
                

On the Security of Diffie–Hellman Bits

Maria Isabel González Vasco and Igor E. Shparlinski

Abstract. Boneh and Venkatesan have recently proposed a polynomial time
algorithm for recovering a “hidden” element α of a finite field IFp of p elements
from rather short strings of the most significant bits of the remainder modulo
p of αt for several values of t selected uniformly at random from IF∗p. We use
some recent bounds of exponential sums to generalize this algorithm to the
case when t is selected from a quite small subgroup of IF∗p. Namely, our results

apply to subgroups of size at least p1/3+ε for all primes p and to subgroups
of size at least pε for almost all primes p, for any fixed ε > 0. We also
use this generalization to improve (and correct) one of the statements of the
aforementioned work about the computational security of the most significant
bits of the Diffie–Hellman key.

1. Introduction

Let p be an n-bit prime and let g ∈ IFp be an element of multiplicative order T ,
where IFp is the finite field of p elements.

For integers s and m ≥ 1 we denote by (s remm) the remainder of s on
division by m. We also use log z to denote the binary logarithm of z > 0.

In the case of T = p − 1, that is, when g is a primitive root, Boneh and
Venkatesan [2] have proposed a method of recovering a “hidden” element α ∈ IFp
from about n1/2 most significant bits of (αgxi rem p), i = 1, . . . , d, for d =

⌈
2n1/2

⌉

integers x1, . . . , xd, chosen uniformly and independently at random in the interval
[0, p − 2]. This result has been applied to proving security of reasonably small
portions of bits of private keys of several cryptosystems. In particular, in Theorem 2
of [2] the security of the

⌈
n1/2

⌉
+ dlog ne most significant bits of the private key(

gab rem p
)

of the Diffie–Hellman cryptosystem with public keys (ga rem p) and(
gb rem p

)
with a, b ∈ [0, p− 2] is considered.

Namely, a method has been given to recover, in polynomial time, the Diffie–
Hellman key

(
gab rem p

)
from (ga rem p) and

(
gb rem p

)
, using an oracle which

gives only the
⌈
n1/2

⌉
+ dlog ne most significant bits of the Diffie–Hellman key.

Unfortunately the proof of Theorem 2 in [2] is not quite correct. Indeed, in
order to apply Theorem 1 of that paper to h = gb this element must be a primitive
root of IFp. Thus the proof of Theorem 2 of [2] is valid only if gcd(b, p− 1) = 1 (of
course the same result holds in the case gcd(a, p−1) = 1 as well). However, even in
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the most favourable case when l = (p−1)/2 is prime, only 75% of pairs (a, b) satisfy
this condition. Certainly breaking a cryptosystem in 75% of the cases is already
bad enough (even in 0.75% is) but unfortunately for the attacker (using the above
oracle), these weak cases can easily be described and avoided by the communicating
parties. The proof of Theorem 3 of [2] suffers from a similar problem.

Here we use new bounds of exponential sums from [7] to extend some results
of [2] to the case of elements g of arbitrary multiplicative order T , provided that
T ≥ p1/3+ε. This allows us to prove that the statement of Theorem 2 of [2] holds
for all pairs (a, b). We also prove that for almost all primes p similar results hold
already for T ≥ pε.

A survey of similar results for other functions of cryptographic interest has
recently been given in [5].

Throughout the paper the implied constants in symbols ‘O’ may occasiona-
lly, where obvious, depend on the small positive parameter ε and are absolute
otherwise; they all are effective and can be explicitly evaluated.

2. Distribution of gx Modulo p

For integers λ, r and h let us denote by Nλ,g,p(r, h) the number of x ∈ [0, T − 1]
for which (λgx rem p) ∈ [r + 1, r + h].

We need the following asymptotic formula which shows that Nλ,g,p(r, h) is

close to its expected value Th/p, provided that T is of larger order than p1/3.

Lemma 2.1. For any ε > 0 there exists δ > 0 such that for any element g ∈ IFp of

multiplicative order T ≥ p1/3+ε the bound

max
0≤r,h≤p−1

max
gcd(λ,p)=1

∣∣∣∣Nλ,g,p(r, h)− Th

p

∣∣∣∣ = O
(
T 1−δ)

holds.

Proof. We remark that Nλ,g,p(r, h) is the number of solutions x ∈ {0, . . . , T − 1}
of the congruence

λgx ≡ y (mod p), y = r + 1, . . . , r + h.

