Electronic Collogquium on Computational Complexity, Report No. 46 (2000)

New Bounds on the OBDD-Size of Integer Multiplication
via Universal Hashing

Philipp Woelfel

FB Informatik, .S2, Univ. Dortmund, 44221 Dortmund, Germany
woelfel @1s2.cs.uni-dortmund.de

Abstract. Ordered binary decision diagrams (OBDDs) nowadays belong
to the most common representation types for Boolean functions. Although
they allow important operations such as satisfiability test and equality test
to be performed efficiently, their limitation lies in the fact, that they may
require exponential size for important functions. Bryant [8] has shown
that any OBDD-representation of the function MUL,,_; ,,, which com-
putes the middle bit of the product of two n-bit numbers, requires at
least 2/® nodes. This paper improves this bound to /2 /96 by a new
technique, using a recently found universal family of hash functions [23].
As a result, one cannot hope anymore to find reasonable small OBDDs
even for the multiplication of relatively short integers, since for only a
64-bit. multiplication millions of nodes are required. Further, a first non-
trivial upper bound of 7/3 - 21113 for the OBDD size of MUL,,—1 , is
provided.

1 Introduction and Results

Binary Decision Diagrams (BDDs), introduced by Lee [15] and Akers [1], are
a well established representation type of Boolean functions. While the general
model has a large representational power and allows the simulation of any other
general model of computation, its generality also has certain severe drawbacks.
They lie in the NP-hardness of several important operations, that should be
available for a representation serving as a dynamic data structure (see also [21]).
Among these operations are e.g. the equivalence test (which tests whether two
representations describe the same function), the satisfiability test (which tests
whether there exists a satisfying input for the represented function), or the
minimization problem (which is to minimize the size of the representation of a
given function).

In order to overcome these drawbacks, Bryant [7] has introduced restricted
BDDs, called ordered binary decision diagrams (OBDDs).

Definition 1 Let X,, = {z1,...,2,} be a set of Boolean variables.

1. A wariable ordering m on X, is a permutation of the indices {1,...,n},
leading to the ordered list z(1), ..., Zz(n) of the variables.

ECCC

ISSN 1433-8092

2. A m-OBDD on X, for a variable ordering 7 is a directed acyclic graph
with the following properties: Each sink is labeled by a constant 0 or 1.
Each inner node is labeled by a variable from X,, and has two outgoing
edges, one of them labeled by 0, the other by 1. If an edge leads from a
node labeled by z; to a node labeled by z;, then z -1(;) < z;-1(;). This
means that any path on the graph passes the nodes in an order respecting
the variable ordering .

3. A node v of a m-OBDD is said to compute a Boolean function f, :
{0,1}* — {0,1}, if for any @ = (ay,...,a,) € {0,1}", the path start-
ing from v and leading from any z; node over the edge labeled by the
value of q;, finishes at the sink with label f(a). A 7=-OBDD with a root v
is said to compute a Boolean function f, if v computes f.

4. The size of a m-OBDD is the number of its nodes. The m-OBDD size of
a Boolean function f (short: m# — OBDD(f)) is the size of the minimum
7-OBDD computing f. Finally, the OBDD size of f (short: OBDD(f)) is
the minimum of 7 — OBDD(f) for all variable orderings .

Efficient algorithms on m-OBDDs are known generally for all important op-
erations, as e.g. the ones mentioned above (for an in-depth discussion of OBDDs
and their operations see [21]). The size of a 7-OBDD though, can be quite sensi-
tive to the chosen variable ordering m, and finding a variable ordering leading to
small or even minimal =-OBDDs is a hard problem (see [4,7,18]). Furthermore,
since there exist 22" Boolean functions of n variables, it can be seen that almost
all functions require an exponential number of elements in any realization by
networks using only primitive elements. However, this still is not disturbing as
long as for all practical relevant families of functions small representations of
a certain kind exist. Therefore, one is interested in finding exponential lower
bounds for the size of OBDDs (and other representation types) computing im-
portant families of functions, such as integer multiplication.

