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Approximation Algorithms for
MAX-BISECTION on Low Degree Regular
Graphs and Planar Graphs
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Abstract

The max-bisection problem is to find a partition of the vertices of a graph into two
equal size subsets that maximizes the number of edges with endpoints in both subsets.

We obtain new improved approximation ratios for the max-bisection problem on the
low degree k-regular graphs for 3 < k < 8, by deriving some improved transformations
from a maximum cut into a maximum bisection partition. In the case of three regular
graphs we obtain an approximation ratio of 0.847, and in the case of four and five
regular graphs, aproximation ratios of 0.805, and 0.812, respectively.

We also present the first polynomial time approximation scheme for the max-
bisection problem for planar graphs of a sublinear degree.
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1 Introduction

The max-bisection problem, i.e., the problem of finding a halving of the vertex set of a graph
that maximizes the number of edges across the partition, is one of the basic combinatorial
optimization problem.

Frieze and Jerrum give a following example of its application [6]: there are m people, each
of whom selects two activities among n ones. Assuming n to be even, split the activities
evenly between two time slots in order to maximize the number of people who participate
in both their activities.

The best known approximation algorithms for max-bisection yield a solution whose size is
at least 0.701 times the optimum, cf. Halperin and Zwick [9]. It is still an open problem
whether the max-bisection problem is hard to approximate (or even to compute exactly) on
the planar graphs.

For dense graphs, Arora, Karger and Karpinski give polynomial time approximation schemes
for max- and min-bisection in [1]. Recently, Feige, Karpinski and Langberg [4] have obtained
sharp lower bounds on the ratio between the sizes of max bisection and max cut for regular
graphs. They have also shown the bounds to be tight already for constant degree regular
graphs [4]. By combining them with the known polynomial time approximation algorithms
for max cut they have obtained an approximation ratio of 0.795 for max bisection (i.e., a
polynomial time algorithm for max bisection of regular graphs producing a solution of size
at least 0.795 times the optimum).

In this paper, for low degrees k, 3 < k < 8, we derive sharper lower bounds on the ratio
between the sizes of max bisection and max cut for k-regular graphs than those proven in
[4] for constant degree regular graphs. In effect, we can derive improved approximation
ratios for max bisection for k-regular graphs where 3 < k& < 8. In particular, we obtain the
following approximation ratios: 0.847 for £ = 3, 0.812 for &£ = 5, 0.803 for £ = 7, and 0.805
for k= 4,6,8.

The max bisection problem can be seen as the max cut problem with an additional require-
ment on the equal size of the two subsets in the two partition. Because of this requirement
the approximability status of max bisection is more evolved than that of max cut. This
situation extends also to special graph classes, e.g., planar graphs. Planar max cut is known
to admit an exact polynomial time algorithm [8] whereas the complexity and approxima-
bility status of planar max bisection is totally open. This contrasts with the case of many
planar graph problems which are known to admit polynomial time approximation schemes
by falling into Khanna-Motwani’s syntactic framework [10].

Our second main result is the first polynomial time approximation scheme (PTAS) for the
max bisection problem restricted to planar graphs of the sublinear maximum degree. It is
obtained by efficient transformation from the max cut produced by an exact polynomial time
algorithm of [8] into a bisection with a close size.



2 Preliminaries

We start here with some basic notions used throughout the paper.

Definition 2.1 A real number o is said to be an approximation ratio for a maximization
problem, or equivalently the problem is said to be approximable within a ratio a, if there is
a polynomial time algorithm for the problem which always produces a solution of size at least
a times the opltimum. If a problem is approximable for arbitrary o < 1 then it is said to
admit a polynomial time approximation scheme a (PTAS for short).

We formulate now the underlying optimization problems of max cut and max bisection.

Definition 2.2 A partition of a set of vertices of an undirected graph G into two sets X, Y
is called a cut of G and is denoted by (X,Y). A partilion is a bisection if the cardinalities
of X and 'Y are equal. The edges of G with one endpoint in X and the other in'Y are said
to be cut by a partition. A partition is called a max cut of G if it maximizes the number of
cut edges. The partition is called a max bisection of G if it is a bisection of G maximizing
the number of cut edges. The max-cut problem is to find a max cut of a graph. Analogously,
the max-bisection problem is to find a max bisection of a graph.

