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Abstract. One of the great challenges of complexity theory is the problem of ana-
lyzing the dependence of the complexity of Boolean functions on the resources non-
determinism and randomness. So far, this problem could be solved only for very
few models of computation. For so-called partitioned binary decision diagrams,
which are a restricted variant of nondeterministic read-once branching programs,
Bollig and Wegener have proven an astonishing hierarchy result which shows that
the smallest possible decrease of the available amount of nondeterminism may in-
cur an exponential blow-up of the branching program size.

They have shown that k-partitioned BDDs which may nondeterministically choose
between k alternative subprograms may be exponentially larger than (k + 1)-parti-
tioned BDDs for the same function if k = o

(

(log n/ loglog n)1/2
)

, where n is the
input size. In this paper, an improved hierarchy result is established which still
works if the number of nondeterministic decisions is O

(

(n/ log1+εn)1/4
)

, where
ε > 0 is an arbitrary small constant.

Keywords: Branching programs, partitioned BDDs, communication complexity,
nondeterminism, hierarchies, lower bounds

1 Introduction and Definitions

Besides circuits and formulae, branching programs belong to the most important nonuniform
models of computation. For complexity theory, this model is interesting since branching pro-
grams are combinatorially easier to handle than, e. g., Turing machines, and facilitate the de-
velopment of new lower bound techniques for space-bounded computation. On the other hand,
several restricted variants of branching programs have turned out to be useful as data structures
for Boolean functions which have found widespread application, most prominently perhaps for
hardware verification (see Bryant [6] for a survey on some application aspects).

Definition 1. A (deterministic) branching program (BP) on the variable set {x1, . . . , xn} is a
directed, acyclic graph with one source and two sinks, the latter labeled by 0 and 1, resp. The
interior nodes are labeled by a variable and have two outgoing edges labeled by 0 and 1, resp.
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This graph represents a function f : {0, 1}n → {0, 1} defined on {x1, . . . , xn} in the following
way. For a given input assignment a ∈ {0, 1}n, call an edge labeled by c and leaving an xi-
node activated by a if ai = c. The assignment a defines a unique path of activated edges in
the branching program, starting at the source and ending in one of the sinks whose label is the
output value f(a). The size of G, |G|, is the number of its nodes. The branching program size
of f is the minimum size of a branching program representing f .

For a thorough introduction of this model, we have to refer to the literature, e. g., the mono-
graphs [19, 20] of Wegener. Nondeterminism can be incorporated into branching programs in
the following, straightforward way.

Definition 2. A nondeterministic branching program has the same structure as a determinis-
tic branching program, but may additionally contain nondeterministic nodes which are not la-
beled by a variable and may have an arbitrary number of outgoing unlabeled edges. The edges
leaving nondeterministic nodes are always activated. The nondeterministic branching program
computes 1 on a given input if there is a path of activated edges leading from the source to the
1-sink. The size of a nondeterministic branching program is the sum of the contributions of all
nodes, where a nondeterministic node with k outgoing edges contributes k− 1 to the size while
a usual node contributes 1.

For a nondeterministic branching program which only contains nondeterministic nodes with
two outgoing edges, the amount of nondeterminism used by the branching program is given by
the maximal number of nondeterministic nodes on a path from the source to one of the sinks,
which we refer to as the (worst-case) number of nondeterministic guesses of the branching pro-
gram. For an arbitrary nondeterministic branching program, the number of nondeterministic
guesses is defined as the minimal number used by an equivalent graph of equal size where all
nondeterministic nodes with k > 2 outgoing edges are replaced by subgraphs of nondetermin-
istic nodes with two outgoing edges.

It is a fundamental open problem to prove superpolynomial lower bounds on the size of
branching programs even in the deterministic case, and the nondeterministic case seems to be
harder still (see, e. g., Razborov [15]). Nevertheless, several interesting restricted variants of
branching programs could be analyzed quite successfully, and for some of these models even
exponential lower bounds could be proven. Among these are the following two basic restricted
types of deterministic branching programs.

Definition 3. A read-once branching program is a branching program with the restriction that
on each path from the source to a sink each variable is allowed to appear at most once as the
label of a node.

Let π be a permutation of the set {1, . . . , n}. A π-OBDD (OBDD = ordered binary decision
diagram) on the variable set {x1, . . . , xn} is a read-once branching program with the following
additional ordering restriction: For each edge leading from a node labeled by some variable
xi to a node labeled by xj it must hold that π(i) < π(j). We call a graph an OBDD if it is
a π-OBDD for some permutation π. The permutation π is called the variable ordering of the
OBDD.

Nondeterministic variants of these restricted types of branching programs are obtained in the
obvious way by requiring that the nodes labeled by variables in a nondeterministic branching
program fulfill the described restrictions.
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Read-once branching programs were originally introduced in complexity theory, whereas
OBDDs have become popular as a data structure for the representation of Boolean functions.
For both of these types of branching programs, it is well-known how lower bounds can be
proven in the deterministic case, and some exponential bounds are known even for nondeter-
ministic and randomized variants (see, e. g., the papers [1, 2, 4, 5, 11, 12, 16–18]).

Apart from the question of whether nondeterminism allows an exponential decrease of the
branching program size compared with the deterministic model (which could be shown, e. g.,
for OBDDs and read-once branching programs), it is a much more difficult task to analyze the
exact dependence of the size on the available amount of nondeterminism. In this paper, we are
concerned with the following variant of restricted nondeterministic branching programs which
allows a very fine control of the available amount of nondeterminism.