Definition 2 The Boolean function MUL ,, : {0, 1}°" = {0, 1} computes the
bit zx of the product (z2,_1 . ..z0) of two integers (yn_1...y0) and (2p_1...20).

The first step towards bounding the size of OBDDs for integer multiplication
was done by Bryant in 1986 [7]. He showed, that for any variable ordering
there exists an index k, such that the m-OBDD size for MULy , is at least
27/8 This result though, would still allow the possibility that one might obtain
polynomial size OBDDs for all functions MUL, ,, by choosing different variable
orderings for different output bits. In 1991, Bryant found that computing the
middle bit of multiplication (that is MUL,_y) requires a m-OBDD containing
2"/8 nodes for any variable ordering 7 [8]. More precisely, he showed that for
any 1 <k <n, OBDD(MULg_; ,) and OBDD(MUL3,_;_1 ,) have a value of
at least 25/8.

Although this proves the exponential size of OBDDs for multiplication, the
bound is - as stated e.g. by Bollig and Wegener in [5] - not satisfactory. This is

because Bryant’s bound would still allow the possibility that one can construct
64-bit multipliers represented by OBDDs containing only 256 nodes, while on
the other hand it is widely conjectured that OBDDs computing MUL,,_; ,, have
a size of at least 2”. This would mean, that such a multiplier could not even
be realized with millions of nodes. Since one would like to use OBDDs for
”realistic” applications, such as verification of multipliers, one is interested in
either finding such small constructions or a better lower bound. The following
result, which is proven in the next two sections, provides the second alternative:

Theorem 1 Any OBDD computing MULy,_1 ,, has a size of at least 217721 /96.

This bound shows that any OBDD for 64-bit multiplication must be constructed
of more than 44 million nodes and thus demonstrates a true weakness of the
representation type. The technique leading to this result is new. It highly relies
on a recently found universal family of hash functions [23] and makes use of a
new lemma showing how such functions distribute arbitrary sets over the range.
Universal hashing is introduced in the next section.

Since it is generally believed though, that the true bound on the OBDD size
for MUL, _1 , is still larger, it is of interest to have an upper bound, too. Note,
that for any Boolean function on m variables, there exists an OBDD of size
(2+ o(1))2™ /m [6], so a trivial upper bound for OBDD(MUL,,_1 ,) is roughly
227 /n. The following upper bound, proved in section 4, is the first non-trivial
one.

Theorem 2 There exists an OBDD for MUL,,_1 ,, having a size of 7/3 - 24n/3,

The bound shows, that the middle bit of a 16-bit multiplication can be computed
by an OBDD containing less than 6.2 million nodes. This is remarkable, since
approaches to build OBDDs from circuits for verifying purposes have not been
successful for 16-bit multipliers, yet.

2 Universal Hashing

The concept of universal hashing was introduced by Carter and Wegman in
1979 [9]. While one of its original purposes was to use randomization in hashing
schemes instead of relying on the distribution of the inputs, it has found over the
years a large variety of applications in areas of all different kinds. They range
from algorithms for the various types of hashing based dictionaries [9,12,13]
over cryptographic aspects as message authentication [2,17] up to complexity
theoretical statements [14,20].

Universal hash families are usually defined by using the following notation:
Let H be a family of hash functions U — R. U and R are called universe and
range, respectively. For arbitrary z,z’ € U and h € H, we define

5z, 2') = {1 if z # 2’ and h(z) = h(z')

0 otherwise.

If one or more of h, and 2’ are replaced in &, (z,2’) by sets, then the sum is
taken over the elements from these sets. E.g., for H CH, V C U and z € U,

dg (2, V) means
Z Z Sn(z,).

heH o'€eV

Definition 3 A family H of hash functions U — R is universal, if for any two
distinct z,2’ € U
/ |7
Iy (z,2") < R

A stronger definition of so-called ”strongly universal hash families” was
given in [22]. Among the many applications, there were also interesting results
concerning branching programs (or equivalently BDDs). So, Mansour, Nisan
and Tiwari [16] investigated the computational complexity of strongly univer-
sal hashing, and gave a lower bound for the time-space tradeoff of branching
programs computing the functions of such families. Further, Beame, Tompa
and Yan [3] have found results on the communication-space tradeoff of strongly
universal hash families in a general model of two communicating branching pro-
grams.