The following simple lemmas will be used in the next section.

Lemma 2.1 Let (X,Y) be a max cul of a graph G. For any vertex v in 'Y, v has at least as
many neighbors in X as in'Y.

Proof: Suppose otherwise. Then, the partition (X U {v},Y \ {v}) would cut more edges
than (X,Y). a

Definition 2.3 A maz cut (X,Y) of a graph G is said to be maximally balanced if it cannot
be transformed into another maz cul (X',)Y') of G satisfying || X'| — |Y'|| < || X| = |Y]| by

moving a single vertex from X to'Y or vice versa.
The next lemma exhibits a useful property of a maximally balanced max cut.

Lemma 2.2 Let (X,Y) be a maximally balanced max cut of a graph G where | X| < |Y].
For any vertex v in Y, v has more neighbors in X than inY.

Proof: If v had at most as many neighbors in X as in Y then by moving it to X we would
obtain another max cut (X', Y’) satisfying || X'| — [Y'|| < ||X| = |Y][; a contradiction. O



A max cut can be easily transformed into a maximally balanced max cut by the following
lemma.

Lemma 2.3 A max cut of a graph can be transformed into a maximally balanced mazx cut
of the graph in linear time.

Proof: We may assume w.l.o.g that the input max cut (X,Y) is not maximally balanced
and | X| < |Y]. For each vertex v in Y as long as the size of the current Y is not equal to
that of the current X we check whether or not it is possible to move v to the current X
without decreasing the number of cut edges. If so, we move v to the current X.

The resulting max cut is maximally balanced since either the size of the final Y is equal to
that of the final X or none of the vertices in the final Y can be moved to the final X without
decreasing the number of cut edges. The latter follows from the observation that for each
vertex v in the final Y the number of its neighbors in the final Y cannot exceed that in the
original Y. So, if v could not change the side before, it cannot do it now.

Checking the vertices in Y takes linear time. O

3 Approximation of the max-bisection problem for low
degree regular graphs

In this section we derive new lower bounds on the ratio between the size of max bisection and
that of max cut for low degree regular graphs following the approach of [5]. By combining
them with known polynomial time approximation algorithms for max cut on regular graphs
we improve the known approximation ratios for low degree regular graphs substantially.

The following lemma is immediate.

Lemma 3.1 For a positive integer k, let (X,Y) be a max cut of a k-regular graph G, and
let E be the set of edges of G cut by (X,Y). Next, for i = 0,....[(k — 1)/2], let Y; be
the set of vertices in' Y with exactly 1 neighbors in Y. The inequalities | X| > |E|/k and
ST e — i) Y| < || hold.

Theorem 3.1 For k = 3,4,6,8 any max cut (X,Y) of a k-regular graph G can be trans-

formed in linear time into a bisection of G culting no less than % of the number of edges cut

by (X,Y). For k =57 any maz cut (X,Y) of a k-regular graph G can be transformed in

linear time inlo a bisection of G cutling no less than 32 and 8, respectively, of the number

40 707
of edges cut by (X,Y).



Proof: Assume the notation of Lemma 3.1, and w.l.o.g. |X]| < |Y]. Also, we may assume
w.l.o.g that for even k the max cut is maximally balanced since otherwise we can transform
it to such a max cut in linear time by Lemma 2.3. Let [ be the number of vertices in Y
necessary to move to X in order to transform (X,Y’) into a bisection of G.

By Lemmata 2.1, 2.2, 3.1, [ < (ZM_I)/QJ |Yi| — |E|/k). Consequently, we have [ <

Qk(kZL (k=1)/2] |Y;| — |E]) which by Lemma 3.1 yields [ < Qk(zl' (k=1)/2] i|Yi]).