Definition 4. A k-partitioned BDD with variable orderings (π1, . . . , πk) is a nondeterministic
read-once branching program with a single nondeterministic node at the top which has k out-
going edges leading to the sources of OBDDs G1, . . . , Gk. The OBDD Gi is ordered according
to πi, where i = 1, . . . , k. A branching program is simply called a partitioned BDD, if a k and
(π1, . . . , πk) exist such that it is a k-partitioned BDD with variable orderings (π1, . . . , πk).

Jain, Bitner, Abraham, and Fussell [10] have introduced partitioned BDDs as a represen-
tation of Boolean functions for practical purposes. Bollig and Wegener [3] have analyzed this
model from the complexity theoretical point of view. Among other results, they have proven
that the classes of functions representable by k-partitioned BDDs in polynomial size form a
proper hierarchy with respect to k. Hromkovič and the author [8] have investigated the rela-
tionship between partitioned BDDs and nondeterministic OBDDs to some extent and proven
the following incomparability result. On the one hand, there is a sequence of functions with
polynomial size for 2-partitioned BDDs, but exponential size for all nondeterministic OBDDs.
On the other hand, there is also a sequence of functions which requires exponential size for
k-partitioned BDDs if k is logarithmically bounded in the input size, while nondeterministic
OBDDs for these functions are only polynomially large.

For their hierarchy result, Bollig and Wegener have introduced the function Pk,n (“path
function”) which tests a property of a cleverly constructed graph. The output is obtained by
following directed paths in this graph which are determined by the input of the function.

Theorem 1 (Bollig and Wegener, 1997). There is a sequence of (explicitly defined) Boolean
functions (Pk,n)n∈N with the following properties.

(1) The function Pk,n can be represented by k-partitioned BDDs of size O(2kk2nk); but

(2) requires size 2Ω(n1/(2k)k−5 log−1 n) for (k − 1)-partitioned BDDs.

The upper bound in this theorem is only polynomial for constant k. By introducing “dummy
vertices” in the graph for Pk,n, Bollig and Wegener have obtained a modified function for which
the upper bound is polynomial while the lower bound is still superpolynomial for values of k
with k = o

(

(log n/ loglog n)1/2
)

.
Theorem 1 shows that already the addition of a single edge to the nondeterministic node

at the top may decrease the size of k-partitioned BDDs from an exponential to a polynomial
function in n (for small values of k). This is in contrast to the situation for usual nondetermin-
istic OBDDs, where allowing a constant number of additional nondeterministic guesses may
decrease the size only polynomially. (This is discussed in more detail in Section 3.)
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In this paper, we improve the result of Bollig and Wegener by re-using some key ideas
from their paper [3]. The new function which we consider here instead of Pk,n allows us to
obtain a polynomial upper bound directly, without having to rely on padding techniques. As a
consequence, we obtain a larger gap between lower and upper bound.

The improved hierarchy now still works for values of k which are exponentially larger
than the maximal values in the result of Bollig and Wegener, namely for k with k =
Θ

(

(N/ log1+εN)1/4
)

, where N is the input size of the considered function and ε > 0 is an
arbitrary small constant. Our proof of the hierarchy result explicitly uses tools from communi-
cation complexity theory (this is also implicitly done in the proof of Bollig and Wegener).

The rest of the paper is organized as follows. In Section 2, we review definitions from
communication complexity theory and prove a combinatorial lemma which is an essential in-
gredient in the proof of the lower bound for the hierarchy result. Then we discuss some results
concerning the dependence of communication complexity and the size of usual nondeterminis-
tic OBDDs on the resource nondeterminism as background information (Section 3). Finally, in
Section 4, the improved hierarchy result for partitioned BDDs is presented and proven.

2 Tools from Communication Complexity Theory

We first give some basic definitions from communication complexity theory (for a thorough
introduction to this field, see the monographs of Hromkovič [7] and Kushilevitz and Nisan [14]).

A two-party communication protocol is an algorithm by which two players, called Alice
and Bob, cooperatively evaluate a function f : X × Y → {0, 1}, where X and Y are finite
sets. Alice obtains an input x ∈ X and Bob an input y ∈ Y . The players determine f(x, y) by
sending messages to each other. Each player is assumed to have unlimited (but deterministic)
computational power to compute their messages. The (deterministic) communication complex-
ity of f , D(f), is the minimal number of bits exchanged by a communication protocol by which
Alice and Bob compute f(x, y) for each input (x, y) ∈ X × Y .

We give a more detailed definition of randomized and nondeterministic communication pro-
tocols and corresponding complexity measures.

Definition 5. A randomized communication protocol P is a communication protocol where
player Alice has inputs (x, rA) and player Bob inputs (y, rB). Here x ∈ X and y ∈ Y are as
above in the deterministic case, and rA and rB are interpreted as (private) strings of random bits
(whose lengths may depend on the length of x and y, resp.).

The protocol P is said to compute f : X×Y → {0, 1} with error ε : X×Y → [0, 1], if for all
(x, y) ∈ X × Y the probability to choose assignments to rA and rB randomly (according to the
uniform distribution) such that P yields the output f(x, y) on the combined input assignments
(x, rA) and (x, rB) is 1 − ε(x, y). The error of P is called bounded if there is some constant
ε0 < 1/2 such that ε(x, y) ≤ ε0 for all (x, y) ∈ X × Y .

