is that the algorithm will get as an input an index
to a subset and an index to an element, and will output the specified element. Here explicitness
means that the time and space complexity is polynomial in the size of the input (the size is the
logarithm of the number of subsets plus the logarithm of the size of each subset).

We will consider the following definition of explicitness. In this definition, the algorithm gets
as an input an index to a subset, and is required to output the specified subset.

Definition 6 (Explicit Combinatorial Design) A combinatorial design S = Si,..., S, C [d],
where the size of each set is 1, is called an explicit combinatorial design if there exists an algorithm
that, given 1 <1i < m, outputs the subset S; in time T = poly(log m,1) and space S = O(logm).

Note that the complexity is not related to the parameter d, since typically d = poly(logm).

!This is a slight modification of the definition in [RRV99a], where the second condition is Z].Q, 2180551 < p-(m—1)

2.2.2 Known Constructions

As mentioned above, the main motivation of defining the combinatorial designs is for construction of
extractors (in standard designs, the original motivation was actually for pseudorandom generators).
The parameters of the extractors are hence related to the parameters of the underlying designs.
In this subsection, we state some known constructions of designs and see the parameters of the
extractors they imply. In general, the relation between the parameters of the design and those of
the extractor is as follows. The size of the universe of the design, d, is the number of truly random
bits that the extractor needs, the size of each subset, [, is (roughly) the logarithm of the length of
the input, n, and the parameter p is usually taken as O(k/m) (k is the min entropy of the source,
and m is the length of the output). For the sake of simplicity, in the following discussion we ignore
€, the error parameter of the extractor.

In constructing extractors, we would like to keep d (the number of truly random bits), as small
as possible (as mentioned above, the best we can hope for is d = O(logn)). This implies that we
should minimize the size of the universe, d. In the following we will see that the main contribution
of introducing the notion of weak designs [RRV99a] is in the fact that the universe is small, implying
an extractor which requires a small number of truly random bits. We also want to extract as much
randomness as possible, i.e., we want that m will be close to k. This implies that in the designs, p
should be as close to 1 as possible.

Now we will describe the known constructions of combinatorial designs, and see the parameters
of the extractors induced by these constructions. The first construction of standard designs is based
on the random construction and achieves the same parameters.

Lemma 2.1 ([NW94]) For every m, l € N, and p > 1, there exists a standard
(m, 1, p,d)-design Si,...,Sm C [d] with

2,,1/logp
-0 (L) _
log p

The design can be constructed in time poly(m,2?) and space poly(m).

This standard design yields an extractor [Tre99] that for any source of min entropy k, extracts
2. O(logk/m
m bits using d = O (IOg Zaig/ k;mg) 4)) additional random bits. The most interesting case is when

m = k'~ (a is an arbitrary small constant), in which d = O ((log2 n)/(log k)) (see figure 2.1.2).
The algorithm for constructing the above design chooses sequentially (by exhaustive search) m
subsets of [d] such that each one intersects the previous ones in at most log p points. A probabilistic
argument (using Chernoff bounds) shows that it is possible to choose m such subsets. Note that
this construction requires the same time and space complexity even if we want to output only one
subset and hence, it is not explicit in the sense of definition 6. However, we want to stress that
this construction implies an indeed explicit construction of extractors, since in the extractor case,
complexity is measured according to the input size of the extractor.

An explicit construction of standard designs with weaker parameters is given by the following;:

Lemma 2.2 ([NW94]) For every m,l € N there ezists an explicit standard (m,l,p,d)-design
S1y...ySm C [d] with d = O(I?) and p = m. This design is explicit in the stronger sense, i.e., given
1 <i < m, the algorithm outputs the subset S; in time T = poly(log m,l) and space S = O(logm).

The construction, using polynomials over finite fields, is the construction we use in our main
result (section 4). Roughly speaking, each subset is identified with a polynomial over a fixed finite

field. The subsets are constructed such that the intersection between the subsets contains the
values in which the two polynomials (identified with the two subsets) agree on. The proof that
these subsets induce a standard design is based on the fact that the number of values that two
polynomials can agree on is bounded by their maximal degree.

For weak designs, we have the following construction:

Lemma 2.3 ([RRV99a]) For every I,m € N and p > 1, there exists a weak (m,l, p,d)-design
Siy...,Sm C [d] with
l
1= |5y

This design can be constructed in time poly(m,d) and space poly(m).

This construction is much better than the construction of standard designs of lemma 2.1 in terms
of the parameter d. Specifically, if p is constant, here d = O(I%), whereas d = O(I>m®(1) in the
corresponding standard design. In terms of extractors, if £/m is constant, the implied extractor
needs only O(log?n) truly random bits (see figure 2.1.2), improving upon the m™!) log?n bits
needed in Trevisan’s extractor in this setting of parameters.

We want to stress that the case that p is constant (or in terms of extractors k/m is constant) is
a very important case. It means that we can extract a constant fraction of the source min-entropy
and by using iterations [WZ95] on these extractors we obtain an extractor that extracts all the
source min-entropy.

The proof is by a probabilistic argument: The universe [d] is divided into [blocks, each block
of size [I/Inp]. The subsets are constructed sequentially such that each subset contains exactly
one element from each block. It is shown that after choosing the subsets Si,...5; 1, for every new
subset S;, the expected value of 3, <i2|5insﬂ'| is smaller (or equal) to pm. Hence, with non-zero
probability, there exists a set .5; satisfying the requirements. The construction is derandomized by
the Method of Conditional Expectations (see [ASE92, MR95]). In order to find the i** subset we
must compute and store all previous ¢ — 1 subsets (so we can calculate the appropriate conditional
expectation). Thus, the algorithm requires time and space polynomial in m even if it is required
to output only one specific subset. Hence, the construction is not explicit in the sense of definition
6 (however, as in lemma 2.1 it implies an explicit extractor).

The shortcome of the parameters in the above construction is that in case p is very close to 1, d
gets very large. Specifically, if p = 14+ for small 7, then the above construction gives d = O(1%/7).
This means that the induced extractor performs poorly (in terms of the number of additional truly
random bits) if we want to extract all (or almost all) the min-entropy of the source. The following
construction improves d significantly in this case.