Suppose we can pick an independent set [ of vertices in ¥ composed of disjoint subsets I;, 1 =

. | k/2], respectively containing at least * | *| vertices in U[ =072y (*). Then, by moving

[ vertices from [ to X we obtain a bisection Cuttlng at least |E| % ZL (k=1) /2J((k—i)—i)z'|Y;-|
edges. The latter sum is |Yi| for & = 3, 2|Y3]| for k& = 4, 3|Y1| + 2|Y3| for k=5, 4|Y1| + 4]Y3]
for k =6, 5|Y1| + 6|Y2| + 3|Y3]| for k =7, and 6|Y1| + 8|Y2| + 6]Y3]| for k = 8. By Lemma 3.1,
it can be bounded from above by 3 P for k = 3, 2|E| for k =4, 2|E| for k =5, |E| for k = 6,
S|E| for k = 7, and 3|E| for k = 8 Thus, for k = 3,4,5,6,7,8 the resultlng bisection cuts
at least LE|, BL|E|, 3| E|, 1| E|, S|E| and SIE| edges respectlvely

To pick such an independent set I, we may w.l.o.g. restrict ourselves to the subgraph G’ of

G induced by Y.

For k = 3,4 we have I = [; and the condition (*) requires at most |[;| > £|Yi|. We can
trivially pick an independent subset of Y; whose size is at least 1]Yi| by avoiding picking
both endpoints of any isolated edge in G'.

For k = 5,6, it is sufficient if [; contains at least 11—0|Y1| vertices in Y] UY,; whereas I, contains
at least $|Y3| vertices in Y3, by (*). Observe that G’ consists of isolated Vertices paths, and
possibly cycles. We can easily form the independent set [y consisting of - of the vertices
in Y7 by accounting to it the isolated vertices in G’, further if this is not enough, single
endpoints of isolated edges in ', and if this is still not enough, single endpoints of paths
of length greater than one in G’. Let P be the set of the latter paths in GG’. Note that [,
eliminates at most |P|/10 of neighbors of degree two in G, and all vertices in Y3 are inner
vertices on paths in P. Therefore, since 1(|Yz| — |P|/10) > 1[Y3| by |P| < |Y3], we can easily
form the required independent set I by taking at least every second vertex not adjacent to
I on the paths in P.

For k = 7,8 the following three conditions are jointly not weaker than (*).

. I, should have at least | 1| vertices in Y3 U Y, U Y.

2|Ys|
14

2. Iy should contain at least vertices in Y3 U Y,, and

3|Ys|
14

3. I3 should contain at least vertices in Y.

While there is a vertex v of degree three in GG/, we iterate the following step: augment I by
v and delete v and its neighbors.



Let I, be the resulting independent set of vertices of degree three in the original G'. Next,
let s be the number of vertices of degree one or two in the original G’ that have at least one
neighbor in I}. The inequality |Y3—I}|+s < 3|1} immediately follows from the way of picking
I. This yields |Y3| + s < |IL| 4+ |V — I}| + s < 4]1}]. Hence, the surplus of vertices of degree
three in I} with respect to the requirement (3) on [ is at least |[[5] — 3|Y3| > || — (4k1 —s)
> 14k1 + —S > 2. Tt yields a sufficient number of vertices in I to fulﬁll the requlrements (1)

and (2) proportlonally for the aforementioned s vertices of degree one and two. We can pick
up the appropriate proportions of independent vertices required in (1) and (2) among the
remaining vertices of degree one and two in the original graph G’ analogously as in the case

k=5,6. O

Corollary 3.1 Let a = 0.878 be the approzimation ratio achievable for the maz-cut problem

[7], and let B = 0.924 be the approzimation ratio achievable for the maz-cut problem for three-

reqular graphs [{]. The maz-bisection problem is approzimable within a ratio of ﬁ = (0.847

Jor three-reqular graphs, within a ratio of =3 37(1 = 0.812 for five-reqular graphs , wzthm a ratio
64

of =5 = 0.803 for seven-regular graphs, and within a ratio o Ha = 0.805 for four, siz and

eight-reqular graphs.