As in the deterministic case, the complexity of P , c(P ), is defined as the maximum number
of bits exchanged by Alice and Bob according to P , taken over all choices of (x, rA) and (y, rB).
The number of random bits used by P is defined as the maximum of the number of bits in the
strings rA and rB taken over all inputs (x, y) ∈ X × Y .
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Nondeterministic protocols are randomized protocols with (unbounded) one-sided error
smaller than 1, by which we mean that ε(x, y) < 1 for all (x, y) ∈ f−1(1) and ε(x, y) = 0
for all (x, y) ∈ f−1(0). In this context, the random bits are usually called (nondeterministic)
advice bits. The nondeterministic communication complexity of f with restriction to r advice
bits, Nr(f), is defined as the minimum of c(P ) over all nondeterministic protocols P computing
f and using at most r advice bits.

Here we are mainly concerned with the restricted variant of communication protocols known
as one-way communication protocols. In a one-way communication protocol, Alice sends a
single message to Bob who has to output the result of the protocol, which may depend on his
input and the message he has obtained. We use DA→B and NA→B

r to denote the complexity
measures for deterministic and nondeterministic one-way protocols. For technical reasons, it
is convenient that for these measures we only count the number of bits sent by Alice alone
(ignoring the output bit sent by Bob).

Next, we present a lower bound result for one-way protocols which will be used in the proof
of the hierarchy for partitioned BDDs. We consider the following well-known function.

Definition 6. Let |a| denote the integer with binary representation a ∈ {0, 1}∗. Define
INDEXn : {0, 1}n×{0, 1}dlog ne → {0, 1} on inputs x = (x1, . . . , xn) and y = (y1, . . . , ydlog ne)
by INDEXn(x, y) := x|y|+1, if |y| ∈ {0, . . . , n − 1}, and INDEXn(x, y) := 0, otherwise.

This function is referred to as the “index” or “pointer function” in the literature. We may in-
terpret it as the description of direct storage access: The x-vector plays the role of the “memory
contents,” whereas the y-vector is an “address” in the memory.

Kremer, Nisan, and Ron [13] have shown that INDEXn has complexity Ω(n) for random-
ized one-way communication protocols with bounded error. For the deterministic case, one
even obtains DA→B(INDEXn) = n. In the following, we extend this by showing that functions
g with g ≤ INDEXn (i. e., g(x, y) ≤ INDEXn(x, y) for all (x, y)) also have large deterministic
one-way complexity if they have to cover many 1-inputs of the function. We consider a slightly
generalized function which will be useful for the proof of the hierarchy result.

Lemma 1. Let h : {0, 1}dlog ne → {0, 1} be a function with h(y) = 0 if |y| ≥ n. We consider
the function INDEX(h)n : {0, 1}n × {0, 1}dlog ne → {0, 1} defined by INDEX(h)n(x, y) :=
INDEXn(x, y) ⊕ h(y). Let g : {0, 1}n × {0, 1}dlog ne → {0, 1} be a function with g ≤
INDEX(h)n. Then

DA→B(g) ≥ |g−1(1)|/2n.

Proof: For an arbitrary function f : X × Y → {0, 1}, where X , Y are finite sets, we define the
communication matrix Mf of f by Mf(x, y) := f(x, y) for x ∈ X and y ∈ Y . Thus Mf is an
|X| × |Y |-matrix with entries from {0, 1}. Let nrows(Mf) be the number of different rows in
Mf . The proof of the lemma is based on the simple fact that DA→B(f) = dlog(nrows(Mf ))e.

We first consider the case h ≡ 0, i.e., INDEX(h)n = INDEXn. Let g be any function with
g ≤ INDEXn. Consider the communication matrix Mg of g. Our goal is to derive a lower
bound on nrows(Mg) in terms of |g−1(1)|. For this, we observe that a vector with many ones
cannot occur in too many rows of Mg, since g ≤ INDEXn. Hence, Mg will have many different
rows if |g−1(1)| is large.
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Now we make these ideas more precise. Let a1, . . . , ak ∈ {0, 1}2dlog ne
be the different

vectors occurring as rows of Mg (thus k = nrows(Mg)). Let Ri ⊆ {0, 1}n be the set of indices
of rows in Mg which are equal to ai, for i = 1, . . . , k. Then

k
∑

i=1

|Ri| · ‖ai‖ = |g−1(1)|,

where ‖ai‖ denotes the number of ones in the vector ai. It holds that |R1| + · · · + |Rk| = 2n.
By the definition of INDEXn and the fact that g ≤ INDEXn, it holds that

ai,n = ai,n+1 = · · · = ai,2dlog ne−1 = 0. Hence, ‖ai‖ ≤ n.
Furthermore, we claim that |Ri| ≤ 2n−‖ai‖, and thus also ‖ai‖ ≤ n − log |Ri|. To see this,

identify the rows of the communication matrices Mg and MINDEXn with subsets of {1, . . . , n} in
the obvious way. Notice that all subsets of {1, . . . , n} occur exactly once as rows of MINDEXn .
Due to the fact that g ≤ INDEXn, the number of rows in Mg where a vector with ` fixed one
entries may occur is exactly the number of different subsets of {1, . . . , n} with ` fixed elements,
which is 2n−`.

Taking all these facts together, we see that the number of 1-inputs of g can be bounded from
above by maximizing

k
∑

i=1

xi · (n − log xi)

with respect to x1, . . . , xk ∈ {1, . . . , 2n} under the constraint x1+ · · ·+xk = 2n. By the method
of Lagrange multipliers, we obtain xi = 2n/k for i = 1, . . . , k and thus

|g−1(1)| ≤
k

∑

i=1

2n

k
· log k = 2n · log k.

From this, the claim for g ≤ INDEXn follows, since k = nrows(Mg).
Finally, we consider the case of an arbitrary function h with h(y) = 0 for |y| ≥ n.

