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Abstract. Many BDD (binary decision diagram) models are motivated
by CAD applications and have led to complexity theoretical problems
and results. Motivated by applications in genetic programming Krause,
Savický, and Wegener (1999) have shown that for the inner product func-
tion IPn and the direct storage access function DSAn all functions which
approximate them on considerably more than half of the inputs need ex-
ponential π-OBDD size for most variable orderings π. In this paper, the
results of Krause, Savický, and Wegener are generalized to more general
BDD models like k-IBDDs and BP1s (read-once branching programs).
Furthermore, the size of OBDDs for functions which approximate a func-
tion fn is compared with the size of randomized OBDDs with two sided
error for fn. An exponential gap is presented.

Keywords: Computational complexity, binary decision diagrams, approxi-
mations.

1 Introduction and Definitions

Branching programs (BPs) or Binary Decision Diagrams (BDDs) are a well
established representation type or computation model for Boolean functions
f ∈ Bn, i.e., f : {0, 1}n → {0, 1}.

Definition 1. A branching program (BP) or binary decision diagram (BDD) on
the variable set Xn = {x1, . . . , xn} is a directed acyclic graph with one source
and two sinks labelled by the constants 0 or 1, resp. Each non-sink node (or inner
node) is labelled by a Boolean variable and has two outgoing edges one labelled
by 0 and the other by 1. At each node v a Boolean function fv : {0, 1}n → {0, 1}
is represented. For the evaluation of fv(a) start at v. At xi-nodes, the outgoing
ai-edge is chosen and fv(a) equals the label of the sink which is finally reached
on the computation path.

The size of a branching program G is equal to the number of its nodes and is
denoted by |G|. BP(f) denotes the size of the smallest BP for a function f . The
? Supported in part by DFG We 1066/9.

Electronic Colloquium on Computational Complexity, Report No. 52 (2000)

ISSN 1433-8092




depth of a branching program is the maximum length of a path from the source
to one of the sinks.

Probabilistic methods have turned out to be useful in almost all areas of
computer science. Ablayev and Karpinski (1996) have introduced randomized
BPs defined analogously to probabilistic circuits. In the following we consider
an alternative approach.

Definition 2. A randomized BP (or BDD) G on the variable set Xn = {x1, . . . ,
xn} is a directed acylic graph with decision nodes for Boolean variables and ran-
domized nodes. A randomized node is an unlabelled node with two outgoing edges.
The random computation path for a is defined as follows. At decision nodes la-
belled by xi, the outgoing ai-edge is chosen. At randomized nodes, each outgoing
edge is chosen independently from all other random decisions with probability
1/2. The acceptance probability accG(a) or Prob(G(a) = 1) of G on a is the
probability that the random computation path reaches a 1-sink. The rejection
probability rejG(a) equals Prob(G(a) = 0) = 1 − Prob(G(a) = 1).

G represents f ∈ Bn with two-sided ε-bounded error, 0 ≤ ε < 1/2, if
Prob(G(a) 6= f(a)) ≤ ε for all inputs a.

In order to develop and strengthen lower bound techniques and for applica-
tions restricted computation models are considered.

Definition 3. i) A branching program is called read k times (BPk) if each
variable is tested on each path at most k times.

ii) A BP is called oblivious if the node set can be partitioned into levels such
that edges lead from lower to higher levels and all inner nodes of one level
are labelled by the same variable.

In his seminal paper Bryant (1986) has introduced ordered binary decision
diagrams (OBDDs) which are up to now the most popular representation not
only for formal circuit verification but also in genetic programming.

Definition 4. A permutation π on {1, . . . , n} describes the variable ordering
xπ(1), . . . , xπ(n). A π-OBDD for a variable ordering π is a BP where the sequence
of tests on a path is restricted by the variable ordering π, i.e., if an edge leads
from an xi-node to an xj-node, the condition π(i) < π(j) has to be fulfilled. An
OBDD is a π-OBDD for some variable ordering π.