Lemma 2.4 ([RRV99a]) For every [,m € N and 3/m <~y < 1/2, there ezists a weak (m,l,1 +

v, d)-design with
1
dzo(ﬂd%—).
Y

This design can be constructed in time poly(m,d) and space poly(m).

The implied extractor needs O(log? n-log(1/7)) additional random bits, where 14+ = k/(m—1).
The most interesting case is when we want to extract all the min entropy of the source (i.e., m = k),
in which the extractor requires only O(log? n - log k) = O(log® n) additional truly random bits (see
figure 2.1.2). This construction is accomplished by iterating the construction of lemma 2.3 (inspired
by the iterations of Wigderson and Zuckerman [WZ95] on extractors).

2.3 Statement of Our Results

In this work we provide several explicit constructions of weak designs, which relate to the interesting
cases of extractors discussed above. Our main result, which will be proved in section 4, is an explicit
construction of weak designs for specific values of d and p.

Theorem 7 (Main) For every m,l € N there exists an explicit weak (m, 1, p, d)-design, with d = I?
and p = e (where e denotes the base of the natural logarithm,).

This construction implies a logspace extractor that extracts a constant fraction (1/e?) of the
source min entropy with only O(log? n) additional truly random bits. As discussed above, extractors
that extract a constant fraction of the source min entropy are very important. By applying the
iterations of Wigderson and Zuckerman [WZ95] on this extractor we get an extractor that extracts
all the min entropy with O(log® n) random bits (without using the construction of theorem 9).

For the sake of completeness, we provide some more constructions of weak designs for more
general cases. The following theorem generalizes the previous one in the sense that p is not restricted
to the value e?. This means that the induced extractor can extract any constant fraction of the
min entropy using O(log2 n) additional random bits. It provides explicit weak designs, which (in
the interesting cases) match, up to a constant factor, the probabilistic construction of lemma 2.3:

Theorem 8 For every m,l € N and p > 1 there exists an explicit weak (m, 1, p,d)-design such that
1. If p=0O(1) then d = O(1?).

2. If p#0(1) and 2" = O(m) then d = O (1)

The following theorem states that weak designs with the same parameters as those of lemma 2.4
can be constructed explicitly:

Theorem 9 For every I,m € N and 3/m < v < 1/2, there exists an explicit weak (m,l,1 + v, d)-
design with
1
d:O(Z2 -log—).
Y

This implies an extractor that extracts all the min entropy with O(log® n) random bits. Theorems
8 and 9 are proved in section 5.

An important application of the above explicit constructions of weak designs above is several
explicit constructions of extractors that are similar to the RRV extractors [RRV99a, RRV99b]| in
terms of parameters and that can be evaluated in logarithmic space:

Theorem 10 For every n, k,m and € such that m < k <n and ¢ > ea:p(—n/(log*n)o(log* ")), there
are explicit logspace (k,¢)-extractors EXT : {0,1}" x {0,1}¢ — {0,1}™ with

1. ifk/m=0(1),d=0 (10g2 n+ log(l/e)).
2. d = O(log(1/7) - (log?n + log(1/€))), where 1 +v =k/(m — 1) and 1/m <~y < 1/2.

Proof: The evaluation of the RRV-extractor (and also the Trevisan extractor) has two main steps
(see description in subsection 2.1.3). The first step is applying an error correcting code, which can
be done in logspace (see Appendix A in [RRV99a]). The second step is constructing a weak design.
For the first extractor we use the explicit weak designs of theorem 8, whereas the second uses those

10

of theorem 9. To calculate the i** bit in the output of the extractor we must find the projection
of the subset S; on the codeword computed in the first step. Using our explicit weak designs, we
can do this in logarithmic space. Overall, our extractor can be evaluated in logarithmic space, as
desired. W

2.4 Application to Derandomization of Space Bounded Computation

Let M be a logarithmic space Turing machine (or a polynomial width branching program) and
assume that some weak estimation of the state probabilities is known. In [RR99], there is a
construction of a logarithmic space pseudo-random generator that uses only logarithmic number
of truly random bits and outputs a sequence of k bits that look random to M. The construction
is based on linear space extractors which extract all the min-entropy of the source. By using the
logspace extractor of theorem 10 (which is in particular linear space) we can slightly improve & (the
length of the output of the pseudo-random generator). Details follow.

By assuming there are explicit linear space optimal extractors (i.e., linear space extractors which
use only d = O(logn + log 1/¢) truly random bits), the construction yields a pseudo-random gen-

\/logn

erator with k = 2 . Using the linear space extractors of Ta-Shma [NT98], which uses (logn)°

truly random bits, 2 it was possible to prove an unconditional result with k = 9V/logn/(loglogn)®
The RRV-extractor [RRV99a] uses only (logn)? truly random bits, but is not a linear space extrac-
tor and therefore cannot be used in the construction. However, by using the logspace extractor of
theorem 10, we can improve the degree of the polylog up to k = 9V/logn/(loglogn)® The above is
formalized in the following corollary (see definitions of layered branching program and estimator in
[RR99]):

Corollary 11 Let r = v/logn/(loglogn)®. Let M be an (n,2")-layered branching program, and let
A be a (2731 r)-estimator for M then there exists an RL Turing machine T such that:

1. The inputs for T are M and A.
2. T uses O(logn) random bits (and O(logn) space).

3. The output of T is a 27" -error pseudo-random sequence for M.

3 Combinatorial-Algebraic Lemmas

A trivial counting shows that the number of polynomials with a bounded degree over a finite field
is the size of the field to the power of the degree plus one. In this section we encounter the question
of what happens to this number if we restrict the polynomials to be with a specific number of roots
or a specific number of linear factors. The following lemmas provide answers to some versions of
this question. The lemmas, especially lemmas 3.4 and 3.6 (which are the most interesting ones)
can be viewed in the following way:

A fundamental theorem from algebra states that the number of roots of a (non-zero) polynomial
is bounded by its degree. A simple observation shows that the expected number of roots of a random
polynomial over a finite field is much smaller, namely, one. This can be seen by considering a
uniformly selected polynomial (i.e., selecting uniformly the coefficients). For every element in the

*In [NT98] the number of truly random bits used by the extractors given as d =polylog n, without specifying the
degree of the polynomial. However, Ta-Shma estimates the degree of this polynomial to be 9 (see [RRV99a).