We observe that the communication matrix for the modified function INDEX(h)n is obtained
from the communication matrix for INDEXn by negating some of the columns with index in
{0, . . . , n − 1}. The columns with index in {n, . . . , 2dlog ne − 1} in the matrix of INDEXn only
contain zeros. Restricted to the first n columns, the matrix contains each vector from {0, 1}n

exactly once as a row. It is easy to see that a negation of one of the first n columns simply leads
to a permutation of the vectors in the rows of the communication matrix. Hence, the general
result follows by the same proof as that for the simple function INDEXn. 2

Finally, we describe how the above result will be used in the proof of the hierarchy result for
partitioned BDDs. Although a partitioned BDD consists of OBDDs as subparts, its more general
structure prevents the direct use of the known standard technique for proving lower bounds on
the size of OBDDs. Nevertheless, we will see that the standard technique can be applied if it is
combined with several combinatorial tricks to simplify the structure of the partitioned BDD.

It is well-known how lower bounds on the size of OBDDs can be proven by using lower
bound results for one-way communication complexity (see, e. g., the monograph of Kushilevitz
and Nisan [14]). This is called the reduction technique here for easier reference. We give a
description of the technique using the formalism from [17]. This makes use of the following
standard reducibility concept from communication complexity theory.
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Definition 7 (Rectangular reduction). Let Xf , Yf and Xg, Yg be finite sets. Let f : Xf×Yf →
{0, 1} and g : Xg×Yg → {0, 1} be arbitrary functions. Then we call a pair (ϕ1, ϕ2) of functions
ϕ1 : Xf → Xg and ϕ2 : Yf → Yg a rectangular reduction from f to g (or simply “reduction” for
short) if g(ϕ1(x), ϕ2(y)) = f(x, y) for all (x, y) ∈ Xf × Yf . If such a pair of functions exists
for f and g, we say that f is reducible to g.

Lemma 2 (Reduction Technique). Let g : {0, 1}n → {0, 1} be defined on the variable set
X = {x1, . . . , xn}. Let π be a variable ordering on X . W. l. o. g. (by renumbering) we may
assume that π is described by x1, . . . , xn.

Assume that there is a function f : U × V → {0, 1}, where U and V are finite sets, and a
parameter p with 1 ≤ p ≤ n − 1 such that f is reducible to g : {0, 1}p × {0, 1}n−p → {0, 1}.

(1) Let G be a deterministic OBDD for g which is ordered according to π. Then dlog |G|e ≥
DA→B(f).

(2) Let G be a nondeterministic OBDD for g which is ordered according to π and which uses
at most r nondeterministic guesses. Then dlog |G|e ≥ NA→B

r (f).

For the sake of completeness, we repeat the easy proof of these facts.

Proof: Since f : U×V → {0, 1} is reducible to g : {0, 1}p×{0, 1}n−p → {0, 1} by assumption,
it follows that DA→B(g) ≥ DA→B(f) and NA→B

r (g) ≥ NA→B
r (f) (with respect to the chosen

partitions of the inputs).
It remains to prove an upper bound on the one-way communication complexity of g in

terms of the OBDD size for g. This is done by explicitly constructing a one-way protocol
(deterministic or nondeterministic) for g from a given OBDD G for g in the obvious way. Alice
follows the path starting at the source of G which is determined by her part of the input (and
her advice bits) and sends the number of the node reached to Bob, who in turn follows the path
from this node to one of the sinks determined by his input (and his advice bits). The output of
the protocol is the value at the reached sink. Obviously dlog |G|e bits are sufficient to encode
the numbers of the nodes sent by Alice to Bob. 2

3 The Influence of the Amount of Nondeterminism on
Communication Complexity and the Size of OBDDs

The main result of this paper deals with the question of how the size of partitioned BDDs
varies dependent on the amount of available nondeterminism. In this section we discuss the
same question for complexity measures closely related to the size of partitioned BDDs, namely
(one-way) communication complexity and the size of OBDDs.

There are several concrete functions which are known to be difficult for nondeterministic
communication protocols in the case of unlimited nondeterminism ([7], [14]). The respective
lower bounds are obtained by standard techniques. Here we are interested in tradeoffs between
the number of advice bits and the nondeterministic communication complexity. The following
fact is due to Hromkovič and Schnitger [9] and is easily proven by direct simulations.

Proposition 1. Let f : X × Y → {0, 1} be an arbitrary function and let r ≥ 0 be an integer.
Then

D(f)/2r + r ≤ Nr(f) ≤ 2 · Nr+1(f) − r − 2.
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The same holds for one-way protocols and the respective complexity measures. The above
bounds are tight, e. g., for the well-known string nonequality function which checks whether
two n-bit strings are not equal (see [9]) and with respect to one-way complexity also for the
function INDEXn from the last section.

The second inequality of Proposition 1 shows that increasing the number of available advice
bits by 1 can at most halve the nondeterministic communication complexity. There are no
“jumps” in the nondeterministic communication complexity if the number of advice bits is
varied.

Since it holds for all f : {0, 1}n × {0, 1}n → {0, 1} that D(f) ≤ n + 1, Proposition 1 only
yields interesting lower bounds if r = r(n) = O(log n). It is much harder to prove tradeoffs
between Nr(f) and the number of advice bits r(n) if r(n) = ω(log n). A result of this type has
been established by Hromkovič and Schnitger [9]. They have shown that for every number of
advice bits r(n) = O(logc n), c ≥ 1 an arbitrary constant, there is a function fr(n) : {0, 1}

n ×
{0, 1}n → {0, 1} which has nondeterministic communication complexity O(logc n) if at least
r(n) advice bits are available; but Ω(n/ log n), if only o(r(n)/ log n) advice bits may be used.
For the special case of one-way communication, an asymptotically optimal tradeoff result has
been proven in [8].

