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On the Power Assignment Problem in Radio Networks*

Andrea E. F. Clementif Paolo Pennat Riccardo Silvestri®

Abstract

Given a finite set S of points (i.e. the stations of a radio network) on a d-dimensional
Euclidean space and a positive integer 1 < h < |S| — 1, the MIN dD h-RANGE ASSIGNMENT
problem consists of assigning transmission ranges to the stations so as to minimize the total
power consumption, provided that the transmission ranges of the stations ensure the communi-
cation beween any pair of stations in at most h hops.

Two main issues related to this problem are considered in this paper: the trade-off between

the power consumption and the number of hops; the computational complexity of the MIN dD
h-RANGE ASSIGNMENT problem.
As for the first question, we provide a lower bound on the minimum power consumption of
stations on the plane for constant h. The lower bound is a function of |S|, h and the minimum
distance over all the pairs of stations in S. Then, we derive a constructive upper bound as a
function of | S|, h and the maximum distance over all pairs of stations in S (i.e. the diameter of
S). It turns out that when the minimum distance between any two stations is “not too small”
(i.e. well spread instances) the upper bound matches the lower bound. Previous results for this
problem were known only for very special 1-dimensional configurations (i.e., when points are
arranged on a line at unitary distance) [Kirousis, Kranakis, Krizanc, Pelc 1997].

As for the second question, we observe that the tightness of our upper bound implies that
MIN 2D h-RANGE ASSIGNMENT restricted to well spread instances admits a polynomial time
approximation algorithm. Then, we also show that the same approximation result can be
obtained for random instances. On the other hand, we prove that for h = |S| — 1 (i.e. the un-
bounded case) MIN 2D h-RANGE ASSIGNMENT is NP-hard and MIN 3D A-RANGE ASSIGNMENT
is APX-complete.

1 Introduction

There are important scenarious in which fixed wired infrastructure, such as the Internet, are not
available either because it may not be economically practical or physically possible to provide the
necessary infrastructure or because the expediency of the situation does not permit its installation
(for instance networks formed by satellites, ships or airplains, or networks connecting rescue teams
in case of earthquake or flood).

“Most of the results of this paper has been presented at APPROX-99 and STACS-00 (see [8, 9]).
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In such situations a collection of hosts with wireless network interfaces may form a temporary
network without the aid of any established infrastructure or centralized administration. Message
communication in such kind of networks takes place by performing multi-hop transmissions. This
type of wireless networks are known as ad-hoc (multi-hop) radio networks [11]. More formally,
an ad-hoc radio network [17] (later on, radio network) is a finite set of radio stations located on
a geographical region that are able to communicate by transmitting and receiving radio signals.
A transmission range is assigned to each station s and any other station # within this range can
directly (i.e. by one hop) receive messages from s. Communication between two stations that are
not within their respective ranges can be achieved by multi-hop transmissions.

It is reasonably assumed [17] that the power P(s) required by a station s to correctly transmit
data to another station s’ must satisfy the inequality

—d(f > (1)

where d(s, s') is the distance between s and s', 8 > 1 is the distance-power gradient, and v > 1 is
the transmission-quality parameter. In an ideal environment it holds that g = 2 but it may vary
from 1 to more than 6 depending on the environment conditions of the place the network is located
(see [17]).

Given a set S of radio stations, a range assignment is a function r : § — R*. Any station s € S
can directly transmit data to s’ provided that d(s,s’) < r(s). In order to achieve a transmission
range r(s), a station s requires an amount of power determined by Eq. 1. In particular, by setting
v =1 and 8 = 2, the power P, must be at least r(s)2. We then define the cost of a range assignment
7 as the overall power required by the network, that is

cost(r) = Y (r(s))”.

SES

The MIN dD h-RANGE ASSIGNMENT problem consists of finding a minimum cost range as-
signment for a given set S of radio stations on the d-dimensional Euclidean space provided that
the assignment ensures the communication beween any pair of stations in at most h hops. When
h =S| —1 (i.e. the unbounded case), the problem will be simply denoted as MIN dD RANGE
ASSIGNMENT. The cost of an optimal solution for MIN dD h-RANGE ASSIGNMENT for a given
instance S is denoted as opt,(S).

Though we have assumed v = 1 and 8 = 2, all the results of this paper can be easily extended to
any pair of constants v > 1 and 8 > 1.

1.1 Previous works

Routing, broadcasting and scheduling problems on radio networks have been the subject of several
papers over the last years [2, 7, 6, 12, 17, 22, 23]. Tradeoffs between connectivity and energy
consumption have been obtained in [15, 16, 20, 24].

In particular, Kranakis et al provide the following

Theorem 1 (The Uniform Chain Case [15]) Let N be a set of n colinear points at unit dis-
tance. It holds that



oh+1_y
e opt,(N)=0 (n 2h—1 ) , for any constant h;

e opty(N)=0 (”—,:) , for any h = Q(logn).
Furthermore the two above (implicit) upper bounds are constructive.

Up to now this is the only known result for the function opt,(-). However, the same authors show
that the complexity of MIN dD RANGE ASSIGNMENT depends on the number of dimensions d. They
provide a polynomial-time (exact) algorithm for MIN 1D RANGE ASSIGNMENT based on dynamic
programming and a polynomial-time approximation algorithm having worst-case performance ratio
2 that works for any dimension. On the other hand, they derive a polynomial-time reduction from
MiNn VERTEX COVER restricted to planar, 3-degree graphs thus showing that MIN 3D RANGE
ASSIGNMENT is NP-hard. Finally, we emphasize that Kirousis et al’s reduction works only in the
3-dimensional case: they indeed left the complexity of MIN 2D RANGE ASSIGNMENT as an open
problem.

1.2 Our results
1.2.1 General bounds on opt,(-)

We provide a general lower bound on opt(-), for any set of stations on the plane. Given a set of
stations S, let us define

D(S) = max{d(s,s') | s,s' € S}; §(S) = {d(s,s") | s,s' €S, s#5'}
Theorem 2 For any constant h > 0, and for any set S of stations on the plane, it holds that
opty(S) = Q(S(S)|S|" /M),

The second result of this paper is an efficient method to derive a solution for any instance of our
problem for fixed values of h.

Theorem 3 For any set of stations S on the plane, it is possible to construct in time' O(h|S|) a
feasible range assignment r,(S) such that

cost(ry(S)) = O(D(S)*|S|'/"),
for any constant h > 0.

Let us now consider the planar configuration GG,, where n stations are placed on a square grid
of side v/n and the distance between adjacent pairs of stations is 1 (notice that this is the 2-
dimensional version of the unit chain case studied in [15] - see Theorem 1). Then, by combining
Theorem 2 and Theorem 3, we easily obtain the following optimal bound

'The constant hidden by the O notation is linear in h.



opt,(Gn) = © (n“’l/h) . (2)

The square grid configuration is the most regular case of well-spread instances. In general, we
say that a family S of planar instances is well-spread if, for any S € S, §(S) > ¢D(S)/+/]S] (for some
positive constant ¢ > 0). Notice that the above property is rather natural: informally speaking, in
a well-spread instance, any two stations must be not “too close”. Beacuse of interference problems,
this is the typical situation in radio networks adopted in practice [16, 17]. It turns out that the
optimal bound in Eq. 2 holds for any family of well-spread instances. The following corollary is
thus an easy consequence of Theorems 2 and 3.