Using the identity (see Exercise 11.a in Chapter 3 of [17])

p−1∑

c=0

exp (2πicu/p) =

{
0, if u 6≡ 0 (mod p);
p, if u ≡ 0 (mod p);

we obtain

Nλ,g,p(r, h) =
1

p

T−1∑

x=0

r+h∑

y=r+1

p−1∑

c=0

exp (2πic (λgx − y) /p)

=
1

p

p−1∑

c=0

T−1∑

x=0

exp (2πicλgx/p)

r+h∑

y=r+1

exp (−2πicy/p) .
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Separating the term Th/p corresponding to c = 0 we obtain

∣∣∣∣Nλ,g,p(r, h)− Th

p

∣∣∣∣ ≤
1

p

p−1∑

c=1

∣∣∣∣∣
T−1∑

x=0

exp (2πicλgx/p)

∣∣∣∣∣

∣∣∣∣∣
r+h∑

y=r+1

exp (−2πicy/p)

∣∣∣∣∣

=
1

p

p−1∑

c=1

∣∣∣∣∣
T−1∑

x=0

exp (2πicλgx/p)

∣∣∣∣∣

∣∣∣∣∣
r+h∑

y=r+1

exp (2πicy/p)

∣∣∣∣∣ .

We estimate the sum over x by using the bound

max
gcd(c,p)=1

∣∣∣∣∣
T−1∑

x=0

exp (2πicgx/p)

∣∣∣∣∣ = O (B(T, p)) , (1)

where

B(T, p) =





p1/2, if T ≥ p2/3;
p1/4T 3/8, if p2/3 > T ≥ p1/2;
p1/8T 5/8, if p1/2 > T ≥ p1/3;

(2)

which is essentially Theorem 3.4 of [7]. Using the estimate

max
0≤r,h≤p−1

p−1∑

c=1

∣∣∣∣∣
r+h∑

y=r+1

exp (2πicy/p)

∣∣∣∣∣ = O(p log p),

see Exercise 11.c in Chapter 3 of [17], we obtain

max
0≤r,h≤p−1

∣∣∣∣Nλ,g,p(r, h)− Th

p

∣∣∣∣ = O (B(T, p) log p) .

It is easy to see that for any ε > 0 there exists δ > 0 such that B(T, p) = O(T 1−2δ)
for T ≥ p1/3+ε and the result follows. ut

In the next statement we show that for almost all primes the lower bound
T ≥ p1/3+ε can be brought down to T ≥ pε.

Lemma 2.2. Let Q be a sufficiently large integer. For any ε > 0 there exists δ > 0
such that for all primes p ∈ [Q, 2Q], except at most Q5/6+ε of them, and any
element g ∈ IFp of multiplicative order T ≥ pε the bound

max
0≤r,h≤p−1

max
gcd(λ,p)=1

∣∣∣∣Nλ,g,p(r, h)− Th

p

∣∣∣∣ = O
(
T 1−δ)

holds.

Proof. The proof is analogous to the proof of Lemma 2.1 using in this case The-
orem 5.5 of [7] instead of (1) and (2). For each prime p ≡ 1 (mod T ) we fix an
element gp,T of multiplicative order T . Then Theorem 5.5 of [7] claims that for
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any U > 1 and any integer ν ≥ 2, for all primes p ≡ 1 (mod T ) except at most
O(U/ logU) of them, the bound

max
gcd(c,p)=1

∣∣∣∣∣
T−1∑

x=0

exp
(
2πicgxp,T /p

)
∣∣∣∣∣ = O

(
Tp1/2ν2

(
T−1/ν + U−1/ν2

))
,

holds. We remark that the value of the above exponential sum does not depend
on the particular choice of the element gp,T .

Taking

ν =

⌊
1

ε

⌋
+ 1 and U = Q1/2+ε/2,

after simple computation we obtain that there exists some δ > 0, depending only
on ε, such that for any fixed T ≥ Qε/2 the bound

max
gcd(c,p)=1

∣∣∣∣∣
T−1∑

x=0

exp
(
2πicgxp,T /p

)
∣∣∣∣∣ = O

(
T 1−2δ

)
, (3)

holds for all except O(Q1/2+ε/2) primes p ≡ 1 (mod T ) in the interval p ∈ [Q, 2Q].
As it follows from (1) and (2), a similar bound also holds for T ≥ Q1/3+ε/2. So
the total number of exceptional primes p for which (3) does not hold for at least
one T ≥ pε > Qε/2 is O

(
Q5/6+ε

)
.