For OBDDs, it is not possible to show a general exponential lower bound for
universal hash families. E.g., the convolution of two bit strings can be viewed
as a strongly universal hash family [16], but it can be easily seen that for any
output bit of the convolution, there exists a variable ordering 7 leading to a
linear size m-OBDD.

The property of universal hash families we will use here, can be described in
the following way: If there are two large enough subsets of the universe given,
then there exists a hash function, so that the function values of the elements
from each each set cover a large fraction of the range. This is in a way a twisted
version of the known results, telling that there exists a function under which
the number of collisions of elements from a set is small.

For a function h : U — R and a subset M C U, define A(M) to be the image
of M under h, namely

h(M):={ye R| 3z € M: h(zx) =y}

Lemma 1 Let H be a universal family of hash functions U — R and 0 < e < 1.
Then for arbitrary M, N C U with

M| =N > 2R~ 1) ;.

— €

there exists a hash function h € H such that h(M) and h(N) contain more than
€|R| elements each.

Proof: Let » = |R|, m = |M| = |N| and for A € H let the random variable
X be the sum of 6, (M, M) and §, (N, N). By the universal property of H, we

obtain for a randomly chosen function h an upper bound for the expectation of
Xhl

ROESRED DI AT o DI NOTON)
oo’ €M y,y'eEN
c#tz! y#y’

< i -)4 v -1t
2

This means by the probabilistic method, that there exists an hg € H with
2
Xny < —m(m—1). (1)
, v v
In order to prove that this hq fulfills the claim, we assume that ho(M)

contains at most er elements. By summing over the ordered pairs of elements
in ho_l(y) N M for each y € ho(M), we get

(M M) = S [ho7) M| (he~ @) M| - 1)
y€ho(M)
= 3 |) M| - M.
y€ho(M)

Clearly, the last sum takes its minimum, if each ho_l(y) N M contains the same
number of |M|/(er) elements. Therefore,

2
Ono (M, M) > er(ﬂ) —m (——1)
: er
For N, we obtain with similar arguments that dp, (N, N) > m(m/r —1). So we
have the following lower bound on Xj,:

Xp, > m(T+T—2).
€r r

Together with the upper bound from (1), we obtain

2
-m(m—1) > m(ﬂ+ﬂ—‘2>.
/ er

r r

By the assumption that m > 2(r—1)e/(1—¢), this results into the contradiction
2 1—ce¢ r— 1
2—— > m > 2
r er r

We consider now hash functions, which map the n-bit universe U :=

{0,...,2" — 1} to the k-bit range Ry :={0,...,2¥ —1}. For a,b € U let

hk U — Ry, z+ ((az +b) mod 2")div2"~*,

where ”div” is the integer division (i.e. zdivy = [z/y]). In a bitwise view, the
result of the modulo operation z mod 2" is represented by the n least significant
bits of z. On the other hand, the division z div2”~* can be seen as shifting z by
n — k digits to the right. In other words, if the value of the linear function az +b
is represented by (ya2n—1...%0), then hk b is the integer, that is represented by
the k bits (yn_1...Yn—k)- The followmg result has recently been established by
the author [23].

Theorem 3 Let 1 < k < n. There exist subsets A, B C U such that the family
of hash functions hk b witha € A and b€ B is umversal

Similar hash classes have been investigated in [10, 11].