Corollary 1 Let S be a family of well-spread instances. For any S € S, it holds that
opt;(S) = © (6()%S[1 1),
for any positive constant h.

Beside being interesting in itself, the well-spread concept turns out to be useful to analyse
another important family of instances: the random instances. It is not hard to show that a family S%
of uniformly distributed random instances, with high probability, does not satisfy the well-spread
property. However, in Section 3.4, we will show that, given a family S® of random instances,
it is possible to construct a family SV of well-spread instances having the following property.
For any 7 € SE, there is an S € SV such that |S¥| = ©(|S"|) and, with high probability,
opty, (S”) = O(opt,(S™)). This equivalence yields the following result.

Theorem 4 Let [ be any positive real. Let ST be a set of n stations chosen uniformly and inde-
pendently at random on a square of side [. Then, with high probability, it holds that

opty (S7) = © (%n!/*),
for any constant h.

1.2.2 The computational complexity of MIN dD h-RANGE ASSIGNMENT

As previously observed, Kranakis et al’s reduction [15] proving the NP-hardness of MIN 3D RANGE
ASSIGNMENT does not work in the 2-dimensional case. In fact, the reduction starts from a planar
orthogonal drawing of a (planar) cubic graph G and replace each edge by a gadget of stations drawn
in the 3-dimensional space that “simulates” the connection between the two adjacent nodes. In
order to preserve pairwise “independence” of the drawing of gadgets, their reduction strongly uses
the third dimension left “free” by the planar drawing of G. Our technical contribution here is the
construction of a new polynomial-time reduction that works for MIN 2D RANGE ASSIGNMENT.

Theorem 5 The MIN 2D RANGE ASSIGNMENT problem is N P-hard.

Then, we address the question whether the approximation algorithm given by Kirousis et al
for the MIN 3D RANGE ASSIGNMENT problem can be significantly improved. More precisely, we
ask whether or not the problem admit a Polynomial-Time Approximation Scheme (PTAS). We
demonstrate the following result.



Theorem 6 The MIN 3D RANGE ASSIGNMENT problem is APX-complete thus implying that it
does not admit a PTAS, unless P = NP (see [18] for a formal definition of these concepts).

The standard method to derive an APX-completeness result for a given optimization problem
IT is: i) consider a problem IT' which is APX-hard and then #7) show an approzimation-preserving
reduction from II' to II [18]. We emphasize that Kirousis et al’s reduction does not satisfy any of
these two requirements. In fact, as mentioned above, their reduction is from MIN VERTEX COVER
restricted to planar cubic graphs which admits a PTAS and therefore cannot be APX-hard (unless
P = NP) [4]. Furthermore, it is not hard to verify that their reduction is not approximation-
preserving.

In order to achieve our hardness result, we instead consider the MIN VERTEX COVER problem
restricted to (non-planar) cubic graphs which is known to be APX-complete [19, 1] and then we
show an approximation-preserving reduction from this variant of MIN VERTEX COVER to MIN
3D RANGE ASSIGNMENT. Furthermore, our reduction is “efficient”, so we obtain an interesting
explicit relationship between the approximability behaviour of MIN VERTEX COVER and that of
the MIN 3D RANGE ASSIGNMENT problem. In fact, we can state that if MIN VERTEX COVER on
cubic graphs is not p-approximable then MIN 3D RANGE ASSIGNMENT is not %—approximable.

As for the bounded case, we emphasize that the lower bound obtained in Theorem 2 holds for
any instance, so the constructive (and efficient) method of Theorem 3 and the equivalence yielding
Theorem 4 easily imply the following result. Let Av-APX be the class of optimization problems
(together with a probability function on the instance set) that admit a polynomial time algorithm
that, with high probability, returns a feasible solution having performance ratio bounded by a fixed
constant [3].

Corollary 2 o Let S be any family of well-spread instances. Then, the MIN 2D h-RANGE
ASSIGNMENT problem restricted to S admits a polynomial-time approximation algorithm with
constant performance ratio (i.e. the restriction is in APX).

e The MIN 2D h-RANGE ASSIGNMENT problem (with uniform instance probability) is in Av-APX.

The following table summarizes the complexity results obtained in this paper.

| Problem version | Previous results | Our results |
MIN 1D RANGE ASSIGNMENT in P [15] -
MIN 2D RANGE ASSIGNMENT in APX [15] NP-complete
MIN 2D h-RANGE ASSIGNMENT, well-spread | - in APX
MIN 2D h-RANGE ASSIGNMENT - in Av-APX
MIN 3D RANGE ASSIGNMENT NP-complete, in APX[15] | APX-complete

2 Preliminaries

Let S = {s1,...,8,} be a set of n points (representing stations) of an Euclidean space £ with
distance function d : £2 — R*, where Rt denotes the set of non negative reals. We define

6(S) = min{d(s;, s;) | si,s; € S,i #j}



and

D(S) = max{d(s;, s;) | si,s; € S}

A range assignment for S is a function r : § — R™, and the cost of r is defined as

n

cost(r) = Y _r(si)”.

i=1

The communication graph of a range assignment r is the directed graph G,(S,F) where
(si,s5) € E if and only if r(s;) > d(s;,s;). We say that an assignment r for S is feasible if
the corresponding communication graph is strongly connected. Given a set S of n points in a
d-dimensional Euclidean space, the MIN dD RANGE ASSIGNMENT problem consists of finding a
feasible range assignment rop; for S of minimum cost.

We say that an assignment r for S is of diameter h (1 < h < n — 1) if the corresponding
communication graph is strongly connected and has diameter h (in short, an h-assignment). The
cost of an optimal h-assignment for a given set S of stations in the plane is denoted as opty,(S).

In the proof of our results we will make use of the well-known Hélder inequality. We thus
present it in the following convenient form. Let x;, ¢ = 1,... ,k be a set of £k non negative reals
and let p,q € R such that p > 1 and ¢ < 1. Then, it holds that:

k k ) p
szk<Z=Tl””) ; (3)

k q
ngk<zk—T$) | (W

The MIN VERTEX COVER problem is to find a subset K of the set V' of vertices of a graph
G(V, E) such that K contains at least one endpoint of any edge in E and | K| is as small as possible.
MiIN VERTEX COVER is known to be NP-hard even when restricted to planar cubic graphs [13].
Moreover, it is known to be APX-complete when restricted to cubic graphs [19, 1]. It follows
that a constant p > 1 exists such that MiN VERTEX COVER restricted to cubic graphs is not
p-approximable unless P = NP.

Given a graph G a planar orthogonal grid drawing is a drawing of G such that

1. Each vertex is represented as a point in the plane with integer coordinates;

2. Edges are represented as chains of horizontal and vertical segments (i.e. polyline) connecting
the two endpoints and whose bends have integer coordinates;

3. Every polyline (representing an edge) crosses neither other polylines nor points representing
vertices.

A drawing is said to be straight-line if all the edges are represented by one segment connecting the
endpoints. Finally, a 3-dimensional orthogonal grid drawing is a generalization to the 3-dimensional
Euclidean space of planar orthogonal grid drawings.