Unfortunately, several important and also quite simple functions have expo-
nential OBDD size. Therefore, more general representations with good algorith-
mic behaviour are necessary. Jain, Abadir, Bitner, Fussell, and Abraham (1994)
have introduced k-IBDDs.

Definition 5. A k-IBDD is a branching program which can be partitioned into k
layers such that the ith layer is an OBDD (with possible many sources) respecting
the ordering πi and such that the edges leaving the ith layer reach only nodes of
the layers j > i and the sinks.
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One main problem in learning theory is the search for a small size represen-
tation of a function f ∈ Bn which coincides with the partial function g ∈ Bn de-
fined by the set of labelled training examples (a1, g(a1)), . . . , (am, g(am)) where
ai ∈ {0, 1}n and m = nO(1). The idea to look for a small size representation is
based on the well-known Occam’s razor principle. See Krause, Savický, and We-
gener (1999) for a discussion of this background. They also have described how
such a small representation can be obtained by a genetic programming approach.
In particular, they have underlined the importance of the choice of a good vari-
able ordering. Simple functions like the direct storage access function DSAn and
the inner product function IPn have small OBDD size but almost all variable or-
derings lead to exponential size representations for the considered functions and
even all reasonably good approximations. In learning theory we cannot expect to
learn the unknown function exactly. It is good enough to obtain a representation
of a function which almost looks like the unknown function. This motivates the
investigation of a BDD theory for the approximate representation of Boolean
functions.

Definition 6. i) A function g ∈ Bn is a c-approximation of f ∈ Bn if Pr(f(x̃)
= g(x̃)) ≥ c for a random input x̃.

ii) A function g ∈ Bn is a strong c-approximation of f ∈ Bn if, for a ∈ {0, 1},
Pr(g(x̃) = a) ≥ c for a random input x̃ ∈ f−1(a).

In applications, strong approximations are necessary. However, our lower
bounds even hold for c-approximations. Since one of the two constant functions
0 and 1 is always a 1/2-approximation we consider (1/2 + εn)-approximations.
Using methods from information theory and communication complexity Krause,
Savický, and Wegener (1999) have proved that besides DSAn the inner product
function IPn has only (1/2 + εn)-approximations of exponential π-OBDD size
for almost all variable orderings π. Futhermore, they have introduced the per-
muted inner product function PIPn for which all (1/2+εn)-approximations have
exponential OBDD size. The shifted inner product function SIPn is related to
IPn and has appeared in several disguises in the literature on BDDs (see, e.g.,
Krause (1992)).

Definition 7. i) For even n, IPn(x1, . . . , xn) = x1x2 ⊕ x3x4 ⊕ . . . ⊕ xn−1xn

is the inner product function.
ii) For even n, let IPπ

n(x1, . . . , xn) = IPn(xπ(1), . . . , xπ(n)).
For l = dlog(n!)e, PIPn(a0, . . . , al−1, x1, . . . , xn) = IPπa(x1, . . . , xn) is the
permuted inner product function, where πa is the permutation on {1, . . . , n}
coded by the variables a0, . . . , al−1.

iii) Let n = 2l. The function SIPn is defined on 2n+l Boolean variables al−1, . . . ,
a0, xn−1, . . . , x0, yn−1, . . . , y0. Let

SIPi
n(x, y) =

⊕

0≤j≤n−1

xjy(j+i) mod n,

then
SIPn(a, x, y) =

∨

0≤i≤n−1

(|a| = i) ∧ SIPi
n(x, y).
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Now, we give an overview on the rest of the paper. In Section 2, we present
some tools from communication complexity and show how distributional com-
munication complexity can be used to prove lower bounds on the BDD size for
approximations of Boolean functions. The relation between BDDs for approx-
imations and randomized BDDs with two-sided bounded error is investigated
in Section 3. A function fn is presented which cannot well be represented by
oblivious randomized BDDs of linear length but for which there exists a func-
tion gn with linear OBDD size, where gn approximates fn on almost all inputs.
In Section 4, we prove that the permuted inner product function PIPn has no
small and good approximation by k-IBDDs or BP1s.