Now we consider the size of OBDDs as a complexity measure. Bollig and Wegener [3] have
observed that for partitioned BDDs where the variable ordering is the same for all parts, which
are obviously special nondeterministic OBDDs, the size may only increase polynomially if the
number of parts is decreased by a constant number. A similar assertion also holds for general
nondeterministic OBDDs. Let NOBDDr(f) denote the minimal size of a nondeterministic
OBDD which represents f and uses at most r nondeterministic guesses.

Proposition 2. Let f be an arbitrary Boolean function, and let r ≥ 0 be an integer. Then

NOBDDr(f) ≤ NOBDDr+1(f)2.

Proof: Let G be a nondeterministic OBDD for f with at most r + 1 nondeterministic nodes on
each path from the source to a sink. W. l. o. g., assume that each nondeterministic node in G has
only two outgoing edges. Then the size of the nondeterministic OBDD G is equal to the total
number of its nodes. Our goal is to eliminate the last nondeterministic node on each path from
the source to a sink.

Let v1, . . . , vk be the last nondeterministic nodes on the paths from the source to a sink in G.
The two successors of these nodes are roots of deterministic sub-OBDDs of G. For i = 1, . . . , k,
we apply the well-known OBDD synthesis algorithm to compute an OBDD Gi representing the
disjunction of the functions represented at the successors of vi. We replace vi by the source of
Gi. The new OBDD G′ obtained in this way represents the same function as G and has at most
r nondeterministic nodes on each path from the source to the sinks. The number of nodes in G′

can be bounded by the size of the product graph G × G, i. e., |G′| ≤ |G|2. 2

This bound is essentially tight, as the following function (introduced in [8]) shows. First,
let UINDEXn : {0, 1}n × {0, 1}n → {0, 1} be defined as the variant of the function INDEXn

from the last section (Definition 6) where a unary encoding for the “address” or “pointer” is
used instead of a binary one. We consider the function MUINDEXn (“masked unary index”)
with input size N = 6n defined on s = (s1, . . . , s2n), t = (t1, . . . , t2n), and v = (v1, . . . , v2n)
as follows. If the vectors s or t do not contain exactly n ones, or there is an index i such
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that si = ti = 1, let MUINDEXn(s, t, v) := 0. Otherwise, let i1 < · · · < in and
j1 < · · · < jn be the positions of ones in s and t, resp., and define MUINDEXn(s, t, v) :=
UINDEXn ((vi1 , . . . , vin), (vj1 , . . . , vjn)).

Theorem 2. Let r ≥ 0 be an integer. Then

2bn/2rc+r−1 ≤ NOBDDr(MUINDEXn) = O
(

n2 · 2n/2r+r
)

, hence

NOBDDr(MUINDEXn) = Ω
(

n−4 · NOBDDr+1(MUINDEXn)2
)

.

Proof: Upper bound: The essence of the construction is as follows. We divide the v-variables
which play the role of the x-variables for UINDEXn into 2r blocks of size at most dn/2re.
Using the available amount of nondeterminism, we then guess the block within which the output
bit addressed by the y-variables for UINDEXn lies, and afterwards verify whether this guess
has been correct.

We construct a nondeterministic OBDD for MUINDEXn where the variables are ordered
according to s1, t1, v1, . . . , s2n, t2n, v2n. The OBDD starts with a nondeterministic node with 2r

outgoing edges at the top. The ith edge leads to a deterministic sub-OBDD which evaluates
MUINDEXn under the assumption that the output bit lies in the ith block of the x-variables for
UINDEXn.

During the evaluation, we count the number of ones in the s-vector and additionally make
sure that si ⊕ ti = 1 for all i = 1, . . . , 2n. If after some test it is known that this condition is
violated or that the number of ones in the s-vector is not n, then the respective edge is directed
to the 0-sink. Using the number of ones in s1, . . . , si−1 and the values of si and ti, we can find
out which x- or y-variable is identified with vi for the evaluation of UINDEXn. For storing the
number of ones, it is obviously sufficient to increase the number of nodes on each level of the
OBDD by a factor of n + 1. It remains to evaluate the subfunction of UINDEXn where the
output bit lies in the ith block of the x-variables with respect to the variable ordering on the x-
and y-variables determined by the bit vectors s and t. It is easy to see that this can be done
using O(n · 2n/2r

) nodes.
The size required for each of the deterministic sub-OBDDs is O(n2 · 2n/2r

), and the overall
size of the nondeterministic OBDD is O(n2 · 2n/2r

· 2r).

Lower bound: Let G be a nondeterministic OBDD for f with variable ordering π and at most
r nondeterministic guesses. Let p be the least index such that the first p variables according to π
contain exactly n v-variables. Fix the s-variables such that exactly these variables are selected
as memory variables for UINDEXn. Furthermore, the last 6n − p + 1 variables according to
π also contain n v-variables, which we select as address variables for UINDEXn by fixing the
t-variables appropriately.