3 The Bounded Hops Case

3.1 The Lower Bound

Given a set S of stations and a “base” station b € S, we define opt,(S,b) as the minimum cost
of any range assignment ensuring that any station s € S can reach b in at most h hops. By the
definition of the MIN 2D h-RANGE ASSIGNMENT problem, it should be clear that the cost required
by any instance S of MIN 2D h-RANGE ASSIGNMENT is at least opty(S,b), for any b € S. So, the
main result of this section is an easy consequence of the following lemma.

Lemma 1 Let S be any set of stations such that 6(S) = 1. For every b € S and every positive
constant integer h, it holds that

opts(S,b) = Q(|S|"H/").

PROOF. We first observe that, since 6(S) = 1, the maximum number of stations contained in a
disk of radius R = 4/|S|/3 is at most |S|/2.

Let rﬁ”‘to_one be a range assignment that ensures that all the stations in S can reach b in at most
h hops. We prove that cost(r,’ill*to*one) = Q(|S|"t'/*) by induction on h.

For h = 1, consider the disk of radius R and centered in b. By the above observation, there are at
least |S|/2 stations at distance greater than R from b. The cost required by such stations to reach
b in one hop is at least

(181/2)R* = Q(|S]%).

Let h > 2, we define

FAR={s€ S |d(s,b) > R}.

Clearly, we have that |FAR| > |S|/2. Every station s in F AR must reach b in k < h hops, it thus
follows that there exist k < h positive reals z1,... ,z; (where z; is the distance covered by the i-th
hop of the communication from s to b) such that

1+ T2+ -+ 2 > R.
So, at least one index j exists for which ; > R/k > R/h. We can thus define the set of “bridge”
stations

B ={sc§|rilimtomome(s) > R/h)}.

Two cases may arise.



Case |B| > |S|#. In this case, since |R| = 1/|S]/3,

S e s)? > BRI
sES
1 1
el
1
= Q(|S|1+h).

Case |B| < |S| . By means of the assignment rﬁ”fto*”"e, every station in FAR reaches in at most

h—1 hops some bridge station. Let B = {b1,... ,bp/}. So, we can partition the set FARUB
into |B| subsets Ai,... , A p such that all the stations in A; reach b; in at most h — 1 hops.
Notice that if a station reaches two or more bridge stations, we can put the station into any
of the corresponding set A;’s. We must also guarantee that if a station s is put into A; then
all the stations in the path from s to B; are put into A; as well. We also assume that b; € A;,
for 1 <i < |B|. So,

1B
Do) > 3 opta (Ai i)
SES =1
1B 1
= Q E:IAH1+ﬁ
=1

where the last bound is a consequence of the inductive hypothesis. Since
|B]
> |Ai| = [FARUB| > S|/2,
=1

the Holder inequality (see Eq. 3) implies that

|B| 1+
1 |S]/2 -1
A > s (B12)
2 b
Ly
= o () ")
= a(|s|"*#)

where the last equivalence is due to the condition |B| < |S|#.

O
Proof of Theorem 2.
For §(S) = 1, the theorem is an immediate consequence of Lemma 1. The general case §(S) > 0
can be reduced to the previous case by simply rescaling the instance by a factor of 1/(S).



3.2 The Upper Bound

Proof of Theorem 3.
The proof consists of a recursive construction of an h-assignment 7, (S) having cost O(D(S)?|S|'/).
For h = 1, r1(S) assigns a range D(S) to each station in S. Thus, cost(r1(S)) = D(5)?|S]|.

Let us consider the smallest square () that contains all points in S. Notice that the side I of @
is at most D(S). Let us consider a grid that subdivides @ into k? subsquares of the same size [/k
(the choice of k will be given later).

Informally speaking, for every non empty subsquare we choose a “base” station and we give
power sufficient to let it cover all the stations in S in one hop. Then, in every subsquare we complete
the assigment by making any station able to reach the base station in h — 1 hops. For this task we
apply the recursive construction.

The cost of r,(S) is thus bounded by

k2
cost(ry,(S)) < k2D(S)? + Z cost(rp—1(S:)),

where S; is the set of the stations in the i-th subsquare. Since D(S;) = O(D(S)/k) we apply the
inductive hypothesis and we obtain

cost(r(5))

k2 2

D(S
O | K*D(8)*+ ) _|Si|"/*=D (—Eﬁ )>
=1

D(S)\ 2 k?
oo+ (ZE) sy
i=1

- ofensr (2) e (2)"7)

where the last equality follows from the Holder inequality (see Eq. 4) and from the fact that
Zfil |S;] = |S|. Now we choose

k=S|

in order to equate the additive terms in the last part of the above equation. By replacing this value
in the equation we obtain

cost(ry(S)) = O (D(S)2|S|1/h) .

It is easy to verify that the partition of Q into k? subsquares and the rest of the computation
in each inductive step can be done in time O(|S|). So, the overall time complexity is O(h|S|).
O



3.3 Tight Bounds and Approximability

Let us consider the simple instance G, of MIN 2D h-RANGE ASSIGNMENT in which n stations are
placed on a square grid of side y/n, and the distance between adjacent pairs of stations is 1.
By Combining Theorems 2 and 3, we easily obtain that

opt,(Gn) = © (n1+1/h) :

This also implies that the range assignment constructed in the proof of Theorem 3 yields a
constant-factor approximation.
It turns out that the above considerations can be extended to any “well-spread” instance.

Definition 1 A family S of well-spread instances is a family of instances S such that D(S) =
0(8(8)V/18))-
The following two corollaries are easy consequences of Theorems 2 and 3.
Corollary 3 Let S be a family of well-spread instances. For any S € S, it holds that
opty (S) = © (8(S)2IS|"+1/")
for any positive integer constant h.

Corollary 4 Let S be any family of well-spread instances. Then, the MIN 2D h-RANGE ASSIGN-
MENT problem restricted to S is in APX, for any positive integer constant h.

3.4 Random Instances

Theorem 7 Let S® be a set of n stations chosen uniformly and independently at random on a
square of side . Then, with high probability, it holds that

opt,(S7) = © (zan/h) : (5)
for any positive integer constant h.

PROOF. The upper bound is an immediate consequence of Theorem 3. As for the lower bound,
given S, we construct an instance S* as follows: consider a partition of the | x [ square Q into a
grid of /n x /n cells of side u = [/v/N. The instance S* consists of the set of stations located at
the center of every non-empty cell. It is easy to verify that S* is well-spread (indeed, §(S%) > u).
An easy application of the well known occupancy problem analysis [21] shows that there is a constant
v > 0 such that, w.h.p. |S¥”| > yn. Observe that Theorem 2 implies the lower bound in Eq. 5 for
S¥. So, we will prove the theorem by showing that opt, (S%) = Q(opt,(SY)).