2 Communication Complexity and Approximations

We start with some notions from communication complexity needed later on. For
a thorough introduction into communication complexity, we refer to the mono-
graphs of Hromkovič (1997) and Kushilevitz and Nisan (1997). The communi-
cation complexity of two-party protocols has been introduced by Yao (1979).
It has turned out to be the strongest tool for proving lower bounds on the
size of oblivious BDDs. The basic model is the following one. Alice and Bob
want to cooperate for the evaluation of a Boolean function f(x, y) ∈ Bm+n, i.e.,
f : {0, 1}m × {0, 1}n → {0, 1}. Alice knows the first part X = (x1, . . . , xm)
and Bob the second part Y = (y1, . . . , yn) of the input. Before Alice and Bob
obtain their partial inputs, they reach an agreement on a communication proto-
col which decides who starts the communication and how the communication is
organized. If Alice starts the communication, she sends the first message m1(x)
depending on her partial input x, Bob answers with a message m2(y, m1(x))
depending on his partial input y and Alice’s message. Then Alice anwers and
so on until one player knows f(x, y). The cost of a protocol P for f on input
(x, y) is the total length of all messages sent by Alice and Bob. The cost of the
protocol P is the cost for a worst case input. The deterministic communication
complexity C(f) of f is the minimum cost of P , over all protocols P that com-
pute f . Many generalizations are possible, e.g., nondeterministic protocols and
randomized protocols. Furthermore, the number of communication rounds may
be restricted.

Distributional communication complexity provides lower bounds for random-
ized protocols that are allowed two-sided error.

Definition 8. Let µ be a probability distribution on X×Y . The (µ, ε)-distributio-
nal communication complexity of f , Dµ

ε (f) , is the cost of the best deterministic
protocol that gives the correct answer for f on at least a (1 − ε)-fraction of all
inputs in X × Y , weighted by µ.

For ease of description we rename the variables such that IPn(x, y) = x1y1 ⊕
· · · ⊕ xn/2yn/2. We give the x-variables to Alice and the y-variables to Bob.
The distributional communication complexity of the inner product function has
been studied by Chor and Goldreich (1988). They have proved the following fact
which has turned out to be very useful for our investigations.
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Fact 1: Duniform
1/2−ε (IPn) ≥ n/4 − log(1/ε).

The following proposition shows how lower bounds on the distributional com-
muncation complexity of a function f lead to lower bounds on the size of BDDs
for approximations of f .

Proposition 1. Let f ∈ Bm+n and g be a c-approximation of f and G be a k-
IBDD representing g with respect to the variable orderings π1, . . . , πk where for
all πi, 1 ≤ i ≤ k, it holds that the x-variables are tested before the y-variables.
Then it holds that

(2k − 1)dlog |G|e ≥ Duniform
1−c (f).

Proof. This result follows by the fact that Duniform
1−c (f) ≤ C(g). The upper

bound (2k − 1)dlog |G|e for C(g) is well-known (Wegener (2000)). 2

Communication complexity cannot be used directly for lower bound proofs
on the size of BPks which are not oblivious. The only remaining known lower
bound technique is the method of generalized rectangles based on so-called (k, a)-
rectangles (a name introduced by Jukna (1995)) which first has been described
by Borodin, Razborov, and Smolensky (1993) and Okol’nishnikova (1993). Using
results from randomized communication complexity Sauerhoff (1998) has gener-
alized this technique to the randomized case to prove lower bounds on the size of
randomized BPks. Finally, Thathachar (1998) has applied Sauerhoff’s technique
to separate the read-k-times branching program hierarchy.