11

field, the probability that it is a root of the selected polynomial , which means that by evaluating
the polynomial with this element we get zero, is one over the size of the field. Therefore, the
expectation of the number of roots is one.

Lemma 3.4 shows that not only the expected number of roots of a random polynomial is one,
but furthermore, this number is very concentrated around its expectation. Namely, the number of
polynomials with many roots vanishes exponentially in the number of roots. This result is used for
the explicit construction of weak designs in the next section and we believe it may be interesting
in other applications as well.

We assume the reader is familiar with the following basic fact from algebra: ag, ..., ax are roots
of the polynomial p(x) if and only if TI¥_; (z — a;) divides p(z) (It can be found in every standard
text book on algebra, e.g. [Lan68] sec. 7, see also [Sud98] lec. 2).

In section 3.2 we state our lemmas and prove them using combinatorial arguments. In section
3.3 we prove lemma 3.6, which provides an upper bound which is slightly different than the one
given in lemma 3.4. This proof is by a probabilistic argument.

3.1 Preliminaries

Let F be a finite field of size ¢g. In the following, F[z] is the ring of polynomials over F' and
p(z) € F[z]. Define

e deg(p) 4 the degree of p(x).
e 8L(p) 4 the number of linear factors in the factorization of p(z) over F.

e {R(p) 4 the number of distinct roots of p(z) in F (i.e., the number of elements o € F such
that p(a) = 0).

Every distinct root over F' implies a linear factor over F', thus, for every p(x) € F|z], it holds
that §R(p) < §L(p).
The following are subsets of F[z]:

1.
def =
Ly(k,d) = {p(x) € Flz] | (#L(p) = k) A (deg(p) < d) A (p # 0)}
(Lg(k,d) is the set of non-zero polynomials over F' of degree at most d that have exactly k

linear factors over F. In other words, the polynomials have at most k£ roots, and the sum of
their multiplicities is exactly k.) 3

Ry(k,d) = {p(z) € F[a] | (4R(p) = k) A (deg(p) < d) A (p #0)}

(Rq(k,d) is the set of non-zero polynomials over F' of degree at most d that have exactly k
distinct roots in F'. The multiplicity of the roots can be arbitrary.)

LRy(k,d) © {p() € Fla] | ((L(p) = k) A (4R(p) = k) A (deg(p) < d) A (p # D)}
(LR4(k,d) is the set of non-zero polynomials over F' of degree at most d that have exactly k

linear factors over F' and exactly k distinct roots in F'. An equivalent way is to say that the
polynomials have exactly &k distinct roots in F', all of them with multiplicity 1.)

3The zero polynomial is a special case in which there are g roots but no linear factors. Therefore, in these
definitions,we prefer to define the sets without the zero polynomial.

12

Notice that by definition, LRy(k,d) = Lg(k,d) N Ry(k,d). Since having no linear factors over
F is equivalent to having no roots in F', we get that L,(0,d) = Rq(0,d) = LR4(0,d).

3.2 The Lemmas

The following lemmas regard the sizes of the sets defined above. In each lemma, the first part
provides a formula for calculating the relevant value, whereas the second part provides an upper
bound for this value. In the whole discussion, when we talk about linear factors of a polynomial, we
assume, without loss of generality, that these factors are monic (i.e., in each factor, the coeffecient
of z is 1). Therefore, we can identify a linear factor with an element of the field, i.e., each element
a € F is identified with the linear factor (x — «). Due to obvious reasons, we restrict ourselves to
cases in which d < ¢, i.e., the degree of the polynomial is smaller than the size of the field.

Lemma 3.1
1.)
IL4(0,d)] = [Ry(0,d)] = [LR,(0,d)] = 3 (=1 (q) (1)

i=0 t

24(0,)] = [Ry(0,d)| = [LR,(0,d) < 4+ (5 + 7
Proof: As noticed above, Ly(0,d) = R;(0,d) = LR4(0,d) and therefore, it suffices prove the
lemma for LR, (0, d).

The formula in the first part is an inclusion-exclusion formula. The first summand is the total
number of non-zero polynomials of degree at most d, namely ¢®*' — 1. Now we want to subtract
the number of non-zero polynomials that have at least one root (denoted by a € F'). Every such
polynomial is of the form (z — «) - g(x), where g(z) is a non-zero polynomial with degree at most
d — 1. There are g possible values for o and ¢% — 1 possibilities for g(x). Hence, we subtract
q(¢® — 1). However, every polynomial with 2 roots we counted twice. Such polynomial has the
form (z — a1)(z — az)g(z), where ay, a9 € F are the roots and g(z) is a non-zero polynomial of
degree at most d — 2. Hence, we add (%) (¢~ —1). We continue this argument until we reach the
maximal number of roots, namely, d. This proves the inclusion-exclusion formula in the first part
of the lemma.

For the second part we will write the expression of the first part as a sum of two different sums
and bound each sum separately:

S (1) =S (1) g S ()
=0

i=0 t i=0

In the following calculations, we assume d is odd. This will simplify the expressions bellow.
Then we will show the case in which d is even.
First we bound

d—1
d 3 (4 q
i [4 d—it+1 _ d+1 (2) (2i+1) .
Z(_l) <>q =4 Z T
i=0 i=0
d—1 1 1 d—1 1 .
dt1 i q- (22')!(?1721')! T @ED)(g2 D) 41 i (2i+17)?(q72i)! -2i(g + 1) B
q £t =9 Pz
=0

-1
1=0

13

a
|

—

a

-1

G 9. (ot N ,
= (2 +1)!
S N NS Y1 PRI
L G F TR CTIEE) P R B
=0 =0

Where the last inequality is obtained since the last summand is odd.

In case d is even, we will first bound the above sum when ¢ goes from 0 to d — 1. The same
d+1

d

calculations will hold, since d — 1 is odd. Now we add the last summand, which is (g)q <1

Therefore our upper bound, which holds for arbitrary d, is ¢4*! - (% + %)

< (1) <L
d d!