Let us consider a (feasible) h-assignment rf for S%. The corresponding h-assignment for S is
defined as follows. For any s € SY,

r(s) = v2u + max{rf(t) |t € ¢, } (6)

where ¢, is the cell containing s. Since 7% is an h-assignment for S* then it is easy to see that r%

is an h-assignment for S*. We now need the following



Claim 1 Two constants a > 0 and 8 > 0 exist such that, with high probability (w.h.p.), at least
B|S™| cells contain a station t of ST with rE(t) > au.

ProOOF OF CLAM 1. In order to prove the above claim we consider super-cells, i.e. squares of 9
cells and of side 3u. We then say that a supercell is occupied if it contains at least one station of
S in the central cell;

We will now show that if there exist at least m occupied cells then it is possible to find at least
m/25 pairwise disjoint supercells. In fact, assume on the contrary that the maximum number of
occupied pairwise disjoint supercells that can be defined is less than m/25. Let us consider a set of
pairwise disjoint supercells of maximum size and the set M of the central cells of such supercells.
Then, the number of cells contained into the radius 2 neighbourhood (Manhattan distance) of some
cell in M is less than m. So, at least one further disjoint occupied supercell can be found thus
contraddicting the assumption. From the above fact, we can state that, w.h.p., there are at least
(v/25)n pairwise disjoint occupied supercells.

We say that a supercell C is bad if it is occupied and no station ¢ in C exists with r%(¢) > au
(the choice of « is given later) while a supercell is good if it is occupied and is not bad. We define
the set BAD (GOOD) as the set of all the bad (good) supercells. Our next goal is to prove that
|BAD| < an. We assume that there exist at least two distinct occupied supercells (this happens
w.h.p.). Let C be a bad supercell and C’ be another occupied supercell. Since the “central” station
in C must communicate to any station in C’, we have that

> re) >y

seC

Since C is bad, we obtain that |C| = |[{s € S®|s € C} > 2 = 1 We thus have that |[BAD| < an.
By choosing f = a = y/50, we have that, w.h.p., |GOOD| > fn. O

For any s € S%, let ¢(s) be the cell corresponding to s, and let max(s) be the maximum range
rE(t) over all stations t € S® such that ¢ € ¢(s). From Claim 1, we have that:

cost(r¥(S¥)) = Y r(s)’
= Z (\/iu-l—maX (c(s)))2

SESW

= Z ((1 + \/ﬁ)u)2 + Z ((1 + g) max(C(S)))
))Zou

s€Sw:max(c(s))<au s€S%:max(c(s

IA

2
2: ZsES“’:rna.x(c(s))chu <(1 + g) ma.X(c(s))
2
2 (1 + g) Z ’I"R(S)2

IN

10



4 MiIN 2D RANGE ASSIGNMENT is NP-hard

We will show a polynomial-time reduction from MIN VERTEX COVER restricted to planar, cubic
graphs to MIN 2D RANGE ASSIGNMENT.

We first outline which step have to be performed in order to derive an instance S(G) of MIN 2D
RANGE ASSIGNMENT corresponding to a planar at most cubic graph G. To this aim, we will make
use of an intermediate representation of G, by means of a planar orthogonal grid drawing D(G) of
it. This intermediate step will make the construction of S(G) simpler. The whole construction will
basically take these steps:

1. Construct a planar orthogonal grid drawing of G;
2. Add two new vertices for each bend of the drawing so to obtain a straight-line drawing D(G);

3. Replace each straight-line (edge) in D(G) with a suitable set of stations (gadget).

Notice that in order to obtain a polynomial time reduction we need to perform all the above
steps in polynomial time. Moreover, in the second step, we have to preserve the optimality of
the vertex cover solutions between G and the new graph represented by D(G). As we will see in
Section 4.2, if 2h is the number of vertices added by this operation, then G has a vertex cover
of size k if and only if D(G) has a vertex cover? of size k + h. Finally, in the third step, further
vertices will be added in D(G) still preserving the above relationship between the vertex covers of
G and those of D(QG).

In the next section we provide the key properties of these gadgets and the reduction to MiIN
2D h-RANGE ASSIGNMENT that relies on such properties. The detailed construction of the 2-
dimensional gadgets is instead given in Section 4.2.

4.1 The Properties of the 2-Dimensional Gadgets and the Reduction

The type of gadget used to replace one edge of D(G) depends on the local “situation” that occurs
in the drawing (for example it depends on the degree of its endpoints). However, we can state the
properties that characterize any of these gadgets.

- YZ-component

Figure 1: An example of a 2-dimensional gadget and a canonical assignment for it.

%In what follows, we will improperly use D(G) to denote both the drawing and the graph it represents.

11



Definition 2 (Gadget Properties) Let 6,0',¢ > 0 such that § + € > &' and o > 1 (a suitable
choice of such parameters will be given later). For any edge (a,b) the corresponding gadget gqp
contains the sets of points Xgp = {z1,... , 21, }, Yoo = {Yabr Yba}s Zap = {z1,--. ,21,} and Vg =
{a,b}, where Iy and ly depend on the length of the drawing of (a,b). These sets of points are drawn
in R? so that the following properties hold:

1. d(a,yab) = d(b,ypa) = 0 + €.
2. X 18 a chain of points drawn so that
d(a,z1) = d(z1,22) = -+ = d(zy, -1, 21,) = d(z1,,b) = 0
and, for any i # j, d(z;,z;) > 4.
3. Zap 1s a chain of points drawn so that
d(Yap, 21) = d(21,22) = -+ = d(21,-1, 21,) = d(21,, Ypa) = '
and, for any i # j, d(z;,z;) > 6.

4. For any z; € Xy and zj € Zy, d(xi,25) > 6 + €. Furthermore, for any i = 1,... 1,
d(zi,Yap) > 0 + € and d(zi, ypa) > 0 + €.

5. Given any two different gadgets gop and geq, for any v € gap \ geq and W € gegq \ gap, we have
that d(v,w) > 6 and if v & Vg U Xgp or w ¢ Veg U Xeg then d(v,w) > ad.

From the above definition, it turns out that the gadgets consist of two components whose
relative distance is § + e: the V X -component consisting of the “chain” of points in X, U V4, and
the Y Z-component consisting of the chain of points in Y, U Z.

Let S(G) be the set of points obtained by replacing each edge of D(G) by one gadget having
the properties described above.

Note 1 Let r™™" be the range assignment of S(G) in which every point in VX and in Y Z have
range & and &', respectively (notice that this assignment is not feasible). The corresponding commu-
nication graph consists of m + 1 strongly connected components, where m is the number of edges:
the Y Z-components of the m gadgets and the union U of all the VX -components of the gadgets.
It thus follows that, in order to achieve a feasible assignment, we must define the “bridge-point”
between U and every Y Z-component.

The above note leads us to define the following canonical (feasible) solutions for S(G).

Definition 3 (Canonical Solutions for S(G)) A range assignment r for S(G) is canonical if,
for every gadget gqp of S(G), the following properties hold.

1. FEither m(yqp) = 0 + € and 7(ypa) = 0" (50, yap s a radio “bridge” from the Y Z-component to
the VX one) or vice versa.