Using the bound (3) in the same way as we have used (1) and (2) in the proof
of Lemma 2.1 we derive the desired result. ut

Certainly in both Lemma 1 and Lemma 3 the dependence of δ on ε can be
made explicit (as a linear function of ε).

3. Lattices

As in [2], our results rely on rounding techniques in lattices. We therefore review
a few related results and definitions.

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRs. The set of
vectors

L = {z : z =

s∑

i=1

tibi, t1, . . . , ts ∈ ZZ}

is called an s-dimensional full rank lattice. The set {b1, . . . ,bs} is called the basis
of L.

In [1] Babai describes a polynomial time algorithm which, for given a lattice
L and a vector r = (r1, . . . , rs) ∈ IRs, finds a lattice vector v = (v1, . . . , vs)
satisfying the inequality
(

s∑

i=1

(vi − ri)2

)1/2

≤ 2s/4 min





(
s∑

i=1

(zi − ri)2

)1/2

, z = (z1, . . . , zs) ∈ L



 .
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That is, a given vector can be rounded in polynomial time to an approximately
closest vector in a given lattice. The above algorithm uses the lattice basis re-
duction algorithm of Lenstra, Lenstra and Lovász [9], see also [14] for some more
recent and stronger results.

For integers x1, . . . , xd, selected in the interval [0, T − 1], we denote by
Lg,p (x1, . . . , xd) the d+ 1-dimensional lattice generated by the rows of the follow-
ing (d+ 1)× (d+ 1)-matrix




p 0 0 . . . 0 0
0 p 0 . . . 0 0

...
...

0 0 0 . . . p 0
t1 t2 t3 . . . td 1/p




(4)

where ti = (gxi rem p), i = 1, . . . , d.
The following result is a generalization of Theorem 5 of [2] (which corresponds

to the case T = p− 1).

Lemma 3.1. Let d = 2
⌈
n1/2

⌉
and µ = n1/2/2 + 3. Let α be a fixed integer in the

interval [0, p − 1]. For any ε > 0, sufficiently large p, and any element g ∈ IFp
of multiplicative order T ≥ p1/3+ε the following statement holds. Choose integers
x1, . . . , xd uniformly and independently at random in the interval [0, T − 1]. Then

with probability P ≥ 1− 2−n
1/2

for any vector u = (u1, . . . , ud, 0) with
(

d∑

i=1

((αgxi rem p)− ui)2

)1/2

≤ p2−µ,

all vectors v = (v1, . . . , vd, vd+1) ∈ Lg,p (x1, . . . , xd) satisfying

(
d∑

i=1

(vi − ui)2

)1/2

≤ p2−µ,

are of the form

v = ((βgx1 rem p), . . . , (βgxd rem p), β/p)

with some β ≡ α (mod p).

Proof. As in [2] we define the modular distance between two integers β and γ as

dist p(β, γ) = min
b∈ZZ
|β − γ − bp| = min {((β − γ) rem p) , p− ((β − γ) rem p)} .

Let x be an integer chosen uniformly at random in the interval [0, T −1]. It follows
from Lemma 2.1 that for any β and γ with β 6≡ γ (mod p) the probability P (β, γ)
of

dist p(βg
x, γgx) > p2−µ+1

for an integer x chosen uniformly at random in the interval [0, T − 1] is

P (β, γ) = 1− 2−µ+2 +O
(
T−δ

)
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for some δ > 0, depending only on ε. Hence

P (β, γ) ≥ 1− 5

2µ

provided that p is large enough.
Therefore, for any β 6≡ α (mod p),

Pr
[
∃i ∈ [1, d] | dist p(βg

xi , αgxi) > p2−µ+1
]

= 1− (1− P (α, β))d ≥ 1−
(

5

2µ

)d
,

where probability is taken over integers x1, . . . , xd chosen uniformly and indepen-
dently at random in the interval [0, T − 1].

Since for β 6≡ α (mod p) there are only p − 1 possible values for (β rem p),
we obtain

Pr
[
∃β 6≡ α (mod p), ∃i ∈ [1, d] | dist p(βg

xi , αgxi) > p2−µ+1
]

≥ 1− (p− 1)

(
5

2µ

)d
> 1− 2−n

1/2

because

d(µ− log 5) >
⌈
n1/2

⌉
n1/2 + 2

⌈
n1/2

⌉
(3− log 5) > log p+ n1/2.

The rest of the proof is identical to the proof of Theorem 5 of [2], we outline
it for the sake of completeness.