In this way, we obtain a rectangular reduction from UINDEXn to MUINDEXn. By the
reduction technique (Lemma 2), Proposition 1 and the known lower bound DA→B(INDEXn) ≥
n it follows that dlog |G|e ≥ bn/2rc + r and hence the claimed lower bound. 2

To summarize the facts presented in this section, communication complexity as well as
the size of OBDDs decrease only moderately if the number of advice bits or nondeterminis-
tic guesses, resp., is increased by a constant. This also holds for partitioned BDDs with the
same variable ordering for all parts, since they are special nondeterministic OBDDs, but not for
partitioned BDDs with arbitrary variable orderings in the different parts.
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4 The New Hierarchy Result

In this section we state and prove the main result of the paper, the improved hierarchy for
partitioned BDDs. We consider the following function.

Definition 8. Let k and n be integers with k, n ≥ 2, and let N = N(k, n) = 2k3n + dlog ke.
We define the function fk,n : {0, 1}N → {0, 1} on blocks of variables x1, . . . , xk of size 2k2n
each and a vector y = (y1, . . . , ydlog ke) (the “selection pointer”). Let xi = (mi, vi) where mi =
(mi

1, . . . ,m
i
k2n) (the “bit mask”) and vi = (vi

1, . . . , v
i
k2n) (the “variable pool”) for i = 1, . . . , k.

(See the following diagram.)

. . .

. . .
. . .
. . .

. . .

. . . . . . . . . . .

. . .

ms
1 ms

2

vs
1 vs

2 vs

k2n

ms

k2n
mk

1

vk
1 vk

2

mk
2 mk

k2n

vk

k2n

m1
2

v1
k2n

v1
2v1

1

m1
1 m1

k2n

x1 xs xk

y2y1 ydlog ke

|y| = s

y

Consider an input assignment for fk,n consisting of the vectors x1, . . . , xk, y as described
above. Let s := |y| be the value of y interpreted as an encoding of a number from {1, . . . , k}.
We require that ms contains exactly dlog ne ones, and that each mi with i 6= s contains exactly
n ones. If this is not fulfilled, we define fk,n(x1, . . . , xk, y) := 0. Otherwise, let js,1 < · · · <
js,dlog ne and ji,1 < · · · < ji,n, i 6= s, be the indices of ones in the vectors ms and mi, i 6= s,
resp. Define

fk,n

(

x1, . . . , xk, y
)

:=
⊕

1≤i≤k, i6=s

INDEXn

(

(vi
ji,1

, . . . , vi
ji,n

), (vs
js,1

, . . . , vs
js,dlog ne

)
)

.

The following theorem contains the main result.

Theorem 3 (Improved Partitioned BDD Hierarchy). Let k and n be integers with k, n ≥ 2.

(1) The function fk,n can be represented by k-partitioned BDDs of size O(k4n3);

(2) every (k − 1)-partitioned BDD for fk,n has size 2Ω(n/k).

Corollary 1. Let ε > 0 be an arbitrary constant. There is a sequence of functions
FN : {0, 1}N → {0, 1} and a sequence of integers K = K(N) with K = Θ

(

(N/ log1+εN)1/4
)

,
both defined for infinitely many N , such that, for N large enough,

(1) the function FN can be represented by K-partitioned BDDs of size polynomial in N ; and

(2) every (K − 1)-partitioned BDD for FN has at least size 2Ω(log1+εN) = NΩ(logεN).

Proof: For arbitrary n ≥ 2, let k(n) :=
⌈

n/ log1+εn
⌉

. Define N as a function of n by N(n) :=
2k(n)3n+dlog k(n)e. By this definition, N and n are strictly increasing functions of each other.
Define FN(n) := fk(n),n and K(N(n)) := k(n). Using that, for N(n) (and thus n) large enough,

2n4/ log3(1+ε)n ≤ N(n) ≤ 3n4/ log3(1+ε)n,

one easily verifies that K(N(n)) = Θ
(

(N(n)/ log1+εN(n))1/4
)

.
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Since n ≤ N(n)/(2k(n)3), we have k(n)4n3 ≤ N(n)3/8k(n)5 ≤ N(n)3. Hence, Part (1)
follows from the upper bound from Theorem 3. On the other hand, n ≥ N(n)/(3k(n)3), which
gives n/k(n) ≥ N/(3k(n)4) = Ω

(

log1+εN(n)
)

(for N(n) → ∞). Substituting this into the
lower bound from Theorem 3, Part (2) follows. 2

In the remainder of the section, we prove Theorem 3.

Proof of Theorem 3(1)—The Upper Bound: We describe the construction of the OBDD for
the sth part of the partitioned BDD, where s ∈ {1, . . . , k}. The sth part is responsible for the
evaluation of fk,n in the case |y| = s. The variable ordering starts with y, xs, then all blocks xi

with i 6= s follow. The ordering within a block xi, 1 ≤ i ≤ k, is mi
1, v

i
1, . . . , mi

k2n, vi
k2n.

We first evaluate |y| by a binary tree on the y-variables. If |y| 6= s, the 0-sink is reached.
The main part of the graph is reached only if |y| = s. In this case, we want to evaluate

⊕

1≤i≤k, i6=s

INDEXn

(

(vi
ji,1

, . . . , vi
ji,n

), (vs
js,1

, . . . , vs
js,dlog ne

)
)

,

if js,1 < · · · < js,dlog ne and ji,1 < · · · < ji,n, i 6= s, are the positions of dlog ne and n ones,
resp., in the bit masks as in Definition 8, and the function is zero if a bit mask contains the
“wrong” number of ones.

We first read the variables in xs = (ms, vs) in the prescribed order and compute the binary
number represented by (vs

js,1
, . . . , vs

js,dlog ne
) which serves as the address for all index functions.