Now we bound

d 1)it+l qa\ d 1)+l g—1 g—1
S (F) = e (12)+

Where the first inequality is since we have a telescopic sum.
Overall, we get

1 2
d+1 [= “
|LR4(0,d)| < gq (e + d!)

Lemma 3.2

1.

|Lg(k,d)| = |Lq(0,d — k)| - (k +Z - 1)

2k 7112
|Ly(k,d)| < g% I (g + E)

Proof: Let p(z) € Ly(k,d) (i.e., p(z) is a polynomial over F' of degree at most d that has exactly
k linear factors over F'). Therefore, p(z) is of the form f(z) - g(x), where f(z) is a polynomial of
degree k£ which is the product of the k£ monic linear factors of p(z) (notice that since we require
that the linear factors are monic, f(x) is uniquely determined) and g(z) is a polynomial of degree
at most d — k with no linear factors. Thus, g(z) € L4(0,d — k). Ranging over all the possibilities
for f(x) and g(z) we get all the possibilities of p(z).

f(x) is the product of & monic linear factors, where each linear factor is identified with one of
the ¢ elements of F' (notice that the same linear factor may appear more than once in the product).
Hence, the number of possibilities for f(z) is the number of ways to choose a multi-set of k elements
out of a universe of size g, namely, (k+(g_1)) (it can be viewed as the number of possibilities of
throwing k identical balls into ¢ bins). Thus, we get,

|Ly(k, d)| = |Ly(0,d — k)| - (k +z - 1)

This proves the first part of the lemma.

14

For the second part of the lemma we first bound

<k+q—1> Jlbra-1f _@0f 2

k k! =T T

Where the second inequality is due to the fact that the number of linear factors, k, is obviously

bounded by the degree of the polynomial, d, which is smaller than ¢. Finally, by using the upper
bound of lemma 3.1, we have

k+qg—1 _ 1 2 2k 2k 11 2
|Lq<k,d>|=|Lq<o,d—k>|-< :)Sqdk+1(—+a)-qkﬁ=qd+lﬁ(gw)

e

Comment: For small values of k (relative to ¢), a better bound can be obtained. First we
bound

k2
(k+q-1)* <" (k/g+1)" =" [(k/q+ 1)‘1/’“] 17 < k. ke
Which implies
2
Ttk < g1 O (24 2)

Ho\e a@
[
Lemma 3.3
1.
q
LRy,)] = |LRy(0,d — F)| - (k)
& 1 /1 2
d+1_+ (1 4
LR (k) < a7 - <e + d!)
Proof:
Let p(z) € LRy(k,d) (i.e., p(z) is a polynomial over F' of degree at most d that has exactly k
distinct roots in F' and exactly k linear factors over F'). Denote its k distinct roots by ai,...,qx

(for every 1 < j < k,a; € F) and let

f@) €
Obviously, f(z) divides p(z) and p(z) has no other linear factors rather than the factors of f(z).
Hence, p(z) is of the form f(z) - g(x), where g(z) is a polynomial of degree at most d — k£ with no
roots. Clearly, g(z) € LR,(0,d — k).
f(x) is the product of k distinct linear factors, where each linear factor is identified with one of
the ¢ elements of F'. Hence, the number of possibilities for f(x) is the number of ways to choose k
distinct roots out of the ¢ elements of F, namely, (7). Thus, we get,

H§:1($ — ;)

|LRq(k,d)‘ = |LRq(0>d - k)| - (Z)
The second part is proved using lemma 3.1:
k
_ q arp1 (12 ¢ g 1 /1 2
[LRy(k,d)| = |LR,(0,d ~ k)] - (k) N N (e
|

15

Lemma 3.4

1.

d—k .
|RQ(kad)‘ = <Z> ’ Z |RQ(0’d —k— Z)‘ ' (Z * I,j - 1)
=0

1+e/d!
k!

Proof: Let p(z) € Ry(k,d) (i-e., p(z) is a polynomial over F of degree at most d that has exactly
k distinct roots in F') and let f(z) be as in lemma 3.3. f(x) divides p(z) and therefore, p(z)
has at least k linear factors. Let i be such that p(z) has exactly k + i linear factors (obviously,
0 <i<d—k). Let g(x) be the product of the other 7 linear factors of p(x), rather than the ones
in f(z).

Hence, p(z) is of the form f(z) - g(z) - h(z). As in lemma 3.3, the number of possibilities for
f(z)is (}). g(x) is a product of ¢ linear factors, where each linear factor is one of the & distinct
linear factors of f(z) (notice that the same linear factor can appear more than once). Thus, the
number of possibilities for g(x) is (’.Hz*l) (the number of ways to choose a multi-set of i elements
out of a universe of size k). h(z) is a polynomial of degree at most d — k — ¢ with no roots in F,
therefore, h(x) € Ry(0,d — k —i). Summing over all possible values of i, we get

|Bq(k, d)] = i |Rq(0,d—k—1i)|-|LRq(k, k)|- (le_ 1) = (Z) 2_: IR, (0,d—k—1i)|- (”’?_ 1)
=0

=0]

|Ry(k, d)| < g™+

Now,

d—k .
Ryl d)| = (,Z) 3By 0,d— k=)] (”’j‘l) <
1=0
d—k

k d—k . i d+1 i
¢ (1 2) dkiy1 (G+E-1)" ¢ (1 2) i q
4 (2,20, . < 2. B S
A <e ta) 2 S wmleta) e

d+1 d—k |

q 1 2) 1 ap1 1+e/d

2 (24 2. < L i
1 (e ta 1.220 =4 7l

Where the first inequality is by lemma 3.1. 7 ranges between 0 and d—k and therefore i1+k—1 <
d. Together with the fact that d < g we get the second inequality.
Comments:

e A slightly better bound can be obtained. By bounding i + k — 1 < d (without using the fact
that d < ¢), we get (as above)

d+1 d—Fk i d/q
(1, 2) S (1, 2
<1 [(Z4Z E < R T
Ba(k)l < 75 (e+d!) R T T T

e Another bound: By bounding
.) 112 /k S

we get
7 k-e(d—k)/k

d+1 d—k
q 1 2 q d+1 € ¢ 1 2
IRk, d)] < =5 (_+E) 2 <o ta

3.3 A Probabilistic Argument

In this section we prove a lemma which is a slightly different upper bound than the one given
by lemma 3.4 (part 2). This bound will be used in our main result (section 4). This proof uses
a probabilistic argument (in contrast to the algebraic-combinatorial arguments in section 3.2).
This argument may be interesting in its own right, and may be generalized to prove some bounds
regarding multivariate polynomials, in which the combinatorial argument is much more complicated
(see discussion below).