2. For every v € {a,b}, either r(v) =0 or r(v) = 0 + €. Furthermore, there exists v € {a,b}
such that r(v) = 6 + € (so, v is a radio “bridge” from the V X -component to the YZ one).
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3. For every x € Xy, r(z) = 6.
4. For every z € Zg, r(2) = 4.

Informally, our reduction is based on the following ideas:

1. If we minimize the number of “bridge” stations in the V-components then we minimize the
overall cost of any canonical solution (observe that the cost of all the X- and Y Z-components
is fixed);

2. The graph D(G) has a vertex cover of size k if and only if there exists a canonical solution
for S(G) with k “bridge” stations of type V;

3. Any non-canonical feasible solution can be transformed in polynomial time into a canonical
one without paying any extra cost (notice that any canonical assignment is feasible).

In the remaining of this section we will formally prove the above statements.

Lemma 2 Let us consider the construction S(G) in which «, § and € are three positive constants
such that

28 > (m—1)[(F+¢) -8+ (3 + > (7)

Then, for any feasible range assignment r for S(G), there is a canonical range assignment r¢ such
that cost(r¢) < cost(r).

ProoFr. Under the condition of the lemma, from any non canonical range assignment r, we will
derive an iterative process that yields a canonical range assignment r¢ such that

cost(r€) < cost(r) .

The number of iterations is at most the number of points that have a non canonical range
assignment in 7. Let us describe the generic step of this iterative process.

Since r is non canonical, there exists a point u for which at least one property of Definition 3
is not satisfied. We distinguish two cases.

a) (Local Transformation.) The transmission range r(u) is smaller than ad (this implies that
u has power not sufficiently large to reach points of the Y Z-component of other gadgets).
Notice that if 7(u) < 0 + € then u cannot be the “bridge” between the V X-component and
the Y Z-component of the gadget: in this case, we can easily make r(u) canonical without
increasing the overall cost. We can thus assume that r(u) > ¢ + €. In this case, we prove that
the cost difference between r and r¢ is at least

cost(r) — cost(r®) > r(u)? — (6 + €)%

So, the difference is non negative. In order to prove the above inequality, we analyze three
subcases.

13
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Figure 2: The local transformation.

1. u € Zgp. Set r¢(u) = &' and set the range of one point from Y, (say y.s) to § + €. Since
in any feasible solution the range of v, is at least §’, we obtain

r(w)? 4 r(yap)? — 7°(u)? — 7(yap)? > r(u)? — (6 +€)? .

2. u € Xgp. Set r¢(u) = ¢ and set the range of one point from Vg, (say a) to § + €. Since
in any feasible solution the range of a is at least §, we obtain

r(w)? 4 r(a)? — r¢(u)? — r¢(a)? > r(u)? — (6 + €)? .
3. u € Vg UYgp. Simply set 7(u) = § + e. Then
cost(r) — cost(r®) = r(u)? — (5 +€)? .

After this change, if it is the case that both 1, and yp, have range d + €, then we reduce
one of them to ¢'.

Other non canonical cases may arise but once a two-way transmission bridge is guaranteed
by the assignment, there is no further reason to give larger transmission range to the stations
of a fixed gadget unless they are used to reach other gadgets: this is the next case.

b) (Global Transformation.) Let r(u) > ad. We transform r in two steps: i) Locally change
the range assignment so that the range assignment of u is canonical; i7) Canonically assign
the new ranges to the stations of those gadgets g’ that were covered by u. The first step is
made according to Case a). Thus this step always reduces the cost of r by

cost(r) — cost(r®) > r(u)? — (6 +€)? > (ad)® — (6 + €)% (8)
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As for the second step, it might happen that when we give the canonical assignment to u,
there is some gadget ¢’ (previously covered by r(u)) corresponding to the edge (a’,b’) whose
Xy component is not anymore strongly connected to the Z,, component of g'. We then
assign 7¢(a’) = § + €. Since r(a’) > § and since the number of gadgets covered by r(u) is at
most m — 1, the overall cost increment due to this change is bounded by

(m —1)[(6 + €)* — 6%].

Eq.s 7 and 8 thus imply cost(r¢) < cost(r).

We now assume that S(G) satisfies the hypothesis of Lemma 2.

Lemma 3 Given any planar cubic graph G(V, E), assume that it is possible to construct the set
of points S(G) in the plane in time polynomial in the size of G. Then MIN VERTEX COVER is
polynomial-time reducible to MIN 2D RANGE ASSIGNMENT.

PROOF. Let us consider the graph D(G) and let us denote by V' and E' its set of vertices and
edges, respectively. By construction, G has a vertex cover of size k if and only if D(G) has a vertex
cover of size k + h, where 2h is the number of new vertices added to G in the construction of
D(G). We can therefore consider the problem of finding an optimum vertex cover of D(G). From
Lemma 2, we can restrict ourselves to canonical solutions of MIN 2D RANGE ASSIGNMENT.

Given any vertex cover K C V' for D(G), we consider the canonical solution rx for S(G) where
every v € K has range 0 + € and every w € V' \ K has range ¢. Further, the range assignment r
for all the other points is made according to the definition of the canonical solution (notice that
the cost of this part of the assignment is fixed). The cost cost(rg) is given by

cost(ri) = |K|(6 + €)* + (Ns(c) — |K|)6* + Ms(q) 9)

where

Ns@) = V' + U Xab
(a,b)eE’

and

Mgy = Z [(1Y Zas| — 1)(8")* + (6 + €)*] .
(a,b)eE’

Notice that Mg(g) is the overall power given to the points of type Z and Y in any canonical
assignment for S(G).

On the other hand, let 7x be any canonical solution for S(G) and let x be the number of points
of type V whose range is § + €. Then, the cost of such a solution is

k(6 + 6)2 + (NS(G) — ﬁ)52 + MS(G)-

15



Let K be the set of k vertices of D(G) corresponding to those stations whose solution 7 assigns
range 0+¢€. We now prove that K is a vertex cover. Suppose by contradiction that some edge (a, b) is
not covered (i.e. both a and b are not in K). In the solution rx, we should have rx(a) = rx(b) = ¢,
thus contradicting the fact that rx is canonical.

O

4.2 The Construction of the 2-Dimensional Gadgets

This section is devoted to the construction of the 2-dimensional gadgets that allow us to obtain
the point set S(G) corresponding to a given planar cubic graph G.

Definition 4 (Construction of S(G)) Let G(V, E) be a planar cubic graph, then the set of points
S(G) is constructed as follows:

1. Construct a planar orthogonal grid drawing of G with at most one bend per edge and polyno-
mial area using the polynomial time algorithm in [14] 3.

2. For any edge represented by a polyline with one bend, add two new vertices so that any edge
is represented with a straight line segment.

3. Starting from the obtained graph D(G), replace its edges with the gadgets satisfying Defini-
tion 2 and Eq. 7. This step may require further vertices to be added to D(G) while preserving
the relationship between the vertex cover solutions.

Let us first observe that G has a vertex cover of size k if and only if D(G) has a vertex cover
of size k + h, where 2h is the number of new vertices added in the last two steps. As we will see in
the sequel A is polynomially bounded in the size of G. We can therefore consider the problem of
finding a minimum vertex cover for D(G).