Definition 9. A Boolean function g ∈ Bn is called a (k, a)-rectangle if it can be
represented as a conjunction of functions gi, 1 ≤ i ≤ ka, such that gi essentially
depends only on variables from X(i) where |X(i)| ≤ dn/ae and each variable xj

belongs to at most k of the X(i)-sets.

We identify a (k, a)-rectangle R, which is defined as Boolean function, with
the set R−1(1). Such a rectangle R is called f -monochromatic if R ⊆ f−1(0) or
R ⊆ f−1(1).

Definition 10. A function f ∈ Bn is called an (s, k, a)-step function if {0, 1}n

can be partitioned into (2s)ka f -monochromatic (k, a)-rectangles.

Functions f ∈ Bn whose BPk size equals s are (s, k, a)-step functions. Apply-
ing a method due to Yao (1983), Sauerhoff (1998) has proved that functions with
small randomized BPk size can be approximated with small error by (s, k, a)-step
functions.

Theorem 1. Let µ be a probability measure on {0, 1}n. If f ∈ Bn can be repre-
sented by a randomized BPk of size s which has two-sided ε-bounded error, there
exists an (s, k, a)-step function g such that g µ-approximates f with ε-bounded
error, i.e., the set of all a where f(a) 6= g(a) has a µ-measure bounded above by
ε.
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Therefore, the randomized BPk size of a function f is an upper bound for
the BPk size of an (1 − ε)-approximation of f if µ is the uniform distribution.
How far can the best upper bound obtained by this method be away from the
BPk size of an (1 − ε)-approximation of f? In the next section we answer this
question for oblivious BDDs of linear length.

3 Randomized BDDs and Approximations by BDDs

Theorem 2. Let n = 2l. There exists a function fn on 3n+ l Boolean variables
which needs exponential size for oblivious randomized BDDs of linear length
with two-sided ε-bounded error, 0 ≤ ε < 1/2, but has a strong (1 − 1/2n)-
approximation gn which can be represented by π-OBDDs of size 4n + 2l + 1
for arbitrary π.

Proof. The function fn : {0, 1}3n+l → {0, 1} is defined on the variable set
An ∪ Xn ∪ Yn ∪ Zn where An = {a0, . . . , al−1}, Xn = {x0, . . . , xn−1}, Yn =
{y0, . . . , yn−1}, and Zn = {z0, . . . , zn−1}. Let hn(a, x, y) := SIPn(a, x, y). Then
the function fn is given as

fn(a, x, y, z) :=

{

a0 ⊕ · · · ⊕ al−1 ⊕ x0 ⊕ · · · ⊕ xn−1 ⊕ y0 ⊕ · · · ⊕ yn−1, if z 6= 0,
hn(a, x, y), if z = 0.

For the lower bound it is sufficient to show that the subfunction hn of fn cannot
well be represented by oblivious randomized BDDs of linear length with two-
sided ε-bounded error. It is known that deterministic oblivious BDDs of linear
length representing the function SIPn have exponential size (Krause (1992)). Let
s = (s1, . . . , sl) be a sequence of variables from Xn and Yn such that no variable
appears more than k times. There are two sets X ′

n ⊆ Xn and Y ′
n ⊆ Yn such

that |X ′
n| ≥ |Xn|/2

2k−1, |Y ′
n| ≥ |Yn|/2

2k−1, and the number of layers in s with
respect to X ′

n and Y ′
n is bounded by 2k+1 (Alon and Maass (1988)). There are at

least (n/22k−1)2 pairs (xj1 , yj2) with xj1 ∈ X ′
n and yj2 ∈ Y ′

n. By the pigeonhole
principle there exists an index i ∈ {0, . . . , n − 1} such that there are at least
n/24k−2 pairs (xj , y(j+i) mod n). The x-variables of these pairs are contained in
the set X ′′

n and the y-variables in Y ′′
n respectively. We fix the a-variables in such

a way that |a| = i and we set all variables of Xn ∪ Yn which are not in X ′′
n ∪ Y ′′

n

to 0.
Using the fact that the inner product function IPn has a communication

complexity of Ω(n) for randomized communication protocols with two-sided ε-
bounded error (where Alice holds the x- and Bob the y-variables and the pro-
tocols may use an arbitrary number of rounds) (see e.g. Babai, Frankl, and

Simon (1986)) we obtain an exponential lower bound of Ω(2n/24k−2

) for the size
of oblivious randomized BDDs of linear length with two-sided ε-bounded error,
0 ≤ ε < 1/2, representing the function fn.