3 Lower Bounds

Since the functions h* , are evaluated not only by a multiplication, but also by an
addition, we cannot use Lemma 1 for the lower bound proof of OBDD(MULy, ,,)
directly. Let f% := h, o be the functions, that can be evalutated without ad-
dition. The following lemma gives a result similar to that of Lemma 1. Note,
that as stated in [11], the hash functions f* form an ”almost” universal hash
class (which means, that in Definition 3 |#|/|R| is replaced by c|#|/|R| for some
constant ¢). This property though, is not sufficient to prove a result as strong
as the one given below.

Lemma 2 Let M,N CU and 1/2 < e < 1. If[M|=|N| > 2(28*1—1)e/(1—¢),
then there exists an a € U, such that fX(M) and f¥(N) contain at least (2¢—1)2"
elements each.

Proof: By Lemma 1 and Theorem 3, there exist a,b € U such that hi:‘gl(M)
and hi;l(N) contain at least ¢|Rg41]| = €2#*! elements each. Let these a,b be
fixed and f := f¥. We show that f(M) contains at least (2¢ — 1)2* elements;
the claim then follows for N with the same argument.

Clearly, there exists a subset M’ C M with |M'| = ¢2**! such that all
r € M’ have distinct function values under hk’i'1 Let b = A2"~*=1 4 r where

A < 28t and 7 < 277k We first show that replacing b by 7 makes no
difference in the sense that all x € M’ have distinct function values under
hl‘“'i'1 too. Assume that there are two different z, 2’ € M’ with hi:‘;l(m) =

hﬁ;‘;l(z') = z. Then (az + 7) mod 2" and (az’ + 7) mod 2" are both contained
in {z?”‘k_l, con(zH Dy2nRL 1}. Therefore (ax + b) mod 2" and (az’ +
b) mod 2" are both contained in {(z-l—)\)2”_1‘“_1 oA+ 127 k-1 1}
which is a contradiction, since then z and 2z’ both have the same function value
of z + X under hi:‘;l.

We have shown so far, that |h§:|;1(M')| = |M'| = €2**!. Next, we have

2n—k‘—2

to replace 7 by 0. In order to do so, we assume first that 7 < . Since

Ry 41 contains exactly 2% even elements, there are at least |M’| — 2% elements in

M’ which have an odd function value under h¥*!. Let M” be a subset of M’
containing exactly ¢2¥+1 —2% = 2%(2¢ — 1) elements with an odd function value.
To prove the claim, it suffices to show that for any two distinct z, 2’ € M" we

have f(z) # f(z'). Let hﬁ;‘;l(:p) =z and hi;‘;l(m') = 2/, thus
Zon—k-1 < (az+ 1) mod 2" < (z+ 1)2"_1“_1.
Since T < 27=%=2 it follows that
(z—1/2)2"7F=1 < (az) mod 2" < (z+41)2n~k-1
Since z/2 = |z/2] 4+ 1/2 - which is because z is odd - this implies
|2/2]2" 7% < (az) mod 2" < (|z/2] +1)2"F.

This means that f(z) = |z/2], and with the same argument also f(z') = |2'/2].
But because z and z’ are both odd and different, clearly |z/2| and |z'/2] are
different, too. So, we obtain the desired result f(z) # f(z').

Finally, we have to consider the case that 7 > 2"~%=2 Tt can easily be
verified that this case is symmetric to the former one, if M’ is chosen to be a
2% (2¢ — 1)-element subset of M’ containing only elements with an even function
value under hﬁf (such an M" exists by the same reasons as above). Then again
F(M") = 28(2¢ — 1), which completes the proof. n

We are now ready to prove an intermediate result, from which the lower
bound for the OBDD size of MUL,,_; ,, follows easily. In order to do so, we
have to introduce some more notation. Let z be an integer represented in a
bitwise notation as (2n—1...2g). Then we write [z]g for the (k + 1)-th bit ay.
Further, let MULE ,, : {0, 1}" — {0,1} for a € {0,1}" be the Boolean function,
that computes the (k + 1)-th bit of the product of a with an n-bit number, i.e.
MULzyn(x) = MULy »(a,).

