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Abstract

This paper deals with the number of monochromatic combinatorial rectangles required
to approximate a Boolean function on a constant fraction of all inputs, where each rectangle
may be defined with respect to its own partition of the input variables. The main result of the
paper is that the number of rectangles required for the approximation of Boolean functions
in this model is very sensitive to the allowed error: There is an explicitly defined sequence
of functions fn : {0, 1}n → {0, 1} such that fn has rectangle approximations with a constant
number of rectangles and one-sided error 1/3+o(1) or two-sided error 1/4+2−�(n), but, on
the other hand, fn requires exponentially many rectangles if the error bounds are decreased
by an arbitrarily small constant.

Rectangle partitions and rectangle approximations with the same partition of the input
variables for all rectangles have been thoroughly investigated in communication complexity
theory. The complexity measures where each rectangle may have its own partition are used
as tools for proving lower bounds in branching program theory. As applications of the main
result, two separation results for read-once branching programs are presented.

First, the relationship between nondeterminism and randomness for read-once branch-
ing programs is investigated. It is shown that the analogs of the complexity classes NP and
BPP defined in terms of read-once branching program size are incomparable if the error for
the randomized model is bounded by a constant smaller than 1/3. The second result is that
unambiguous nondeterministic read-once branching programs, i. e., programs with at most
one accepting computation path for each input, for the function fn from the main result
have exponential size. Together with a linear upper bound on the size for unrestricted non-
determinism, this implies that the analogs of the classes UP and NP for read-once branching
programs are different.

Keywords: Branching programs, communication complexity, lower bounds, approxima-
tion, nondeterminism, randomness.
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1 Introduction

In this section, we introduce rectangle approximations and the respective complexity measures
studied in the paper. After this, we present the main result and discuss its applications.

1.1 Rectangle Approximations

We start with definitions of the main concepts of the paper.

Definition 1.1: Let X be a set of n variables, and let 5 = (X1, X2) be a balanced partition of
X , i. e., X = X1 ∪ X2, X1 ∩ X2 = ∅ and

∣∣|X1| − |X2|
∣∣ ≤ 1. A function r : {0, 1}n → {0, 1}

defined on the variable set X is called a (combinatorial) rectangle defined with respect to 5
(5-rectangle for short), if there are functions r1, r2 : {0, 1}n → {0, 1} defined on X such that
r = r1 ∧ r2 and ri does not essentially depend on X i , for i = 1, 2.

As usual, we identify Boolean vectors and variable assignments. If there is only one (fixed)
partition of the variables, this can also be abstracted away, as usually done in communication
complexity theory. The partition is then implicitly given by working with functions written as
f : X × Y → {0, 1}, where X and Y are finite sets. A combinatorial rectangle in X × Y is a set
R = A × B, where A ⊆ X and B ⊆ Y . Obviously, this coincides with the above definition if
X and Y are explicitly encoded by Boolean assignments to variables.

Here, we usually work with several partitions of the variables, though.

Definition 1.2: Let f : {0, 1}n → {0, 1} be defined on the variable set X . A rectangle partition
representing f is a collection of rectangles r1, . . . , rk , where ri is defined with respect to a
balanced partition 5i of X , such that

(i) for i = 1, . . . , k, either r−1
i (1) ⊆ f −1(0) or r−1

i (1) ⊆ f −1(1);
(ii) r−1

1 (1) ∪ · · · ∪ r−1
k (1) = {0, 1}n and r−1

i (1) ∩ r−1
j (1) = ∅ for different i, j .

Define C( f ), the (deterministic) rectangle complexity of f , as the minimal number of rect-
angles in a rectangle partition representing f . The (deterministic) single-partition rectangle
complexity, C s( f ), is the minimal number of rectangles in a rectangle partition for f where all
rectangles are defined with respect to the same balanced partition of the input variables.

Rectangle partitions have been studied extensively in communication complexity theory as a
combinatorial tool for proving lower bounds on the complexity of two-party protocols (see the
monographs [25, 33] for definitions and a thorough introduction).

It is well-known that the measure C s( f ) (rectangle complexity in the single-partition case) is
closely related to the complexity D( f ) of deterministic two-party communication protocols
for f , we have:

Proposition 1.3 (Yao [59] / Halstenberg and Reischuk [24]):

log C s( f ) ≤ D( f ), and D( f ) = O
((

log C s( f )
)2

)
.
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In this paper, we deal with “imperfect” representations of functions by rectangle partitions as
described in the next definition.