During the third step of the construction, it is required to preserve Property 5 of Definition 2,
i.e., points from different gadgets are required to be within distance at least a:d. Informally speaking,
the main technical problem is drawing the Z-chains corresponding to incident edges so that the
properties of Definition 2 hold. To this aim, we adopt a set of suitable construction rules that are
described in the sequel. The correctness will be given in the next section.

R1) (Simple Chains.) We first consider the two simple cases in which a chain of three vertices
a, b and ¢ in D(G) is drawn so that either: (i) the points lay on the same line; (ii) edge (a, b)
is orthogonal to edge (b,c). It is easy to see that the two gadgets drawn as in Fig. 3 (dash
lines represent X- and Z-chains) satisfy the properties of Definition 2.

R2) (Alternated Chains.) Let us now consider two slightly more complex situations. In the
first one we have four vertices a, b, ¢ and d as in Fig. 4(a). Notice that we cannot follow
rule R1 to correctly place the gadget of (b, c). Indeed, the presence of gadget g,; requires the
Zpe~-chain to be placed to the right of Xjp.. Similarly, gadget g.q imposes the Z,.-chain to be
drawn to the left of X;.. We solve this problem by adding four new vertices (namely &', b,
¢’ and ') between b and ¢ and by “splitting” the Xj;.- and the Zj.-chains into five chains

3We make use of the on-bend algorithm in [14] just because this will make the presentation easier. Actually any
polyline orthogonal drawing algorithm such as the one in [25], would be suitable.
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Figure 4: How to construct gadgets: (a) a chain of four vertices in D(G); (b) the corresponding
gadgets; (c) a node of degree three in D(G); (d) the gadgets of nodes of degree three.
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as shown in Fig. 4(b). Let us observe that this transformation is equivalent to perform the
following steps:

e Add to D(G) the four new vertices b', b", ¢"" and ¢ between b and c.

e Modify D(G) so that b’ is moved to the bottom and to the right by one unit with respect
to b. Similarly, move b” to the right and to the bottom by two units. Finally, place
all of the remaining points of D(G) so that edges (b,b'), (¢",¢') and (¢/,c) are drawn
as vertical segments, and edges (V',b"), (¢’,c') and (c,c) are represented as slanted
segments. Notice that in this way we can also keep the grid requirement also for the
new added vertices.

e Replace each vertical and horizontal segment with the corresponding gadget according
to rule RI and slanted segments as in Fig. 4(b).

It is easy to verify that introducing these new points preserves the reduction from vertex
cover since an even number of points is added. The above construction will be used every
time the rule RI requires that the Z-chain of a certain gadget cannot lay on any of the two
possible sides (left-right or above-below).

R3) (Degree Three Nodes.) Finally, let us consider a vertex of degree 3. By using simple rota-
tions this situation can always reduced to that shown in Fig. 4(c). Notice that, similarly to
the previous case, there is no way to place gadgets for two of the three edges incident to b.
The main idea is to construct one of the three gadgets in a slightly different way from that
of the previous cases. We first add two new points b’ and ¢’ between b and ¢. In particular,
b’ and ¢’ are drawn respectively one and two units below b, and ¢’ is moved to the bottom by
two units. The resulting chain is then replaced with gadgets gy, gy and gy as shown in
Fig. 4(d). Finally, we proceed in the construction of gadget gyq as follows: (i) first place ypq
at distance § + € from b in such a way that the angle Zabyyy = 37/4 (see Figure 5); (ii) place
the chain Z,4 as shown in Fig. 4(d) so to satisfy the gadget properties; (iii) construct a chain
of X-nodes from d to one node in Xy .

4.2.1 The Correctness.

In the sequel the term S(G) will denote the network drawn from D(G) according to the construction
rules mentioned above. Let L,,;, be the minimum distance between any two V-points in D(G).
From the above construction it follows that Ly, is also the minimum distance between any two V'
stations in S(G). Finally, from the grid requirement of D(G) we have that Lmi, > 1.

Lemma 4 Let 6 = Lyin/6. Then, an € > 0 exists for which the corresponding network S(QG)
satisfies Eq. 7, i.e.,

267 > (m—1)[(6+¢)* = 6*]+ (0 + ¢
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PRrROOF. We now show that if 6 = Ly, /6 then the distance between two points from two different
gadgets is at least ad, where a = 1+2—‘/§

From the drawing D(G) and from the choice § = Ly, /6, it should be clear that points from
“non-adjacent” gadgets are within a distance larger than 26 > «d. So, we can focus on adjacent
gadgets and distinguish the three rules R1-3 used in the construction of such gadgets.

Rule R1. If the two adjacent gadgets g, and g, are placed on the same line as in Fig. 3(a) then
their minimum distance is that between ;. and its nearest X, -point. Such a distance is
larger than 36/2. If gq and gy, are drawn as in Fig. 3(b) then the minimum distance between
the two gadgets is that between the X, ,-point nearest to b and the Xj.-point nearest to b.
Such a distance equals v/24.

Rule R2. In this case, for a sufficiently small ¢ > 0, the minimum distance is that between y
and its nearest Xyy-point (see Fig. 5(a)). Let (p), be the y-projection of p € R?. Then,

14++/2

2

d(yblb,Xblb/l) Z d((yb’b)ya (Xblbll)y) = (5 -

Rule R3. The two nearest points are y, and ypq (see Fig. 5(b)). Similarly to the previous case
we can derive the following lower bound for d(ypq, Ysq)

§ S4e . 1+\/§5_

d(Ybas Yod) > A((Yba)zs (Ybd)z) = 3+ % 5

Finally, let us observe that the right side of Eq. 7 tends to 62 as € — 0 and that « is a constant
larger than 1. This immediately proves the lemma.
O

Combining Lemma 3 with Lemma 4 we obtain the following result.

Theorem 8 MIN 2D RANGE ASSIGNMENT 4s NP-hard.
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5 MiIN 3D RANGE ASSIGNMENT is APX-complete

The APX-completeness of MIN 3D RANGE ASSIGNMENT is achieved by showing an approximation-
preserving reduction from MIN VERTEX COVER restricted to cubic graphs, a restriction of MIN
VERTEX COVER which is known to be APX-complete [19, 1]. The approximation-preserving re-
duction follows the same idea of the reduction shown in the previous section and thus requires a
suitable 3-dimensional drawing of a cubic graph.

Theorem 9 ([10]) There is a polynomial-time algorithm that, given any cubic graph G(V,E),
returns a 3-dimensional orthogonal drawing D(G) of G such that:

o FEuvery edge is represented as a polyline with at most three bends.

o Vertices are represented as points with integer coordinates, thus the minimum distance Ly,
between two vertices is at least 1.

e The mazimum length L.y of an edge in D(G) is polynomially bounded in m = |E)|.

5.1 The 3-Dimensional Gadgets

In what follows, we assume to have at hand the 3-dimensional, orthogonal drawing D(G) of a cubic
graph G that satisfies the properties of Theorem 9. Then the approximation-preserving reduction
replaces each edge of D(G) with a 3-dimensional gadget of stations having the following properties.