Now, we prove the upper bound. The function gn(a, x, y, z) = a0 ⊕ · · · al−1 ⊕
x0 ⊕ · · · ⊕xn−1 ⊕ y0 ⊕ · · · ⊕ yn−1 is obviously a strong (1− 1/2n)-approximation
of fn. The π-OBDD size of gn is 4n + 2l + 1 for arbitrary π. 2
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The result shows that for proving lower bounds on the size of oblivious ran-
domized BDDs for a function fn it is sufficient to find a hard subfunction which
is difficult to represent. Therefore, it is also possible to apply reducibility con-
cepts like the so-called rectangular reductions (see, e.g., Kushilevitz and Nisan
(1997)). The situation is different for the representations of strong approxima-
tions for fn. If the error probability is close to 1/2, we have to prove that all
subfunctions of fn are hard to represent.

4 The Permuted Inner Product Function

The permuted inner product function PIPn defined on l := dlog(n!)e selection
variables and n data variables x1, . . . , xn has been introduced by Krause, Sav-
ický, and Wegener (1999) showing that there exists a function which cannot be
approximated well by OBDDs. Now, we prove that PIPn cannot be approxi-
mated well by k-IBDDs and BP1s either. The l selection variables describe a
permutation π on {1, . . . , n}, more precisely, for each permutation the number
of codewords is one or two. The function PIPn realizes IPn on the data variables
which are permuted according to π.

For IPπ
n we call xπ(2i−1) the partner of xπ(2i), 1 ≤ i ≤ n/2, and vice versa.

A variable is called singleton with respect to a variable ordering π′, or a π′-
singleton for short if it is in the first half of the variables according to π′ but its
partner is in the second half. Similar we define singletons according to a variable
set A ⊆ {x1, . . . , xn}, or a A-singletons for short if a variable is in A and its
partner is not.

First, we determine the number of different functions IPn. We consider the
following experiment. In the beginning x1, . . . , xn are free. Then we choose the
free variable with the smallest index and choose another arbitrary free variable
as its partner. The chosen variables are no longer free. The process is repeated
n/2 times. Hence, the number of different functions IPπ

n equals

d(n) =
∏

1≤i≤n/2

(2i − 1) = 2Θ(n log n).

Fact 2 (Krause, Savický, and Wegener (1999)): With probability at least

1−e−4δ2n a random variable ordering π′ leads to at least (1−δ)n/8 π′-singletons
for IPπ

n.

Lemma 1. Let k be a constant and let π1, . . . , πk be independent random vari-
able orderings. With probability at least 1−e−Ω(n) there is a set I ⊆ {xπ(2i−1)|1 ≤

i ≤ n/2} of at least ((1 − δ)/8)kn = Ω(n) elements with the following property.
It is possible to partition each variable ordering πj, 1 ≤ j ≤ k, into a top part
and a bottom part such that for each xπ(2i−1) ∈ I the top part contains exactly
one of the variables xπ(2i−1) and xπ(2i).

Proof. Let I0 = {xπ(2i−1)|1 ≤ i ≤ n/2}. The set I1 is constructed in the way
described by Krause, Savický, and Wegener (1999). The set Ij is constructed

7



in the same way based on Ij−1 and the variable ordering πj restricted to the
variables of Ij−1 and their partners. Hence, |Ij | ≥ ((1 − δ)/8)|Ij−1| ≥ ((1 −
δ)/8)jn proving the claim on the size of I = Ik. The error probability is bounded

above by e−4δ2|Ij−1| implying that the total error probability is bounded by
ke−4δ2|I| = e−Ω(n). 2

Now, we are ready to prove the following theorem.