We store the number of ones in ms already seen (which is at most dlog ne, or we know that the
function is zero) and the partial address already computed. For this, we need only O(log n · n)
nodes per level of the OBDD and O(k2n · log n ·n) nodes altogether. At the bottom of this part,
we know the index a ∈ {1, . . . , n} of the addressed bit for the k − 1 index functions.

We then evaluate the memory contents for the index functions encoded in the vectors v i with
i 6= s. This is done analogously to the construction for vs above. While we read the variables
of a block with number i 6= s, we count the number of ones in the mi-vector (which is at most
n, or the function is zero) and store the parity of the addressed bits found so far (v i

ji,a
for the

current block), i. e., a single bit. Thus, we need only O(k2n · n · 1) nodes for the evaluation of
a single block, and O(k3n2) nodes altogether.

The sth part constructed above has total size O(k3n3). Since we have k parts, the complete
partitioned BDD has the claimed size. 2

Now we turn to the proof of the lower bound. The simple technique for proving lower
bounds on the size of OBDDs, i. e., reducing communication complexity to the size, does not
seem to apply for partitioned BDDs with arbitrary variable orderings for the different parts.
Furthermore, we have seen in the last section that communication complexity does not show the
strong dependence on the available amount of nondeterminism which we claim for partitioned
BDDs. Hence, a different approach is required.

The definition of the function fk,n still captures the essence of the more complicated con-
struction of Bollig and Wegener [3]. We know that the function INDEXn is easy to evaluate if
the “right” variable ordering, where the address variables come before the memory variables, is
chosen. On the other hand, the function is hard if the memory variables are tested first. Now
the function fk,n is constructed in such a way that an arbitrary block xs, s = 1, . . . , k, called the
address block in the following, may be chosen to supply the address variables for k − 1 copies
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of INDEXn, and each of the other k − 1 blocks serves as the memory contents for one of these
copies of INDEXn.

In a k-partitioned BDD, we may have a part with the “right” variable ordering for each of
the k choices of the address block. However if only k − 1 variable orderings are available, at
least one choice of the address block is “bad,” i. e., at least some of the memory vectors have to
be evaluated before the address in the partitioned BDD. Thus, the partitioned BDD computes at
least one copy of INDEXn according to the “wrong” variable ordering. It remains to show that
at least one part of the partitioned BDD, which is an OBDD, has to evaluate many inputs of this
copy of INDEXn correctly. Then we can apply our knowledge on the deterministic one-way
complexity of INDEXn to show that this OBDD has large size.

We now formalize these ideas. The proof of the lower bound consists of two parts, a simpli-
fication of the structure of the partitioned BDD by combinatorial tools and the final application
of the lower bound on communication complexity. The key observations for the combinatorial
part are captured within the following two lemmas which have been extracted from the paper [3]
of Bollig and Wegener.

Lemma 3 (Bollig and Wegener, 1997). Let V := B1 ∪ · · · ∪ Bk with Bi := {vi
1, . . . , v

i
m},

m = k2n and i = 1, . . . , k. Let π1, . . . , πk−1 be arbitrary orderings of the variables from V .
Let Li be the set of the first m variables according to πi for i = 1, . . . , k − 1, and let L :=
L1 ∪ · · · ∪ Lk−1, R := V \ L. Then there are numbers b0, b1, . . . , bk−1 ∈ {1, . . . , k} (where
b1, . . . , bk−1 are not necessarily different) such that the following holds.

(1) b0 6∈ {b1, . . . , bk−1} and |Bb0 ∩ R| ≥ kn;

(2) |Bbi
∩ Li| ≥ n for all i = 1, . . . , k − 1.

Proof: We have |V | = km. Since |L| = |L1 ∪ · · · ∪ Lk−1| ≤ (k − 1)m, it follows that
|R| ≥ m. By the pigeonhole principle, there is a b0 ∈ {1, . . . , k} such that |Bb0 ∩R| ≥ m/k =
kn. On the other hand, it follows for arbitrary i ∈ {1, . . . , k − 1} that

∣

∣

⋃

j 6=b0
Bj ∩ Li

∣

∣ ≥
m − (m − m/k) = m/k. Again by the pigeonhole principle, there is a bi ∈ {1, . . . , k} such
that |Bbi

∩ Li| ≥ m/k2 = n. 2

Lemma 4 (Bollig and Wegener, 1997). Let X1, . . . , Xk be finite sets. Let f : X1×· · ·×Xk →
{0, 1} be defined on variables x1, . . . , xk, where xi ∈ Xi for i = 1, . . . , k. Let |f−1(1)| ≥
α|X1||X2| ∗ · · · ∗ |Xk|, α > 0. Then there are assignments a2, . . . , ak to x2, . . . , xk such that
∣

∣(f |x2=a2,...,xk=ak
)−1 (1)

∣

∣ ≥ α|X1|.

Proof: We obviously have |(f−1)(1)| =
∑

a2∈X2, ..., ak∈Xk

∣

∣(f |x2=a2,...,xk=ak
)−1 (1)

∣

∣. Since the
sum contains |X2| ∗ · · · ∗ |Xk| terms altogether, the claim follows by the pigeonhole principle.

2

Now we are ready to complete the proof of the hierarchy result.