Theorem 4 Let © be an arbitrary variable ordering on X,,. Then there exists
ana €{0,...,2" — 1} for which any m-OBDD for MULy, _, ,, consists of at least
217721 /192 4 1 nodes.

Proof: Let the input variables for the 7-OBDD be z,,_1, ..., 2o for an n, which
is w.l.o.g. even. Consider the top part 7' of w, which contains the first n/2
variables with respect to 7 and the bottom part B containing the other n/2
variables. We construct now two sets M and N of numbers in {0,...,2" — 1}
as follows: M contains all numbers which can be represented by (zn_1...20)
if the variables from 71" are set to 0, and N contains all numbers which can be
represented by (2,_1 ...2¢) if the variables from B are set to 0. Note, that any
number in {0,...,2" — 1} can be uniquely expressed as p + ¢ for p € M and
qgEN.

Our goal is to find an appropriate constant a and two subsets M’ C M,
N’ C N with the following property: For any distinct ¢,¢" in N’, there exists
such an p € M’ that a(p+ ¢) and a(p+ ¢') differ in the n-th bit. More formally

Vo EN'q# ¢ Ipe M : lalp+q)] _, # [alp+d)] _,- (2

Since ¢ and ¢’ are determined only by the top variables and p is determined
by the bottom variables, it follows that among the 27/2 subfunctions obtained
by replacing the top variables with constants, there are at least |N'| pairwise
different ones. So, at level n/2, the m-OBDD consists of at least |N’| nodes.
Further, a simple inductive argument shows, that any OBDD contains in a level
1 at most one more node than there are nodes in all preceding levels 1,... 71— 1
together. Therefore, the total number of nodes in the OBDD for MUL, _, , is
at least 2|N'| 4+ 1 (including the two sinks). 7

Let ¢ = 11/12 and k = n/2 — 6. Then by an easy calculation one obtains,
that

_ _ 9n/2 orok+1 €

IM| = |[N| = 2 > 2(2 —1)(1_6).
By Lemma 2, there exists an a for which f%(M) and f%(N) contain at least
(2¢ — 1)2% =5/6 - 2% elements each. We fix this a, define f = f* and continue
to determine appropriate M’ and N'.

As an intermediate step, we choose M* and N* to be minimal subsets of
M respectively N, such that f(M*) and f(N*) contain exactly 2/3 - 251 even
elements. Such sets exist, since at most 2*~! of the 2* possible function values
are odd, and thus at least 5/6 - 28 — 25=1 = 2/3 . 2%~ of the elements in
M respectively N have distinct and even function values under f. Note, that
because we required M* and N* to be minimal, no two elements from M*
respectively N* have the same function value under f.

The following observation is crucial for the rest of the proof: Forany p e M*
and any ¢ € N*, the k-th bit of f(p) + f(¢q) has the same value as the n-th bit
of a(p + ¢). Or formally

)+ f(@]k_y = lalp+)],y (3)

The reason for this is, that the rightmost bits of f(p) and f(gq) are both zero
(since these values are even). Recalling that the division executed by f is in
fact a right-shift by n — k bits, we obtain [ap]n—r = [aq]n—r = 0. Therefore,
the bits of ap + aq with higher index than n — k are not influenced by a carry
bit resulting from the addition of the less significant bits ([ap]n_s ... [aplo) +
([aq]n_;c e [aq]o). This means, that f(p) + f(¢) has in all bits (except possibly
the least significant one) the same value as a(p + ¢) in the bits with indices
n—1,...,n—k, and equation (3) is true.