Let us fix some integers x1, . . . , xd with

min
β 6≡α (mod p)

min
i∈[1,d]

dist p(βg
xi , αgxi) > p2−µ+1. (5)

Let v be a lattice point satisfying

(
d∑

i=1

(vi − ui)2

)1/2

≤ p2−µ.

Clearly, since v ∈ Lg,p (x1, . . . , xd), there are integers β, z1, . . . , zd such that

v = (βt1 − z1p, . . . , βtd − zdp, β/p),
where, as in (4), ti = (gxi rem p), i = 1, . . . , d.

If β ≡ α (mod p), then for all i = 1, . . . , d we have βti − zip = (βti rem p),
for otherwise there would be j ∈ {1, . . . , d} so that |vj − uj | > p2−µ.

Now suppose that β 6≡ α (mod p). In this case we have

(
d∑

i=1

(vi − ui)2

)1/2

≥ min
i∈[1,d]

dist p(βti, ui)

≥ min
i∈[1,d]

( dist p(βti, αti)− dist p(ui, αti))

> p2−µ+1 − p2−µ = p2−µ
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that contradicts to our assumption. As we have seen, the condition (5) holds with

probability exceeding 1− 2−n
1/2

and the result follows. ut

For an integer k ≥ 1 we define fk(t) by the inequalities

(fk(t)− 1)
p

2k
≤ (t rem p) < fk(t)

p

2k
.

Thus, roughly speaking, fk(t) is the integer defined by the k most significant bits
of (t rem p).

Using Lemma 3.1 in the same way as Theorem 5 is used in the proof of
Theorem 1 of [2] we obtain

Lemma 3.2. Let d = 2
⌈
n1/2

⌉
and k =

⌈
n1/2

⌉
+ dlog ne. For any ε > 0, sufficiently

large p and any element g ∈ IFp of multiplicative order T ≥ p1/3+ε, there exists a
deterministic polynomial time algorithm A such that for any integer α ∈ [1, p− 1]
given 2d integers

ti = (gxi rem p) and si = fk (αti) , i = 1 . . . , d,

its output satisfies

Pr
x1,... ,xd∈[0,T−1]

[A (t1, . . . , td; s1, . . . , sd) = α] ≥ 1− 2−n
1/2

if x1, . . . , xd are chosen uniformly and independently at random in the interval
[0, T − 1].

Proof. We follow the same arguments as in the proof Theorem 1 of [2] which we
briefly outline here for the sake of completeness. We refer to the first d vectors in
the defining matrix of Lg,p (x1, . . . , xd) as p-vectors.

Let us consider the vector r = (r1, . . . , rd, rd+1) where

ri = si
p

2k
, i = 1, . . . , d, and rd+1 = 0.

Multiplying the last row vector (t1, . . . , td, 1/p) of the matrix (4) by α and sub-
tracting certain multiples of p-vectors, we obtain a lattice point

uα = (u1, . . . , ud, α/p) ∈ Lg,p (x1, . . . , xd)

such that

|ui − ri| < p2−k, i = 1, . . . , d.

Therefore,
(
d+1∑

i=1

(ui − ri)2

)1/2

≤ p(d+ 1)1/22−k.
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Now we can use the Babai algorithm [1] to find in polynomial time a lattice vector
v = (v1, . . . , vd, vd+1) ∈ Lg,p (x1, . . . , xd) such that

(
d∑

i=1

(vi − ri)2

)1/2

≤ 2(d+1)/4 min





(
d+1∑

i=1

(zi − ri)2

)1/2

, z = (z1, . . . , zd, zd+1) ∈ L





≤ 2(d+1)/4p(d+ 1)1/22−k ≤ p2−µ,
where µ = n1/2/2 + 3, provided that n is sufficiently large. We also have

(
d∑

i=1

(ui − ri)2

)1/2

≤ pd1/22−k ≤ p2−µ.

Applying Lemma 3.1, we see that v = uα with probability at least 1−2−n
1/2

, and
therefore, α can be recovered in polynomial time. ut

Accordingly, using Lemma 2.2 instead of Lemma 2.1, in a similar way we
obtain that for almost all primes much smaller values of T can be considered.