The idea is to view the number of roots of a random polynomial as a sum of random variables.
We will use the fact that there is some independence between the random variables to prove that
the probability that a polynomial has k roots vanishes exponentially in k. Our technical tool will
be the following lemma:

Lemma 3.5 ([SSS93], Theorem 1) Let X1,..., X, € {0,1} be random variables, X = Y1 | X;
and p = E[X]. For every k > 1, if the X;’s are d-wise independent for

d>h= h(Q::u7k) = ’7/1(67;/1;-‘

then,

(1) (/)"
k
()
Intuitively, this lemma states that for proving that a probability vanishes exponentially (as in
the Chernoff-Hoeffding bounds) it is enough to show limited independence (and not necessary full

Pr(X > pk) <

independence).

Lemma 3.6 1
d

|Ry(k, d)] < g1
Proof: Denote the ¢ elements of F' by a1,...,a4. Let p(z) € F[z] be a random polynomial (i.e.,
a polynomial whose coefficients where chosen uniformly from F') of degree at most d. For each

a; € F define an indicator random variable

o 1 if p(ai) =0
Xi = { 0 otherwise

Obviously, for every i, E[X;] = %. Let X = 37, X; and p = E[X] = 1. Tt is well known that
polynomials of degree d generate (d + 1)-wise independent samples (see, e.g., [N92] ch. 16), and

therefore the X;’s are (d + 1)-wise independent. We want to upper bound the probability that the
polynomial has at least k roots. Since k < d < ¢ we have

Hence, we can apply lemma 3.5 and get

(/)"
(-) = (]]:) ~

1
K

17

This means that the fraction of polynomials with at least k£ roots is at most % Formally, 4

1
IRy (k,d)] < g™

which proves the lemma. ° W

A similar probabilistic argument can be used to prove an analogous result regarding multivari-
ate polynomials. In this case, the algebraic-combinatorial argument is much more complicated.
Roughly speaking, this is because in multivariate polynomials, it is not true that a root implies a
linear factor, as in the univariate case (this fact is the basis of the algebraic-combinatorial arguments
in the univariate case).

As above, the random variables are d-wise independent, but here d is the common degree of
all the variables in the polynomial. Since the number of roots &k, can be much more than d (it is
bounded by dg™ !, where n is the number of variables), we cannot use lemma 3.5. Instead, we use
a different lemma, which requires less independence between the random variables:

Lemma 3.7 ([SSS93], Lemma 3) Let Xi,...,X, € {0,1} be random variables , X = > 1 | X;
and p = E[X]. For every k > 1, if the X;’s are d-wise independent for d < h(q, p, k) then,

(@) (u/q)?

k
()
This yields the following result: The fraction of multivariate polynomials over F' of common
degree at most d with n variables that have at least k roots is bounded by

)’

In this section we prove our main result (theorem 7), which is an explicit construction of weak-
designs with d = 12 and p = e?. The construction is essentially the same as the explicit construction
of standard designs with weak parameters in lemma 2.2. Our contribution is a finer analysis, based
on the lemmas of section 3, which shows that the same construction actually yields a weak design
with better parameters. Roughly speaking, each subset is identified with a polynomial over a fixed
finite field. The subsets are constructed such that the intersection between the subsets contains
the values in which the two polynomials (identified with the two subsets) agree on. The proof that
these subsets induce a weak design that the number of values that two polynomials can agree on is
bounded by their maximal degree. This fact suffices for proving the standard designs property, in
which we have to bound the intersection between every two subsets.

However, a much more powerful statement can be said on the number of roots of a polynomial:
not only that the number is bounded by its degree, but the average number of roots is 1 and,
furthermore, the average of the exponentiation of the number of roots is constant (as formalized in
lemmas 3.6 and 3.4). This resembles the definition of weak designs and explains, intuitively, why
the construction yields a weak design. We restate our main result and then prove it:

Pr(X > pk) <

4 Main Result

“The fact that lemma 3.5 works only for k£ > 1 does not bother us since this bound is trivial for & = 0, 1.
®We actually proved a slightly stronger result than the one stated in the lemma: we bounded the number of
polynomials with at least k roots (and not ezactly k roots).

18

Theorem 12 (theorem 7, restated) For every ® m,l € N there exists an explicit weak (m, [, p, d)-
design, with d = 12 and p = e? (where e denotes the base of the natural logarithm).

Proof: The Construction: Let F = GF(l) (recall that we assume that [is a prime power). Since
d = 12, we can identify, in the natural way, each number in the range [d] with an ordered pair
of elements in F. Thus, constructing the design is equivalent to constructing subsets of the set
F?={<a,b>:a,b€ F}.

The subsets will be defined as follows: Given a polynomial p(z) € F|[z], define the subset

Sp o {<a,pla) >:a € F} C F?

The weak design will consist of all such subsets which are indexed by polynomials over F' of degree

logm logm . dﬁf log m _
Togl 15 an integer). Formally, let deg = Togl 1

logl

at most
and let

—1 (we assume, for simplicity, that
def
P = {p(z) € Flz] : deg(p) < deg}

The weak design S is defined as S = {S,} ..

In the following claim we show that S is a weak-design:
Claim 4.1 S is a weak (m,l, p,d)-design.
Proof: We have to show that the properties of weak designs hold:

e All sets S, are subsets of F2, which is identified with [d].
e The size of each subset S, is I.

e The number of subsets is the size of P (i.e., the number of polynomials over F' with degree
at most deg), namely,

logm _
P = 1ot — g CBEE-DH oy

e For every p € P, we have to show that *

Z 2|SPnSf1| S p -m
q€P, q#p

The key idea is that an element < a,b >€ F? is in the intersection of S, and S, if and only if
p(a) = q(a) = b, i.e., p and ¢ agree on a. Obviously, two polynomials agree on a value if and
only if this value is a root of the difference polynomial. Hence, the size of the intersection
of S, and S, is equal to the number of distinct roots of the polynomial p — ¢g. Formally,
|Sp N S| = tR(p — q).