Theorem 3. Let k be a constant. Each function which is a c-approximation of

PIPn with c ≥ 1/2 + ke−4δ2((1−δ)/8)kn + e−n1−ε′

, 0 < ε′ < 1, has a k-IBDD size
which is bounded below by 2Ω(n).

Proof. Let π1, . . . , πk be arbitrary variable orderings and G be a k-IBDD accord-
ing to π1, . . . , πk representing a c-approximation gn of PIPn. By the definition
of PIPn we have N := 2dlog(n!)e codewords. Therefore, some π have a probability
of 1/N to be chosen and others have a probability of 2/N ≤ 2/(n!). Hence, the
error probability of Lemma 1 is at most doubled and we get the result that for

at least (1− 2ke−4δ2((1−δ)/8)kn)2Θ(n log n) subfunctions IPπ
n of PIPn obtained by

replacing the selection variables with constants there are at least ((1 − δ)/8)kn
variables in a subset I such that π1, . . . , πk can be partitioned into a top part
and a bottom part such that for each xπ(2i−1) ∈ I the top part contains exactly
one of the variables xπ(2i−1) and xπ(2i). We consider such a subfunction. If we
fix all other variables, we obtain the function IPπ

((1−δ)/8)kn or its negation as

subfunction. Let γ := 2ke−4δ2((1−δ)/8)kn.
By averaging and using Proposition 1

|G| ≥ 21/(2k−1)(Duniform
1/(1−γ)(1−c)

(IP
((1−δ)/8)kn

)).

Using Fact 1 it follows that

|G| ≥ 21/(2k−1)(((1−δ)/8)kn/2−log((1/2−(1/(1−γ))(1−c))−1).

It holds that

− log((1/2 − (1/(1 − γ))(1 − c))−1) = log((−1 − γ + 2c)/(2(1 − γ)))

≥ log(−1 − γ + 2c) − 1.

Since c ≥ 1/2 + (1/2)γ + e−n1−ε′

it follows that

|G| ≥ 21/(2k−1)(((1−δ)/8)kn/2−(log e)n1−ε′) = 2Ω(n).

2

Now, we consider c-approximations of PIPn represented by BP1s. First, we
consider the subproblem to represent the function IPn by restricted BP1s. Often
it turns out to be easier to prove lower bounds on the size of BP1s if they have
the following special property.
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Definition 11. A BP1 on the variables x1, . . . , xn is called regular if for each
node v the same set of variables is tested on all paths from the source to v.
Furthermore, it is required that on each path from the source to the sinks all n
variables are tested.

It is not difficult to see that an arbitrary BP1 G can be converted into a
regular BP1 G′ with size |G′| ≤ (n + 1)|G| by inserting dummy tests.

Since the function IPn can be represented by OBDDs of linear size, it is
not possible to apply directly the method of generalized rectangles to prove
exponential lower bounds. Our aim is to adapt the known proof technique to
prove a lower bound on the size of restricted BP1s for IPn. Therefore, we combine
an adapted version of the rectangle method with results from distributional
communication complexity.

The following theorem is well-known (see e.g. Okol’nishnikova (1993)).

Theorem 4. If a function f ∈ Bn can be represented by a BP1 G of size s,
{0, 1}n can be partitioned into 2s f -monochromatic rectangles.

The proof idea of Theorem 4 is to decompose G into 2-dimensional rectangles.
Therefore, we define a cut through G consisting of all nodes v such that on each
path from the source of G to v exactly n/2 variables have been tested. By our
assumption on G on all paths to v the same set A(v) of variables has been tested
before reaching v. In this way paths using the same set of variables reaching
the same node v on the cut are ”bundled” together. A 2-dimensional rectangle
hence represents the computation paths running through a sequence (v0, v1, v2)
of nodes, where v0 is the source of G, v2 is one of the sinks, and v1 is a node on
the cut of G. From this construction it follows immediately that properties of the
paths to the nodes on the cut of G correspond to properties of the 2-dimensional
rectangles.