Definition 5 (Properties of 3-Dimensional Gadgets) Let | and € be positive constants (a
suitable choice of such parameters will be given later). For any edge (a,b) the corresponding gadget
contains the sets of points

Xap = {z1,--- 21}, Yab = {Yabs Yba}ts Zap = {z1,--- ,21,} and Vg = {a,b}, where I and Iy
depend on the distance d(a,b) and d(yqp, Yse), respectively. The above set of points is drawn in such
a way that the following properties hold:

1. d(aayab) = d(ba yba) =1

2. Xap and Zgp are two chains of points drawn so that d(a,z1) = d(b,z;) = € and d(yap, 21) =
A(Ypa, 2m) = €, respectively. Furthermore, for anyi=1,... ,1—1, d(z;,2;41) = € and for any
j=1,...,m—1d(2j,241) =€

3. For any x; € Xgp and zj € Zgp, d(z4,2;) > 1. Furthermore d(z;,yap) > | and d(xi, ypa) > 1.

4. Given any two different gadgets g1 and go, for any v € g1 and w € go with u # w of different
type (for example, if u is a X-point then w is either a Y -point or a Z-point), we have that
d(v,w) > . Moreover, the minimum distance between the Y Z-component* of g1 and the
Y Z-component of go is 2.

5. Given any two non adjacent gadgets g1 and go, for any v € g1 and w € ga, d(v,w) > Lyin /2.

4Similarly to the 2-dimensional case, the sets of points Vi U Xap and Yap U Zop will be denoted as V X-component
and Y Z-component, respectively.
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Figure 6: The 3-dimensional gadgets. (a) An edge represented with a polyline with 2 bends. (b)
An example of a gadget corresponding to edge (a,b). (c) How to place Z-chains of gadgets whose
nodes have degree three. (d) How to change the plane of Y Z-chains.

5.2 The Construction of the 3-Dimensional Gadgets

Let [ and € two positive reals such that [ < Ly,;, (this assumption guarantees Properties 4 and
5 of Definition 5) and € < [. The construction of the 3-dimensional gadgets can be obtained by
adopting the same method of the 2-dimensional case.

Let [ and e two positive reals such that [ < L, (this assumption guarantees Properties 4 and
5 of Definition 5) and € < [. The construction of the 3-dimensional gadgets can be obtained by
adopting the same method of the 2-dimensional case (see Fig. 1). However, the presence of the third
dimension makes the cases R2 and R3 (see Fig.s 7(a)-(b)) much easier: in fact, in order to keep
the relative distance among Y Z-components of adjacent gadgets we can locate such components
on different planes in the space. Furthermore, the choice of the plane the Y Z-component is placed
on depends on the local situation of the two endpoints of the gadget; it could be the case that
the plane required by one of these endpoint must be different from that required by the other one.
This technical problem can be easily solved, without using intermediate points, by drawing the Y Z-
component over a polyline in the space around the corresponding V X-component (see Fig. 6(d)).
More formally, each polyline representing an edge in D(G) will be replaced with a gadget such that
: (i) The X-points are drawn equally spaced on the polyline representing the edge. (ii) Z-points are
drawn equally spaced and their distance from any X-point is a constant larger than /. In particular,
the distance between the X-component and the Z one is achieved by drawing the Z-component
on an orthogonal polyline as in Fig. 6. It thus follows that given any 3-dimensional drawing D(QG)
satisfying Theorem 9, it is possible to replace all edges in D(G) by the corresponding 3-dimensional
gadgets in time polynomial in the number of edges.

We emphasize that the 3-dimensional gadgets have two further properties which will be strongly
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used to achieve an approximation-preserving reduction (see Theorem 10):

1. The set of V-points of S(G) is the set of vertices of G, i.e. no new vertices will be added with
respect to those of D(G).

2. Tt is possible to make the overall range cost of both X and Z points of any gadget arbitrarily
small by augmenting the number of equally spaced stations in these two chains.

Lemma 5 Let L be the length of the polyline representing edge (a,b) in D(G) and let k be the
number of points in the X (or Z) component. Then the overall power needed for the X component
18

(k+ 2)(%)2 (10)

Moreover, it is possible to make the above value smaller than any fized positive constant by
considering a sufficiently high (but still polynomial) k.

PrROOF. The proof easily follows from the fact that L is polynomially bounded in the size of G.
O

5.3 The Approximation-Preserving Reduction

Definition 6 (Canonical Solutions for S(G)) A range assignment r for S(G) is canonical if,
for every gadget gqp of S(G), the following properties hold.

1. Either r(yq) =1 and r(ype) = € (50, Yap @S the radio “bridge” from the Y Z-component to the
VX one) or vice versa.

2. For every v € {a,b}, either r(v) = € or r(v) = l. Furthermore, there ezists v € {a,b} such
that r(v) =1 (so, v is a radio “bridge” from the VX -component to the Y Z one).

3. For every x € Xgp, 7(x) = €.
4. For every z € Zyg, 7(2) = €.

Lemma 6 For any graph G, let us consider the construction S(G) in which [ is a positive real that
satisfies the following inequality

L2,

> < —min (11)
m

Then, for any feasible range assignment r of S(G), there is a canonical range assignment r°

such that cost(r®) < cost(r).

PROOF. We use the same method of Lemma 2. In particular, we describe the generic step of
an iterative process that yields a canonical range assignment r¢ such that cost(r) > cost(r¢). The
number of steps is bounded by the number of points having a non-canonical assignment.

By definition, at least one property of Definition 6 is not satisfied by r. The four cases can be
easily reduced to the following two situations.
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a) (Local Transformation.) We assume that any point in S(G) has power range smaller than
Lyin/2 (this implies that at most two adjacent gadgets can be “covered” by a point). We
now prove that the cost difference cost(r) — cost(r) is non negative. Let u be the point having
a non canonical assignment and let w be the V-point shared by the two covered gadgets. If
r(u) <1 (i.e. u is not a “bridge” between the V X-component and the Y Z one), then we can
easily find a canonical assignment for u that does not increase the cost. So, in what follows,
we assume that r(u) > I.

1. u € Zg. Set r(u) = e and set the range of w and one point from Yy, (say yas) to [
Since in any feasible solution the transmission range of w and y,; is at least ¢, and from
the 4-th property of Definition 5, i.e. r(u) > 2I, we obtain

cost(r) — cost(r®) = r(u)2 + 1"(w)2 + r(yab)2 — 7“3(u)2 — 7"‘:(fw)2 — rc(yab)2
> r(u)?+ € — 207
> 202+ €2

2. u € Xgp. Set r¢(u) = € and r¢(w) = [. Since in any feasible solution the range of w is at
least €, we obtain

r(u)? 4 r(w)? — ro(u)? — r(w)?
ru)?+ e - —1?

r(u)? — 12,

cost(r) — cost(r®)

VvV IV

which is non negative since r(u) > I.