Lemma 3.3. Let Q be a sufficiently large integer. For any ε > 0 there exists δ > 0
such that for all primes p ∈ [Q, 2Q], except at most Q5/6+ε of them, and any ele-
ment g ∈ IFp of multiplicative order T ≥ pε there exists a deterministic polynomial
time algorithm A such that for any integer α ∈ [1, p− 1] given 2d integers

ti = (gxi rem p) and si = fk (αti) , i = 1 . . . , d,

its output satisfies

Pr
x1,... ,xd∈[0,T−1]

[A (t1, . . . , td; s1, . . . , sd) = α] ≥ 1− 2−n
1/2

if x1, . . . , xd are chosen uniformly and independently at random in the interval
[0, T − 1].

4. Security of the Most Significant Bits of the Diffie–Hellman Key

We are ready to prove the main results.
Let g ∈ IFp be multiplicative order T . probabilistic polynomial time algorithm

which for any pair (a, b) ∈ [0, T −1]2, For each integer k define the oracle Ok,g as a
‘black box’ which, any pair (x, y) ∈ [0, T − 1]2, given the values of X = (gx rem p)
and Y = (gy rem p) outputs the value of fk (gxy).

Theorem 4.1. Let k =
⌈
n1/2

⌉
+ dlog ne. For any ε > 0, sufficiently large p and

any element g ∈ IFp of multiplicative order T ≥ p1/3+ε, there exists a probabilistic
polynomial time algorithm which for any pair (a, b) ∈ [0, T − 1]2, given the values
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of A = (ga rem p) and B = (gb rem p), makes O
(
n1/2

)
calls of the oracle Ok,g and

computes
(
gab rem p

)
correctly with probability 1 +O

(
2−n

1/2
)

.

Proof. Given a pair (a, b) ∈ [0, T − 1]2 let us select an integer r ∈ [0, T − 1]
uniformly at random. We compute

gr = (Bgr rem p)

thus gr ≡ gb+r (mod p).

The probability that gcd(b+ r, T ) ≥ Tp−1/3−ε/3 is at most τ(T )T−1p1/3+ε/3

where τ(T ) is the number of positive integer divisors of T . Indeed, for any divisor
D|T with D ≥ Tp−1/3−ε/3 there are at most T/D ≤ p1/3+ε/3 values of s ∈ [0, T−1]
with gcd(s, T ) = D.

Using the bound τ(T ) = O
(
T ε/3

)
, see Theorem 5.2 of Chapter 1 of [13], we

obtain that the probability of gcd(b+ r, T ) ≥ Tp−1/3−ε/3 is at most

O
(
T−1p1/3+2ε/3

)
= O

(
p−ε/3

)
= O

(
2−n

1/2
)
.

In the opposite case, when gcd(a + r, T ) ≤ Tp−1/3−ε/3, the multiplicative
order of gr is

Tr =
T

gcd(b+ r, T )
≥ p1/3+ε/3.

Let αr ≡ ga(b+r) (mod p). Then

fk (αrg
x
r ) = fk

(
g(a+x)
r

)
= fk

(
g(a+x)(b+r)

)
.

Now we can use the oracle Ok,g with (gxA rem p) and (grB rem p) to evaluate
fk (αrg

x
r ) for an integer x chosen uniformly at random in the interval [0, p − 1].

Because Tr|p− 1 the values of (x remTr) are uniformly distributed in the interval
[0, Tr − 1] as well, thus Lemma 3.2 can be applied. Therefore, one can construct a
probabilistic polynomial time algorithm that:

• Selects a random r ∈ [0, T − 1].
• Applies algorithm A from Lemma 3.2 (now gr plays the role of g in the

conditions of Lemma 3.2). This algorithm makes O
(
n1/2

)
calls to the

oracle Ok,g.
• Outputs the correct value of αr with probability at least 1−O

(
2−n

1/2
)

.

Indeed, the only possible source of error is either the case Tr ≤ p1/3+ε/3 or the
probability error of the algorithm of Lemma 3.2. The probability of both events is

O
(

2−n
1/2
)

.

Remarking that

gab ≡ αrA−r (mod p),

we obtain the desired result. ut
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It is easy to see that Theorem 4.1 is nontrivial for any T ≥ p1/3+ε. In a
similar way, Lemma 2.2 produces a result which holds for almost all primes p and
is non-trivial for T ≥ pε.

Theorem 4.2. Let k =
⌈
n1/2

⌉
+ dlog ne. For any ε > 0 and for all primes p ∈

[2n−1, 2n − 1], except at most 2(5/6+ε)n of them, and any element g ∈ IFp of mul-
tiplicative order T ≥ pε the following statement holds: There exists a probabilistic
polynomial time algorithm which for any pair (a, b) ∈ [0, T − 1]2, given the values
of A = (ga rem p) and B = (gb rem p), makes O

(
n1/2

)
calls of the oracle Ok,g and

computes
(
gab rem p

)
correctly with probability 1 +O

(
2−n

1/2
)

.