Therefore, ranging over all the polynomials ¢ such that ¢ € P, q # p and considering the size of
SpN S, (as needed to calculate the above sum) is equivalent to ranging over all the polynomials
r (which represent the difference polynomials) such that r € P, r # 0 and considering §R(r).
Hence, we have reduced the problem of calculating the sizes of the intersections into the

5We assume, without loss of generality ,that [is a prime power. If [is not a prime power, pick, e.g., the smallest
power of 2 which is greater than [. This, at most, doubles the value of .
"As noted above, we show how to construct a weak-design of the stronger version, in which for all 1 < i < m,

Z NEEH
i

m

<p.

19

problem of counting how many polynomials are there with each possible number of distinct
roots. This problem is solved in lemma 3.6.

For every p € P,

deg
S olSnsd = 7 gfRlma) = 5™ 9tRM) = §7 9k LRy (, deg)| <

qEP,q#p qEP,g#p r€Pr#0 k=0
deg 1 deg 2k
ZZk.(ldeg_Fl.E):m. F562.7’)’1‘:p.7n
k=0 ’ k=0 "

Where the first inequality is obtained by using the upper bound in lemma 3.6. Using the
bound in the first comment in the proof of lemma 3.4 we can have p = e? - ¢%/4 (% + %),
which, in most cases, is a better bound. However, for the sake of simplicity, we prefered to
state the theorem using the bound of lemma 3.6.

Proving the following claim completes the proof of the lemma:
Claim 4.2 The above construction is explicit.

Proof: We have to describe an algorithm that given 1 < ¢ < m, outputs the set .S; in time
T = poly(logm) and space S = O(logm). Enumerate all polynomials over F' of degree at most
deg by enumerating each one of the deg + 1 coefficients separately (of course any other standard

enumeration will do as well). Given i, divide its logm bits into lfoggT = deg + 1 parts, each part

consists of log! bits. The k** part represents the k* coefficient of the i polynomial. For every
a € GF(l), we pair a with the evaluation of the polynomial on a and translate the pair to an
element in the range [d]. The set S; consists of all these values.Obviously, this algorithm runs in
time T' = poly(log m) and space S = O(logm). N

Comment: The above construction actually works only for cases in which m < I'~1, since the
degree of the polynomials must be smaller than the size of the field (this is a necessary condition
for the lemmas of section 3). 8 However, if we want more subsets, we can take again the same
subsets. Say we need m = ¢ - I!”! subsets for some constant ¢, then for every 1 <i < m

Z?'Smsfl <p-llet 2 < (p+(2/DHl e
J#i

This means we can increase the number of subsets to an arbitrary number, paying only an expo-
nentially additive cost in the value of p. W

5 The General Constructions

In order to obtain the explicit constructions of weak designs as stated in theorems 8 and 9, we
first (in section 5.1) develop some tools for manipulating weak designs. Then, in section 5.2, we
combine these tools with the explicit construction of theorem 7 to get the desired constructions.

8This comment is irrelevant for weak designs that are used in the construction of extractors, since in that case, m
(which is the number of extracted almost uniform bits) is O(2') (I is the logarithm of the length of the source).

20

5.1 Tradeoff Between the Values of p and d

In the previous section we constructed an explicit weak (m, I, p, d)-design for specific values of d

and p (d = > and p = €?). However, theorem 8 is stated for every p > 1 and with d = O (%)
In this section we supply tools to decrease the value of p while increasing the value of d, and vice

versa.

5.1.1 Decreasing the Value of p

The following lemma, is a tool for decreasing the value of p, i.e., given an explicit weak-design with
some value of p we show how to construct an explicit weak-design with a smaller value of p. This
is done while maintaining the value of [. A smaller p means that the bound on the average of the
exponentiations of the intersections between the subsets is smaller. To accomplish this goal, we are
allowed to use a bigger universe (i.e., increase the value of d).

The idea of the construction (inspired by the ”packing” of weak designs in [RRV99a]) is to take
an ordered union of weak-designs, each design on a different disjoint subset of the universe (this
is possible since we are allowed to use a bigger universe). Roughly speaking, the parameter p is
getting smaller since in the ”unioned” weak-design, two subsets that are not taken from the same
?original” weak-design, are disjoint. Two subsets taken from the same ”original” weak-design have
relatively big intersection (since it is related to the original p, which is big). Nevertheless, there
are few such pairs and therefore they don’t contribute too much to the total sum. Overall, we get
a small p, as desired.

Lemma 5.1 If for I,m,d € N and p' > 1 there exists an ezplicit weak (m,l, p',d)-design, then for

every 1 < p < p' there exists an explicit weak (mn,l, p,dn)-design, where n = ’I’:T_ll.

Proof: For simplicity, assume that n is an integer. We view [dn| as the disjoint union of n blocks
By, ... B, each of size d. Our weak design Si,..., Sy, will be defined as follows: For each ¢ € [n]
we let S(;_1)m41,---,Stm C Bt be a copy of a weak (m,[, p',d)-design (as given in the lemma). In
other words, we take an ordered union of n weak (m,l, p, d)-designs, using disjoint subsets of the
universe for each. In our new design, the size of each set is [, the number of sets is mn and the size
of the universe is dn.

Now we have to show that for all 1 < <mn,3 ,; 28051 < p.mn. For every t € [n], denote

the collection of subsets {S_1)m+1s---,Stm} by S,. Notice that if i € S; then for every j ¢ :S’\t, S;
and S; are disjoint and

Z 2150851 < 4 o
JES,j#i

since S; is a weak (m,1, p', d)-design. Thus, for every ¢ € [n] and every i € /S\t, we have

ZQISmSjI — Z olsinS;| 4. Z 2/5iNS;| <
7 €8 j#i ¢S
/

-1
p'-m—l—(n—l)m:(p

+1)-mn=p-mn

The design remains explicit: Given the index i of a subset, we output the i(modn)®* subset
over the block Bp;/p (the subset can be constructed explicitly since the weak-design in each block
is explicit).