In order to satisfy property (2) it is sufficient by the above arguments that
the sets M’ and N’ are subsets of M* and N* and fullfill the following:

Vo, € N'q# ¢ Ipe M [f(p) + F(@)lk—1 # [F(0) + F(d)k-1. (4)
We set M! = M* and
N' = {qeN*|FpeM :flq)=2"-f(p)}. (5)

In order to prove claim (4), let ¢ and ¢’ be arbitrary distinct elements from N”.
Since ¢ and ¢’ are in N* and therefore have distinct function values under f,

we may assume w.l.o.g. that

0 < (flg) = f(q)) mod 28 < 2%~ (6)

(otherwise we achieve this by exchanging ¢ and ¢'). By construction, there
exists a p € M’ with f(p) + f(g) = 2*. For this p, obviously the k-th bit of
f(p) + f(q) equals 0. But on the other hand, by inequation (6), the value of
(f(p) + f(q’)) mod 2% is in {Zk_l, o2k — 1}. This means, that the k-th bit of
f(p) + f(¢') equals 1, and thus claim (4) is proven.

So far, we have constructed subsets M’ C M and N’ C N, which satisfy
claim (2), implying by our arguments a lower bound on the m-OBDD size of
2|N'| 4+ 1. All that is left to do, is to give an appropriate lower bound on |N’|.
Recall the definition of N’ in (5), and that f(M’) and f(N*) contain 2/3-2*~!
even elements each. Because for any even f(p) also 2% — f(p) is even, the set
{Qk - f(p) | peE M’} contains 2/3 - 28~ even elements, too. But since there
exist only 2°~! even elements in {0,...,2’“}, the intersection of f(N*) and
{21" - f(p) | pE M'} - which is f(N') - has a cardinality of at least 1/3-2*F~1.
By the choice of k, 2|N'|+ 1 (and thus also the size of the m-OBDD) is bounded
below by

on/2

1
102 " "

1 1
APV +1 > 2.2 27141 = 2. 2/2 041 =

This theorem shows the general result for MUL,_;, by the following
straightforward observation: If for some constant B and some variable or-
dering 7 there exists an a, for which 7 — OBDD(MUL;,_;) > B + 1, then
7 — OBDD(MUL,,_1,) > 2B. This is, because in any OBDD computing
MULy—1 n(2,y) either the input or the input y may be set to the constant a.
In both cases the resulting OBDD contains at at least B — 1 inner nodes, not
counting those for variables fixed to constants (since they may be deleted with-
out changing the function). So, by the last theorem the OBDD for MUL, _1 5,
has a size of at least 2 -27/21 /192, which proves the main result (Theorem 1).

Furthermore, by a straightforward reduction, one can easily obtain a lower
bound on computing the other output bits of the multiplication. A simple proof
(see [8], Corollary 1) shows, that any representation computing MULj_; , or
MUL2n—g—1,, may also compute MULg_1 k.

Corollary 1 The size of an OBDD computing MULg_1 ,, or MULg,, _j_1 s at
least 215121 /96.

Note, that our lower bound on MUL,_; , relies only on the existence of a
constant a for each variable ordering m, for which MULj_, ,, leads to a large
m-OBDD representation. If one would want to significantly improve this bound,
this would have to be done by a different technique, taking more values for a
into consideration. In other words, the result of Theorem 4 is optimal up to a

constant factor.

Theorem 5 There exists a variable ordering ™ which allows for any a €
{0,...,2" — 1} the construction of a m — OBDD for MUL? _, = having a size
of 320171,

The proof will be sketched at the end of the next section.

4 TUpper Bounds

In this section, we derive the upper bounds stated in Theorems 2 and 5. Both
bounds can be proven by the same technique, which makes use of the fact, that
the minimal-size -OBDD for a Boolean function f is unique up to isomorphism
[7], and of a theorem by Sieling and Wegener [19], describing the structure of
the minimal-size m-OBDD.

Let f be a Boolean function and 7 be an arbitrary variable ordering on X, .
For ay,...,a; € {0,1} (1 <i < n), denote by f4, . 4, the subfunction of f that
computes f(x1,...,2,), where for 1 < j < i the j-th input-variable according
to m (that is z,—1(;) is fixed by the constant a;. More formally,

fa1,...,al = f|zﬂ__1(1):a1,...,zﬂ__l(l):a,' .