3. u € {a,b,Yap,Yba}- Simply set r¢(u) = [. Then the difference of the costs of the two
solutions is r(u)? — 12 > 0.

b) (Global Transformation.) Let u be a vertex whose range r(u) is sufficient to cover two or
more gadgets other than that containing u. We first set 7¢(u) = I. We then canonically assign
the new ranges to the stations of those gadgets g, that were covered by u (i.e the VX-
component of g, is not anymore strongly connected to its Y Z-component). In particular,
if ¢’ = gapy, for some o' and ', we assign 7°(a’) = [. Two cases may arise depending on the
number of gadgets ¢’ covered by u in the non canonical assignment.

1. At most two gadget ¢’ and ¢” (those adjacent to g - remind that we consider only graphs
of maximum degree three) were covered by . In this case the overall cost increment in
¢ due to the gadgets ¢’ and ¢" is at most

202 — €%) .
From Property 4 of Definition 5, we have that r(u) > 2I, so,

cost(r) — cost(r®) = r(u)? —124+2(12 — €?) > 12 +22 > 0.
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2. At least three gadgets were covered by u in r. Since the number of gadgets of S(G) is
at most m, the overall cost increment in r¢ due to such gadgets is at most

(m — 1)[12 — €.

Since at least one gadget ¢’ non adjacent to g was covered by r(u), from the 5-th property
of Definition 5, we have that r(u) > Ly,i,/2. Thus

cost(r) — cost(r®) = r(u)? —12— (m —1)[I? — €
> (Lmin/2)2 - 12 - (m - 1)[12 - 62] >0,

2

where the last inequality follows from the assumption L; . > miZ.

O

Informally speaking, the presence of the third dimension in placing the gadgets allows to keep

a polynomially large gap between the value of [ (i.e. the minimum distance between the VX

component and the Y X one of a gadget) and that of e (i.e. the minimum distance between points

in the same chain component). This gap yields the significant weight of each bridge-point of type

V in a canonical solution and it will be a key ingredient in proving the next theorem. Notice also

that this gap cannot be smaller than a fixed positive constant in the 2-dimensional reduction shown
in the previous section.

Theorem 10 MIN 3D RANGE ASSIGNMENT is APX-complete.

PROOF. The outline of the proof is the following. We assume that we have at hand a polynomial-
time p-approximation algorithm A for MIN 3D RANGE ASSIGNMENT. Then, we show a polynomial-
time method that transforms A into a p’-approximation algorithm for MIN VERTEX COVER on
cubic graphs with p’ < 5p — 4. Since a constant p > 1 exists such that MIN VERTEX COVER
restricted to cubic graphs is not p-approximable unless P = NP [19, 1], the theorem follows.

Consider an at most cubic graph G(V, E). Starting from the 3-dimensional orthogonal drawing
D(G) we construct in polynomial time the radio network S(G) as described in Section 5.2 (see also
Definition 5). Moreover, the construction of S(G) is made so to satisfy the hypothesis of Lemma 6
(see Eq. 11). Using the same arguments in the proof of Lemma 3, we can show that any vertex
cover K CV of G yields a canonical assignment rx whose cost is

cost(ri) = k2 +ml? + &g, (12)
where K = |K| and €x is the overall cost due to all points v that have range €. Since each gadget

of S(G) has at most 4L,,,, /e points, it holds that

ex < 4dmLaq€ - (13)
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On the other hand, from Lemma 6, we can consider only canonical solutions of S(G). Thus, given
a canonical solution ¢, we can consider the subset K of V-points whose range is [. It is easy to
verify that K is a vertex cover of G. Furthermore, the cost of r¢ can be written as follows

cost(r®) = |K|I?> + ml® + ex .

Let K°' be an optimum vertex cover for G, from the above equation we have that the optimum
range assignment cost opt, can be written as

opt, = | K12 4+ mi? + €xont (14)

Since G has maximum degree 3 then |K°P!| > m/3; so, the above equation implies that

opt, < 4|K°PYI? + €xopt. (15)

Let us now consider a p-approximation algorithm for MIN 3D RANGE ASSIGNMENT such that given
S(G) in input it returns a solution r??* whose cost is less than p - opt,. From Lemma 6, we can
assume that 77 is canonical. It thus follows that the cost cost(r®??) can be written as

cost(rP%) = | K212 + mi® + exarr .

From Eq.s 14 and 15 we obtain

t apxr t apry __ t
cost(r?P*) _ cos (r®*) — opt,. 1 (16)
opt, opt,
_ | K212 + mi? + egare — |KP|1? — mi? — €xont 1 (17)
opt,.
Kaprz 12 _ Kopt l2
| | | | +1 (18)

= 4|K0pt|l2 + €xcont

Note that we can make €xopt arbitrarily small (independently from /) by reducing the parameter e
in the construction of S(G): this is in turn obtained by increasing the number of X and Z points
in the gadgets (see Lemma 5).

From Eq. 13, from the fact that L,,,, is polynomially bounded in the size of G and from the fact
that [ and L,,q, are polynomially related, we can ensure that €xopt < I2 by adding a polynomial
number of points (see again Lemma 5). So, from Eq. 16 we obtain

cost(reP®) _ |K%%||2 — | K°Pt|]2 |Kape| 4
> 1> + .
opt, — 4|KPI2 + Exop ~ 5|Kort] 5

Finally, it follows that the approximation ratio for MIN VERTEX COVER is bounded by

| K% 5cost(r®PT)
|KoP| = opt,
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6 Open Problems

An interesting problem which is still open is whether MIN 2D RANGE ASSIGNMENT is APX-
complete or admits a PTAS. Notice that a possible APX-completeness reduction should be from a
different problem, since MIN VERTEX COVER restricted to planar graphs is in PTAS. As for the
MiN 3D RANGE ASSIGNMENT problem it could be interesting to reduce the large gap between the
factor 2 of the approximation algorithm and the inaproximability bound than can be derived by
combining our reduction with the approximability lower bound of MIN VERTEX COVER on cubic
graphs. As far as we know, there is no known significant explicit lower bound for the latter problem
(an explicit 1.0029 lower bound for MIN VERTEX COVER on degree 5 graphs is given in [5] that —
if it could be extended to cubic graphs and then combined with our reduction — would give a lower
bound for MIN 3D RANGE ASSIGNMENT of 1.00059).

A crucial characteristic of the optimal solutions for the MIN 3D RANGE ASSIGNMENT instances
given by our reduction is that stations that communicate directly have relative distance either equal
to l or €, where [ >> €. It could be interesting to consider instances in which the above situation
does not occur. Notice that this is the case of the MIN 2D RANGE ASSIGNMENT instances of our
reduction. Thus, the problem on such restricted instances remains NP-hard. However, it is an
open problem whether a better approximation factor or even a PTAS can be obtained.

Another interesting aspect concerns the maximum number of hops required by any two stations
to communicate. This corresponds to the diameter h of the communication graph. Our construc-
tions yield solutions whose communication graph has unbounded (i.e. linear in the number of
stations) diameter. So, the complexity of MIN dD RANGE ASSIGNMENT with bounded diameter
remains open also in the 1-dimensional case. A special case where stations are placed at uniform
distance on a line and either h is constant or h € O(logn) has been solved in [15].
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