21

5.1.2 Decreasing the Value of d

The following lemma is a tool for decreasing the value of d, while increasing the value of p. The
idea of the construction is quite similar to the idea in lemma 5.1, although the opposite goal is
achieved. The reason for this is that in the two constructions we indeed increase the value of d,
however, in the following construction we increase simultaneously the values of d and [by the same
factor. Hence, the value of d is decreased relative to [. It is achieved by taking direct products of
many weak-designs.

For simplifying the following lemma, we will define a slightly stronger version of weak-designs:
A full weak (m,l,p,d)-design is a weak-design (see definition 5), where the second condition is
replaced by the following one: For all 1 < ¢ < m,

m S;NS;
Ej:l 2| i

m

<p
Obviously, every full weak-design is in particular a weak-design.

Lemma 5.2 If for l,m,d € N and p' > 1 there exists an explicit full weak (m, 1, p',d)-design, then

for every p > p' there exists an explicit full weak (m™,1-n,p,d - n)-design, where n = ll?npﬂ,.

Proof: We assume, for simplicity, that n is an integer. We view [dn] as the disjoint union of n
blocks By, ... B, each of size d. For each ¢ € [n] let S* = S7,...,SL, C By be an explicit full weak
(m, 1, p',d)-design . Our design, S, will be the direct product of all the n designs:

s« é) st.
t=1

In other words, each subset in S is a union of n subsets, each one from a different ”small” design.
We now show that S is an explicit full weak (m™,l-n,p,d-n)-design. It is easy to verify that each
subset is of size [- n, the number of subsets is m™ and the size of the universe is dn. To complete
the proof we have to show that for all 1 <4 < m", 37, 2/5iNSil < p.mn.

We will index each subset in S by an n-tuple, (i1,...,%,) € {1,...,m}", such that S;, ;)=
Ut Sf- For all 4 = (i1, ... ,in),

Z 9lSiNS;| — Z ... Z 92 ke S5, 0S5y | —

3=(j1,-55n) J Jn
ZZ ﬁ 9l S, NSjy | — Z Z nl'f PIETA ZQISimSjnI <
g Jn k=1 i dn-1k=1 Jn
n—1 n—2
Z Z H 28 N85l o . < Z Z H 219 0S5l (p')2 . m? <
Ji Jn—1 k=1 J1 Jn—2 k=1
< e < (p')”-m" =p-m"

Where the inequalities are obtained by the fact that each coordinate is a full weak (m, [, p', d)-design.

The design remains explicit: The algorithm gets an index 7 to a subset. First we find the n-tuple
(i1,--.,4,) which i represents. The j* element is from the k def [7/n] design, specifically, it is the
j(modn)*" element of the subset ka. Our subset contains all such elements for 1 < j <[-n. Since
n is smaller than the logarithm of the number of subsets (m"™), the construction remains explicit.

22

5.2 The Constructions

We now have the tools for proving theorems 8 and 9:

Theorem 13 (theorem 8, restated) For every m,l € N and p > 1 there exists an explicit weak
(m,l, p,d)-design such that

1. If p= O(1) then d = O(1?).

2. If p#0(1) and 2" = O(m) then d = O (i)

Proof: We prove each part separately:

1. If p is a constant bigger than e?, this part follows trivially from theorem 7, since a weak
(m,1,e2,1?)-design is also a weak (m, [, p,1%)-design for p > 2. Otherwise, given I,m € N and
e?—1

p < e weletn = 1 = O(1). By applying lemma 5.1 on an explicit weak (%,1,62,12)—
design (guaranteed by theorem 7) we get the desired explicit weak (m, [, p, O(I?))-design.

2. Given I,m € N and p > €2, we let & > 1 be a constant such that 2! < am and let n =

ln(};ia) = O(Inp). We start with an explicit full (ml/”, Lle?+ a,O((%)Z))-design (whose

existence will be proved later on). By applying lemma 5.2 on this design we get the desired

explicit (full) weak (m 1, p, O(%))—design.

It remains to prove the existence of the explicit full weak (ml/ nLlel+a, O((%)z))—design

used above. Since 2/ < a/™m!/™ < am!/™, the above design is guaranteed by the following
simple claim:

Claim 5.3 For every m',l' € N such that 2" = O(m') and for p' = € + « (« is such that
o' < am/) there exists an explicit full weak (m', ', p',d')-design where d' = 1'°.

Proof: The construction is the same as in the proof of theorem 7. For all 1 < ¢ < m/,

Z2|Siﬂ5’j| _ Zz‘siﬂSﬂ 4 2|Si05i| S ezml + 2[’ S (62 + a)m' — plml
J J#i

Theorem 14 (theorem 9, restated) For every l,m € N and 3/m <y < 1/2, there exists an explicit
weak (m, 1,1+ v, d)-design with
1
d:O(F-log—).
Y

Proof: The proof follows the construction of weak-designs via ”packing” in [RRV99a]. The
only difference is that we use explicit weak (m,[,2,O(I?))-designs, rather than non-explicit ones.
This makes the construction explicit, as desired. For the sake of completeness, we restate the
construction.

23

For simplicity, assume that 1+ = 1/(1 —27") and m = 29/(1 + 7). Let dyp = O(I?) and let
d=h-dy=O(I? -1log(1 ++)). We view [d] as the disjoint union of A blocks By, ..., By each of size
dy. For each t € [h], let m; = 297 and ny = 3! my, so 3, my = m.

Now we define our weak design Si,...,Sm,. For each t € [h], we let Sy, 41,...,Sn,+m, C Bt
be an explicit weak (my,l,2,dy)-design as guaranteed by theorem 8. In other words, we take the
ordered union of h weak (my,1,2,dy)-designs using disjoint subsets of the universe for each. The
number of sets is m, the size of the universe is d, and each set is of size [, so we only need to check
that for all i € [m], Ej<1-2|5m5j‘ <p-(m—=1). Fori € {n+1,...,n: +my}, S; is disjoint from
any S; for any j < n; and

i1
Z 215Nl < 9. (my — 1)

j=n¢+1
since Sp,41y-- - Sn,+m, 18 @ weak (my,l,2,dp)-design. Thus, we have
ng 1—1
ZngmSjl - ZQ\SiﬁSﬂ + Z 915iNS;|
j<i j=1 j=ni+1

ne+ 2 (my — 1)
= 27-2<(1+7v)(m-1),

as desired.