5. Remarks

First of all we note that the constants in above estimates are effective and can be
explicitly evaluated.

It would be very interesting to replace the condition T ≥ pε for the smallest
size of the multiplicative order of g in Lemma 2.2 by a weaker condition of the form
T ≥ (log p)c with some constant c. Although a more careful analysis of the proof
of Theorem 5.5 of [7] should allow to replace pε with a slower growing function, it
seems unlikely that the present method can be applied to T as small as a power
of log p.

Our results can also be applied to several other cryptosystems based on ex-
ponentiation in finite fields, which have been considered in [2], except the Shamir
message passing scheme, see [2, 3] (this scheme is also described in Protocol 12.22
in [11]). Unfortunately the proof of Theorem 3 in [2] suffers from the same prob-
lem as the proof of Theorem 2 of that paper. Namely, for the ElGamal scheme,
see [2, 3] as well as Section 8.4 from [11], it produces a result which applies only
to at most 50% of the cases and it cannot be applied to the the Shamir message
passing scheme at all. Indeed, in this scheme the exponent x of the corresponding
multiplier gx must satisfy the additional condition gcd(bx + 1, p − 1) = 1, with
some b, gcd(b, p− 1) = 1, thus gx runs through some special subset of IF∗p (even if
g is a primitive root) rather than through the whole IF∗p and thus Theorem 1 of [2]
does not apply. Our results in their present form cannot be used for this problem
directly, however it has been shown in [6] that a modification of the technique of
this paper, combined with some elementary sieve method produce similar results
for the Shamir message passing scheme.

Besides the mentioned in [2, 3] cryptosystems several other schemes can
be studied as well. For example, very similar results hold for the Matsumoto–
Takachima–Imai key-agreement protocol, see Section 12.6 of [11].

The results of [3] can be generalized in a similar way. To do so one can use
the bound of exponential sums of Theorem 3.4 of [7] to study the distribution of
the sums (gx1 + . . .+ gxr rem p) and thus obtain an analogue of Lemma 2.4 of [3].
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One can also extend Theorem 4.1 to the case of Diffie-Hellman encryption
modulo an arbitrary composite integer m ≥ 2. Indeed, using the well-known bound

max
gcd(c,m)=1

∣∣∣∣∣
T−1∑

x=0

exp (2πicgx/m)

∣∣∣∣∣ ≤ m
1/2,

see Theorem 10 of Chapter 1 in [8] or Theorem 8.2 in [12], instead of (1) and (2),
one can obtain similar results for elements g, gcd(g,m) = 1, of multiplicative
order T modulo m such that T ≥ m1/2+ε. In fact, Lemma 3.2 can be extended
to elements ti chosen uniformly and independently at random from any subgroup
G of the group of units modulo m, provided that the cardinality of G satisfies
#G ≥ m1/2+ε.

As we have mentioned, similar but somewhat more involved technique can be
applied to studying the bit security of the Shamir message passing scheme, see [6].

Finally, we remark that somewhat similar problem for extensions of finite
fields have been considered in [16]. The results of that paper and some of their
improvements in [15] have applications to the security of the new cryptosystem
designed in [4, 10].
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12 M. I. González Vasco and I. E. Shparlinski

[10] A. K. Lenstra and E. R. Verheul, The XTR public key system, Proc. of Crypto’2000,
Springer-Verlag, Berlin, (to appear).

[11] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, FL, 1996.

[12] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull.
Amer. Math. Soc., 84 (1978), 957–1041.

[13] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957.

[14] C. P. Schnorr, A hierarchy of polynomial time basis reduction algorithms, Theor.
Comp. Sci., 53 (1987) 201–224.

[15] I. E. Shparlinski, Security of polynomial transformations of the Diffie–Hellman key,
Preprint, 2000.

[16] E. R. Verheul, Certificates of recoverability with scalable recovery agent security,
Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1751 (2000), 258–275.

[17] I. M. Vinogradov, Elements of number theory, Dover Publ., New York, 1954.

Department of Mathematics, University of Oviedo,
Oviedo, 33007, Spain
E-mail address : mvasco@orion.ciencias.uniovi.es

Department of Computing, Macquarie University,
Sydney, NSW 2109, Australia
E-mail address : igor@comp.mq.edu.au