Further, we say that a function g essentially depends on an input variable x;, if
Ylzi=0 # Jlzi=1-

Theorem 6 ([19]) The number of x;-nodes of the minimal-size m-OBDD for
[is the number of different subfunctions f,, o, , for ai,...,a;_1 € {0,1},
essentially depending on x;.

In order to show the stated upper bounds, let # = (#p-1...20) and y =
(Yn—1...%0) be the input variables for MUL,_1 ,,. Further, let F; denote the
family of subfunctions fr y+ of MUL,_1 , that result from replacing the variables
Zo,...,&n-1 and yo,...,y;—1 with constants. Le., for y* := y;—_1 ...y,

Foyr (Wt yi) = MULp_1n(2, gnr - viy?).

Our goal is to bound the number of different subfunctions in F;. We define
for any subfunction f, ,+ € F; its index ind(f; y«) to be the number represented
by (#zn-1...zi), where z = x - y*. Consider arbitrary and y = (yn-1...%: y*).
By the school-method of multiplication we have

Ty = 1‘~y*-|—2i1'-(yn_1...yi_).

Since the second term of the sum is a value shifted by ¢ bits to the left (and thus
has its i least significant bits set to 0), the addition of zy* and 2z - (y,_1 ...y;)
has no carry at position i. Hence, replacing z - y* by 2 -ind(fy 4+) in the above
sum does not change the result for the output bits with indices ¢,...,n — 1.
Furthermore, writing 2'2 - (y,_1 . ..¥;) as

n—1

Z 22.-I-jl'j ’ (yn—l .- ~yi)a

7=0

10

implies that the bits 2; with 7 > n — 1 have no influence on the output bit with
index n — 1. Thus, MUL,_1 (2, y) is uniquely determined by ind(f; ;) and
2 (%p_i_1...%0) - (Yn_1 - . .y;). Wesummarize this result in the following claim:

Claim 1 Each subfunction f; y+ € F; is uniquely determined by (z,_;_1 ... 2q)
and its index ind(fy 4+). n

We are now ready to proof the upper bounds.

Proof to Theorem 2: Let G be the minimal-size OBDD, which reads first all
x-bits and then the bits yg,...,yn—1 in this order. Further, let k& = [n/3].
Denote the upper part of G to the subgraph, in which the z-variables and the
variables yo, ..., ys—1 are read. Obviously, this part contains at most as many
nodes as a balanced binary tree with n + k levels, thus has a size of at most
ntk 1,

We bound now the number of y;-nodes, for ¢ > k. By Theorem 6, this is
at most the number of different subfunctions f; 4+ in F;. But since there are
only 27~ different values for ind(fy y+) and as many values for (z,_;_1 ...20), it
follows from Claim 1, that there are at most 22("~%) different subfunctions in F;.
So, the bottom part of G' consists of 22("=%) inner nodes for each k < i <n — 1.
An easy calculation shows, that both parts contain together

Wl =1

n—1
. 4
21‘L+k -1 22(71—2) — 21‘L+k . 22n—2k _
+ Z_Ek + 3

inner nodes. Since k = [n/3], we may write n = 3k — 7 for some 0 < 7 < 3.
Thus, also counting the two sinks, the 7-OBDD-size is bounded by

94k—T1 + é L94k—27 _ z +2 < 24k—47’/3 27’/3 + é . 2—27’/3)
3 3 - 3
By case distinction (7 = 0,1,2) it can be easily verified, that the factor in
parenthesis has a value of at most 7/3. Since further the exponent of the first

factor (4k — 47/3) equals 4n/3, the proof is complete. m

The proof of Theorem 5 for MUL;, _; ,, uses almost the same line of argument,
so that we only sketch the differences. The vector z of variables is replaced with
the constant a, and the variables yq, ..., y,_1 are read again in this order. But
now the upper part consists of the first n/2 variables of y, that is yo, ..., yn/2-1,
and is again bounded by the size of a binary tree (2”/2 —1). Using the index of
the functions f, ,», the number of different subfunctions in F; is then bounded
for n/2 < i < n— 1 similarly to the above proof. In this way, we conclude that
the lower part of the OBDD consists of at most En_l n-i = 2(2”/2 - 1)

i=n/2
inner nodes, which shows the claim.