A 2-dimensional rectangle R corresponds to a balanced partition of the vari-
ables into two sets X1 and X2. R is a 2-dimensional rectangle with at least
(1 − δ)n/8 singeltons if there are at least (1 − δ)n/8 variables in X1 whose
partners belong to X2.

Proposition 2. Let G be a BP1 for IPn of size s. If for all nodes v of G which
can be reached after testing exactly n/2 variables it holds that there exist at least
(1−δ)n/8 A(v)-singletons, {0, 1}n can be partitioned into 2s IPn-monochromatic
2-dimensional rectangles with at least (1 − δ)n/8 singletons.

The discrepancy technique (see, e.g., Kushilevitz and Nisan (1997)) is known
as a method for proving lower bounds for the distributional communication
complexity Dµ

ε by giving upper bounds on the size of rectangles that are ”almost”
monochromatic.

Definition 12. Let f : X × Y → {0, 1} be a Boolean function, R be any rect-
angle, and µ be a probability distribution on X × Y . Denote

Discµ(R, f) =
∣

∣Prµ(f(x, y) = 0 and (x, y) ∈ R) − Prµ(f(x, y) = 1 and (x, y) ∈ R)
∣

∣.
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The discrepancy of f according to µ is Discµ(f) = maxR Discµ(R, f) where the
maximum is taken over all rectangles R.

Sauerhoff (1998) has generalized this method by introducing the rectangle
balance property. Afterwards, he has shown how this property can be used for
proving lower bounds on the size of randomized BPks. Here, we present the
method for proving lower bounds on the size of BP1s for (1− ε)-approximations
of functions f ∈ Bn.

Definition 13. Let f ∈ Bn, µ be a probability measure on {0, 1}n, and γ(n) be
a real-valued function. The function f has the rectangle balance property with
respect to (µ, γ(n)) if

µ(R ∩ f−1(0)) ≥ µ(R ∩ f−1(1)) − γ(n)

holds for each 2-dimensional rectangle R.

Theorem 5 (Sauerhoff(1998)). If f ∈ Bn has the rectangle balance prop-
erty with respect to (µ, γ(n)), the size of each BP1 representing a (1 − ε)-
approximation of f is bounded below by

1/2[(µ(f−1(1)) − ε)/γ(n)].

Now, we adapt this method to our case. In the rest of the section we set µ
to the uniform distribution.

Corollary 1. Let G be a regular BP1 representing a (1 − ε)-approximation of
IPn with the property that for all nodes v of G which can be reached after testing
exactly n/2 variables it holds that there exist at least (1− δ)n/8 A(v)-singletons
according to IPn. Let µ be the uniform distribution and γ(n) be a real-valued
function. If for each 2-dimensional rectangle R with (1 − δ)n/8 singletons it
holds that µ(R ∩ IP−1

n (0)) ≥ µ(R ∩ IP−1
n (1)) − γ(n), the size of G is bounded

below by
1/2[(µ(IP−1(1)) − ε)/γ(n)].

Fact 3: µ(IP−1
n (1)) = 1/2− 1/2n/2+1 where µ is the uniform distribution on

{0, 1}n.
Now, we prove that µ(R ∩ IP−1

n (0)) ≥ µ(R ∩ IP−1
n (1)) − 2−(1−δ)n/16 for the

uniform distribution µ and 2-dimensional rectangles R with (1−δ)n/8 singeltons.
Since R corresponds to a balanced partition of the input variables into two
sets X1 and X2, R can be described as a rectangle A × B where A is a set
of assignments to X1 and B a set of assignments to X2. We consider the set
X ′