We now describe an algorithm that constructs explicitly the design: Given an index ¢ of a
subset, we find the value of ¢ € [h] such that ny < i < ny1. Our subset S; is a subset of B, indexed
by i — n; in the t** design, and it can be computed by the algorithm of claim 4.2. Scanning all
t € [h] takes time T = O(h) = O(log %) = O(logm), where the last equality is due to the fact
that 3/m < 7. Therefore, the algorithm runs in time poly(logm) and space O(logm) and the
construction remains explicit. [l

6 Final Discussion and Open Problems

The main contribution of this work is the realization that the number of roots of a polynomial is
not only bounded by its degree (a fact used in a wide variety of applications), but, typically, is
much smaller. Specifically, the number of roots is exponentially concentrated around its average,
which is 1. In this work, we used this fact to construct explicit weak-designs. However, this fact
may be interesting in other applications as well.

For example, the Reed-Solomon error correcting code (see, e.g., [MS77]) is based on the fact
that the number of roots of a polynomial is bounded by its degree. This implies that the minimal
Hamming distance between every two codewords is n —d, where n is the length of the codeword and
d is the degree of the polynomial that generated the code. In the shed of our results, the following
observation can be made: The average Hamming distance between two codewords is n — 1, and
furthermore, for every codeword the number of codewords which are close to it is exponentially
small.

Another possible way to construct explicit weak-designs for the case that d is smaller than O(?)
and p is big, is by considering multivariate polynomials, analogously to the univariate polynomials
used in the construction in the proof of theorem 7. For every multivariate polynomial with n
variables p(z1,...,z,) we define the subset

def .
Sp = {<ai,a9,...,0,,p(a1,...,a,) >: V1 <i<na; €F} c pntl

24

As in the univariate case, the quality of the design is related to the number of multivariate polyno-
mials over F' of common degree at most d with n variables that have at least k roots. The upper
bound presented in section 3.3) does not suffice for proving the weak designs property. Proving a
better bound may obtain the result.

Another open problem is to find explicit construction of standard designs (and maybe of other
combinatorial designs as well). The constructions may be based on algebraic structures (as our
construction), or may be derived from the explicit construction with weak parameters in lemma
2.2 by combinatorial techniques (e.g., the union of subsets and the direct product in section 5.1).

References

[ASE92] Noga Alon, Joel H. Spencer, and Paul Erdés. The Probabilistic Method. Wiley-Interscience
Series in Discrete Mathematics and Optimization. John Wiley and Sons, Inc., 1992.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230-261, April
1988.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties:
A quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315-343, 1997.

[GZ97] Oded Goldreich and David Zuckerman. Another proof that BPP C PH (and more). FElec-
tronic Colloquium on Computational Complexity Technical Report TR97-045, September 1997.
http://www.eccc.uni-trier.de/eccc.

[Lan68] Serge Lang. Algebraic Structures. Addison-Wesely, 1968.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[MST77] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
North-Holland, 1977.

[N92] Joseph (Sefti) Naor. Proba-
bilistic Methods in Computer Science. Lecture notes, Technion, Spring 1992. Available at
http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html

[NT98] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new construc-
tions. Journal of Computer and System Sciences, 1998. To appear in STOC ‘96 special issue.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49(2):149-167, October 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43-52, February 1996.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of the states in space bounded
computation. Proceedings of the 31st ACM Symposium on Theory of Computing, Atlanta GA,
May 1999.

25

[RRV99a] Ran Raz, Omer Reingold and Salil Vadhan. Extracting all the randomness and reducing
the error in Trevisan’s extractors. Proceedings of the 31st ACM Symposium on Theory of
Computing, Atlanta GA, May 1999.

[RRV99b] Ran Raz, Omer Reingold and Salil Vadhan. Error reduction for extractors. In 40th
Annual Symposium on Foundations of Computer Science, October 1999. TEEE.

[SSS93] Jeanette P. Schmidt, Alan Siegel and Aravind Srinivasan. Chernoff-Hoeffding bounds for
applications with limited independence. Proceedings of the 4th Annual ACM Symposium on
Discrete Algorithms, 1993, pp. 331-340.

[STV99] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the
XOR lemma. In Proceedings of the 31th Annual ACM Symposium on Theory of Computing,
Atlanta GA, May 1999. ACM.

[Sud98] Madhu Sudan. Algebra and Computation. Lecture notes, MIT, Fall 98. Available at
http://theory.lcs.mit.edu/ madhu/FT98/course.html

[SV86] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from semi-
random sources. Journal of Computer and System Sciences, 33(1):75-87, August 1986.

[SZ98] Aravind Srinivasan and David Zuckerman. Computing with very weak random sources. To
appear in SIAM Journal on Computing, 1998. Preliminary version in FOCS ‘94.

[Tre99] Luca Trevisan. Constructions of extractors using pseudo-random generators. In Proceedings
of the 31th Annual ACM Symposium on Theory of Computing, Atlanta GA, May 1999. ACM.

[VV85] Umesh V. Vazirani and Vijay V. Vazirani. Random polynomial time is equal to slightly-
random polynomial time. In 26th Annual Symposium on Foundations of Computer Science,
pages 417428, Portland, Oregon, 21-23 October 1985. IEEE.

[WZ95] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound: Explicit
construction and applications. Technical Report CS-TR-95-21, University of Texas Department
of Computer Sciences, 1995. To appear in Combinatorica.

[Zuc90] David Zuckerman. General weak random sources. In Proceedings of the 81th Symposium
on Foundations of Computer Science, pages 534-543, 1990. IEEE.

[Zuc96] David Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16(4/5):367-391, October/November 1996.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algo-
rithms, 11(4):345-367, 1997.

ECCC ISSN 1433-8092
26 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