4 PTAS for max bisection on planar graphs

The requirements of the equal size of the vertex subsets in a two partition yielding a max
bisection makes the max-bisection problem hardly expressible as a maximum planar satisfi-
ability formula. For this reason we cannot directly apply Khanna-Motwani’s [10] syntactic
framework yielding PTAS for the planar restrictions of several basic graph problems includ-
ing max cut. Instead, we choose to produce a max cut of the input graph by running the
exact polynomial time algorithm of Hadlock [8] and then to transform it into a bisection of
a close size. Our transformation is based on the following known fact on edge separability
of planar graphs.

Fact 1[2]. Let G be an n-vertex planar graph of mazimum degree d. G has an edge separator
of size O(V2dn), i.e., a set of edges whose removal disconnects G into two subgraphs none
of which has more than two thirds of the vertices of G'. Furthermore, such an edge set can be

Jound in time O(n).

Analogously as Theorem 3 in [11] is obtained from the original Lipton-Tarjan vertex planar
separator theorem, we obtain the following useful theorem from Fact 1.

Theorem 4.1 Lel G be an n-vertex planar graph of mazimum degree d with nonnegative
vertex costs summing to no more than one and let 0 < ¢ < 1. Then there is some set (' of

O(y/dn/e) edges whose removal leaves G with no connected component of cost exceeding e.
Furthermore the set C' can be found in time O(nlogn).

6



We prove that the following algorithm yields a PTAS for planar graphs of a sublinear degree.
Algorithm Bisection
input: a planar graph G on n vertices

oulput: a bisection of G

1. Find a maximum cut of G. Let V;, V, be the two subsets of V' inducing the cut.

2. Apply Theorem 4.1 with ¢ = k(n)/n to find a set C of edges of size O(ny/d/k(n))

whose removal leaves no connected component with more than k(n) vertices.

3. Set Vi, V; to empty sets.
for each connected component C; of GG resulting from removing C' from G' do

if [Vi] > |V and |C;N V| < |C;N V] or [Vi| < Vo] and |C; N V)| > |C; NV, | then
augment V; by C; NV, and V5 by C; NV, else augment V; by C; NV, and V, by C; NV,

4. if |Vi| > | V2| then sort V} by vertex degree in non-decreasing order and augment V;, by
the first (|V1] — |V2|)/2 vertices in V; else sort V; by vertex degree in non-decreasing
order and augment V; by the first (|V3]| —|V1])/2 vertices in V;

5. Output (V5, V3).
By the fourth step we obtain:
Lemma 4.1 Algorithm Bisection produces a bisection of G.

Lemma 4.2 The size of the cut produced by Algorithm Bisection is at least the size of
mazimum cul of G decreased by O(ny/d/k(n) + k(n)).

Proof: Since each component C; has size not exceeding k(n), the difference between the
sizes of V; and V; never exceeds k(n) by induction on the number of iterations of the block
in Step 3. The cut produced by Algorithm Bisection includes in particular all the edges
belonging to the maximum cut produced in Step 1 that are outside C' and are not incident
to the at most k(n)/2 vertices moved from V; to V; or vice versa in Step 4. By planarity of
G implying the O(1) average vertex degree and the choice of the at most k(n)/2 vertices,
there are only O(k(n)) edges incident to them. O



Lemma 4.3 Algorithm Bisection can be implemented in polynomial time.

Proof: Step 1 can be implemented in polynomial time by [8]. Step 2 takes O(nlogn) time
by [2]. Steps 3, 4 can be easily implemented in time O(r log n) by using basic data structures.
O

Theorem 4.2 The maz-bisection problem for connected planar graphs of degree o(n) admits

a PTAS.

Proof: Let G be a connected planar graph of maximum degree d. Set k(n) in Algorithm
Bisection to #d where (3 is a rational to be specified later. By Lemma 4.2, Algorithm
Bisection produces in polynomial time a bisection of G whose size is at most that of max
cut of G decreased by 37'/%n + o(fn). It is sufficient to observe that max cut of G has size
Q(n) and choose a sufficiently large (. O

5 Final remark

Note that for an instance of a star graphs, the ratio between the size of max bisection and
that of max cut can be arbitrarily close to 3. For that reason, our approach of transforming
a max cut of a planar graph into its bisection of close size cannot directly work for a graph
has a linear maximum degree. An interesting open problem remains to extend our result to
arbitrary planar graphs.
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