Proof of Theorem 3(2)—The Lower Bound: Let G be an arbitrary (k − 1)-partitioned BDD
for fk,n with the orderings (π1, . . . , πk−1). In the combinatorial part of the proof, we set several
variables to constants. By applying these assignments to fk,n as well as to the (k−1)-partitioned
BDD G, we obtain a (k − 1)-partitioned BDD which represents a subfunction of fk,n. First,
we choose the variable block which will contain the address for the index functions. Then
we isolate an OBDD-part of the remaining partitioned BDD where these address variables are
tested after the memory variables for one of the copies of INDEXn and which computes many
1-inputs of the function.
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00 . . . 0 00 . . . . . . . . . . . . . . . . . . 0

00 . . . . 000 . . . . . . . . . . . . . . . . 0

00 . . . . . . . . . . . . 000 . . . . . . . . . 0 11 . . . . 1

11 . . . . 1

11 . . . . 1

π5

G′

z6

z5z3

vu1

z4

mu1

z2z1

p(3, 6)

mu3

p(2, 5)

mu2

π6π3π2

p(1, 2)

π1

vu2

π4

vu3

z0z0

z2

z3

z4

z0 z0z0
z6

z2 z3 z5 z6z1

z3

z4

z5

z6

z0

z1 z4

z6

z5

z6

z4

z5

z6

z1

z2

z1

z2

z3

z1

z2

z3

z4

z1

z2

z3

z4

z5

z5

Figure 1: Variables in G′ (symbolic).

We start by applying Lemma 3 to the suborderings π ′
1, . . . , π

′
k−1 on V = {vi

1, . . . , v
i
k2n | i =

1, . . . , k}. As before, we call the vectors xi =
(

(mi
1, v

i
1), . . . , (m

i
k2n, vi

k2n)
)

variable blocks.
Assuming the notation of the lemma, we have block numbers b0, b1, . . . , bk such that

(1) b0 6∈ {b1, . . . , bk−1} and |Bb0 ∩ R| ≥ kn;

(2) |Bbi
∩ Li| ≥ n for all i = 1, . . . , k − 1.

Let u1, . . . , ur, r ≤ k − 1, be the different (unique) block numbers among b1, . . . , bk−1.
We fix the y-variables such that |y| = b0. We then fix the bit mask mb0 such that exactly

dlog ne variables from Bb0∩R are selected. Let z0 be the vector of these variables. Furthermore,
fix all variables in blocks xi with i 6∈ {b0, u1, . . . , ur}. We select n arbitrary variables from the
respective v-vectors by an appropriate setting of the bit masks, and we set all v-variables in
these blocks to 0.

By applying these assignments of constants to G, we obtain a (k − 1)-partitioned
BDD G′ which represents a subfunction f ′ of fk,n which only depends on the variables
mu1, vu1 , . . . ,mur , vur and z0. We do not fix the remaining variables yet, but we consider only
a small set of possible assignments to them which we define now.

For each i = 1, . . . , k − 1, choose n variables from Bbi
∩ Li and define zi as the vector of

these variables (notice that zp and zq need not be disjoint for p 6= q). For i = 1, . . . , r, define
Ci := {j | bj = ui} (the parts of G which contain a z-vector belonging to the variable block
with number ui). For each j ∈ Ci, define p(i, j) as the assignment to the bit mask mui by which
the variables in the vector zj are selected. (See the example in Figure 1.)

For each variable block with number u1, . . . , ur, we have the possibility of choosing one of
the z-vectors which lies in this block by using an appropriate bit mask. For i = 1, . . . , r, let
ci ∈ Ci be the number of the chosen z-vector.

We consider the subfunction f ′
c1,...,cr

of f ′ which is obtained by fixing the bit mask mui

according to p(i, ci), for i = 1, . . . , r. By the definitions, this function only depends on

13



z0, zc1, . . . , zcr and

f ′
c1,...,cr

(zc1, . . . , zcr , z0) =
⊕

1≤i≤r

INDEXn

(

zci , z0
)

.

Furthermore, the sets of variables in the vectors z0, zc1, . . . , zcr are pairwise disjoint.
It is easy to verify that |(f ′

c1,...,cr
)−1(1)| = 1

2
· n · 2rn. Hence, also |(f ′)−1(1)| ≥ 1

2
· n · 2rn.

Since G′ consists of k − 1 parts, it follows (again) by the pigeonhole principle that there is an
OBDD-part, w. l. o. g. the first one which we call G1, such that for the function g1 represented
by this part

|(g1)
−1(1)| ≥

1

2k
· n · 2rn.

W. l. o. g., the z-vector in the upper part of G1 is z1 and belongs to the variables in vu1 . Set
c1 := 1 and choose ci ∈ Ci arbitrarily for i = 2, . . . , r. Consider the subfunction f ′

c1,...,cr
. Since

the variable vectors zc1, zc2, . . . , zcr are disjoint, Lemma 4 can be applied to f ′
c1,...,cr

. We obtain
assignments a2, . . . , ar to the variable vectors zc2, . . . , zcr such that the resulting subfunction
f ′′ of f ′

c1,...,cr
fulfills

|(f ′′)−1(1)| ≥
1

2k
· n · 2n

and still depends on all variables from z0 and zc1 . This subfunction is

f ′′(zc1, z0) = INDEXn(zc1, z0) ⊕ INDEXn(a2, z0) ⊕ · · · ⊕ INDEXn(ar, z0)

= INDEXn(zc1, z0) ⊕ h(z0),

where h(z0) = 1 for |z0| ∈ I ⊆ {0, . . . , n − 1}, I appropriately defined, and h(z0) = 0,
otherwise.

By applying the assignments p(1, c1), p(2, c2), . . . , p(r, cr) and a2, . . . , ar to G1, we obtain
a deterministic OBDD which represents f ′′ and only depends on the variable vectors z0 and zc1 .
Furthermore, all zc1-variables are tested before the z0-variables in the respective variable order-
ing. By Lemma 1 and the reduction technique (Lemma 2), the claimed lower bound follows.
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