Acknowledgments

I would like to thank Ingo Wegener for the valuable hints leading to several
improvements, as well as Beate Bollig for her helpful comments.

11

References

(1]

2]

[6]

[10]

[11]

[12]

[13]

S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,

C-27:509-516, 1978.

M. Atici and D. R. Stinson. Universal hashing and multiple authentication.
In Advances in Cryptology - CRYPTO °96, pp. 16-30. 1996.

P. Beame, M. Tompa, and P. Yan. Communication-space tradeoffs for
unrestricted protocols. STAM Journal on Computing, 23:652-661, 1994.

B. Bollig and T. Wegener. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 45:993-1002, 1996.

B. Bollig and I. Wegener. Asymptotically optimal bounds for OBDDs
and the solution of some basic OBDD problems. In Proceedings of the
25th International Colloguium on Automata, Languages, and Programming.
2000. To Appear.

Y. Breibart, H. B. Hunt IIT, and D. Rosenkrantz. On the size of binary
decision diagrams representing Boolean functions. Theoretical Computer

Science, 145:45—69, 1995.

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35:677-691, 1986.

R. E. Bryant. On the complexity of VLSI implementations and graph repre-
sentations of boolean functions with applications to integer multiplication.
IEEE Transactions on Computers, 40:205-213, 1991.

J. L. Carter and M. N. Wegman. Universal classes of hash functions. Jour-
nal of Computer and System Sciences, 18:143—154, 1979.

M. Dietzfelbinger. Universal hashing and k-wise independent random vari-
ables via integer arithmetic without primes. In Proceedings of the 13th
Annual Symposium on Theoretical Aspects of Computer Science, pp. H69—
580. 1996.

M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable
randomized algorithm for the closest-pair problem. Journal of Algorithms,

25:19-51, 1997.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide,
H. Rohnert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower
bounds. STAM Journal on Computing, 23:738-761, 1994.

M. L. Fredman, J. Komlds, and E. Szemerédi. Storing a sparse table with
O(1) worst case access time. Journal of the Association for Computing

Machinery, 31:538-544, 1984.

12

[14]

[15]

[16]

[17]

[18]

9]

[20]

[21]

[22]

[23]

R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceed-
ings of the 30th Annual Symposium on Foundations of Computer Science,
pp- 248-253. 1989.

C. Y. Lee. Representation of switching circuits by binary-decision pro-
grams. The Bell Systems Technical Journal, 38:985-999, 1959.

Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of
universal hashing. Theoretical Computer Science, 107:121-133, 1993.

P. Rogaway. Bucket hashing and its application to fast message authenti-
cation. In Advances in Cryptology — CRYPTO 95, pp. 29-42. 1995.

D. Sieling. On the existence of polynomial time approximation schemes
for OBDD minimization. In Proceedings of the 15th Annual Symposium on
Theoretical Aspects of Computer Science, pp. 205-215. 1998.

D. Sieling and 1. Wegener. NC-algorithms for operations on binary decision
diagrams. Parallel Processing Letters, 48:139-144, 1993.

M. Sipser. A complexity theoretic approach to randomness. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, pp. 330-335.
1983.

I. Wegener. Branching Programs and Binary Decision Diagrams - The-
ory and Applications. STAM Monographs in Discrete Mathematics and Its
Applications. In print, 2000.

M. N. Wegman and J. L. Carter. New classes and applications of hash func-
tions. In Proceedings of the 20th Annual IEEE Symposium on Foundations
of Computer Science, pp. 175-182. 1979.

P. Woelfel. Efficient strongly universal and optimally universal hashing. In
Mathematical Foundations of Computer Science 1999: 24th International
Symposium, pp. 262-272. 1999.

13

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