1 ⊆ X1 of all singletons in X1 and the set X ′
2 ⊆ X2 of all singletons in X2. Each

partial assignment to the variables outside X ′
1∪X ′

2 restricts R to some rectangle
A′ × B′ where A′ contains assignments to the variables in X ′

1 and B′ contains
assignments to the variables in X ′

2. Moreover, IPn is restricted to the subfunction
IP(1−δ)n/8 or its negation. Finally, the uniform distribution µ is restricted to

the uniform distribution µ′ on {0, 1}(1−δ)n/4, the input set for the variables in

10



X ′
1 ∪ X ′

2. Now, we use the fact that Discuniform(IP(1−δ)n/8) ≤ 2−1/2(1−δ)n/8

(Chor and Goldreich (1988)). We easily obtain the restricted balance property
for IPn and R by averaging over all partial assignments. Altogether, we have
proved the following result.

Corollary 2. Let µ be the uniform distribution. Let G be a regular BP1 rep-

resenting a c-approximation of IPn with c ≥ (1/2 + 1/2n/2+1 + 2−Ω(n1−ε′)),
0 < ε′ ≤ 1. If for all nodes v of G which can be reached after testing exactly n/2
variables it holds that there exist at least (1− δ)n/8 A(v)-singletons according to
IPn, then the size of G is bounded below by 2Ω(n).

Now, we are ready to prove the following theorem.

Theorem 6. There is no c-approximation of PIPn with c ≥ (1/2 + 1/2n/2+1 +

1/2n1−ε′

), 0 < ε′ ≤ 1, which can be represented by BP1s of polynomial size.

Proof. We assume that there is a c-approximation gn of PIPn with c ≥ (1/2 +

1/2n/2+1 + 1/2n1−ε′

) which can be represented by a BP1 G of polynomial size.
First, we transform G to a regular BP1 G′ representing gn. By our assumption G′

is of polynomial size s. We define a cut through G′ consisting of all nodes v such
that on each path from the source of G′ to v exactly n/2 data variables have been
tested before reaching v. By our assumption on G′ on all paths to v the same set
A(v) of variables has been tested. By the definition of PIPn some permutations
π are described by two codewords. Therefore, we double the error probability of
Fact 2. Since the number of nodes in G′ is bounded above by s it follows that
for at most 2se−4δ2n2Θ(n log n) subfunctions IPπ

n of PIPn there exists a node v on
the cut of G′ such that there are at most (1−δ)n/8 A(v)-singletons according to
π. By the pigeonhole principle there exists a subfunction IPπ′

n of PIPn for which
there are for each node v on the cut of G′ at least (1 − δ)n/8 A(v)-singletons

according to π′. Furthermore, Pr(IPπ′

n (x̃) = g′n(x̃)) ≥ (1 − 2se−4δ2n)c =: c′ for
a random input x̃ where g′n is the subfunction of gn choosing a setting to the

selection variables which corresponds to a codeword for π′. Since s � e2δ2n if n
is large enough, it holds that 2se−4δ2n < e−2δ2n. Using Corollary 2 it follows

|G′| ≥ 1/2(1/2 − 1/2n/2+1 − (1 − c′))2(1−δ)n/16

= 1/2(−1/2 − 1/2n/2+1 + c′)2(1−δ)n/16

≥ 1/2(−1/2 − 1/2n/2+1 + (1 − e−2δ2n)(1/2 + 1/2n/2+1 + 1/2n1−ε′

))2(1−δ)n/16

≥ (1/2)2(1−δ)n/16−n1−ε′−1

= 2Ω(n).

Since |G| ≥ |G′|/(n + 1), there is a contradiction of our assumption that G
is of polynomial size.

2
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Conclusion

Problems from learning theory and genetic programming motivate the investiga-
tion of the approximative representation of Boolean functions by BDDs. Lower
bounds for the approximative representation are shown to be harder to obtain as
similar bounds for randomized representations. Exponential lower bounds were
known for OBDDs and are proved here for the more general models k-IBDDs
and read-once branching programs.
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