Definition 1.4: Let µ : {0, 1}n → [0, 1] be an arbitrary probability distribution. A rectangle
approximation for f : {0, 1}n → {0, 1} with (two-sided) error ε with respect to µ is a rectangle
partition representing a function g : {0, 1}n → {0, 1} with

µ ({x | f (x) 6= g(x)}) ≤ ε,

where 0 ≤ ε < 1/2. The rectangle approximation has one-sided error ε if

µ ({x | f (x) = 0 ∧ g(x) = 1}) ≤ ε · µ
(

f −1(1)
)
, and

µ ({x | f (x) = 1 ∧ g(x) = 0}) = 0.

In this case, we allow that 0 ≤ ε < 1.

For 0 ≤ ε < 1/2, define CA, µ
ε ( f ), the complexity of rectangle approximations for f with

respect to µ, as the minimum of C(g) taken over all functions g which fulfill the above error
bound for two-sided error. Define CA, µ

1, ε ( f ) analogously for one-sided error and all 0 ≤ ε < 1.

Let CA, µ, s
ε ( f ) and CA, µ, s

1, ε ( f ) denote the respective measures for a single balanced partition of
the input variables.

We use the upper index “uniform” instead of µ for the uniform distribution over an arbitrary
input space.

Observe that for all f and µ, one of the two constant functions is always a trivial approximation
with two-sided error 1/2, and the constant 0 is a trivial approximation with one-sided error 1.

The measure CA, µ, s
ε ( f ) has been analyzed in the context of so-called distributional communi-

cation complexity. The (µ, ε)-distributional communication complexity of f is the minimum
complexity of a deterministic two-party communication protocol which correctly computes f
on at least a (1−ε)-fraction of all inputs with respect to µ. By Proposition 1.3, it follows imme-
diately that the logarithm of CA, µ, s

ε ( f ) is a lower bound on the (µ, ε)-distributional complexity
of f . Such bounds have been proven, e. g., in [9, 17, 45, 60]. Furthermore, lower bounds on the
distributional complexity directly yield lower bounds for randomized public-coin communica-
tion complexity (for details, see again the monographs [25, 33]).

Rectangle complexity with multiple partitions of the input variables has first been used explicitly
by Borodin, Razborov, and Smolensky [16] for proving exponential lower bounds on the size
of nondeterministic read-once branching programs (the next subsection will give definitions
of this and other types of branching programs). They have considered the nondeterministic
rectangle complexity, which is defined as the minimum number of rectangles required to cover
the 1-inputs of the given function (i. e., rectangles may overlap). Implicitly, already the papers
of Jukna [28] and Krause, Meinel, and Waack [32] contain lower bounds on this measure.

Furthermore, Borodin, Razborov, and Smolensky have introduced a generalized notion of rect-
angles (baptized “(k, a)-rectangles” in [30]) for proving lower bounds on nondeterministic (syn-
tactic) read-k-times branching programs. Additional results of this kind have been obtained by
Okol’nishnikova [41] and Jukna [30].
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Finally, we remark that also the most recent lower bounds for linear-length branching pro-
grams [2, 3, 12, 13] employ representations of Boolean functions by appropriately defined gen-
eralizations of combinatorial rectangles.

Lower bounds on the complexity of rectangle approximations with multiple partitions of the
input variables have first been proven in the conference version of this work [47]. By extending
the technique of Borodin, Razborov, and Smolensky, these results have been applied to prove
exponential lower bounds on the size of randomized read-once branching programs. Expo-
nential lower bounds for randomized (syntactic) read-k-times branching programs have been
obtained in the same way by using generalized rectangles instead of the usual ones.

Thathachar [51] has improved these results in order to separate the so-called (syntactic) read-k-
times hierarchy for branching programs. More precisely, he has shown that there are functions
for which deterministic read-(k + 1)-times branching programs have polynomial size, while
nondeterministic or randomized read-k-times branching programs have exponential size. In the
context of this paper and the notation used here, Thathachar’s paper implies the following:

Theorem (Thathachar [51]):

There is a sequence of explicitly defined functions fn : {0, 1}n → {0, 1} such that

(1) CA, uniform
1/9+δn

( fn) = O(1), where δn = 2−�(n);

(2) CA, uniform
ε ( fn) = 2�(

√
n), for all ε ≤ (1/3) · 2−25.

In the appendix of this paper, it is shown that the gap between the error bounds in this theorem
can be closed: For the same function, an exponential lower bound even holds for two-sided
error 1/9−γn, for all γn > 0 with γn = �(1/Poly(n)). Furthermore, a similar gap between the
complexity for one-sided error 1/4+o(1) and 1/4−γ ′

n , for all γ ′
n > 0 with γ ′

n = �(1/Poly(n))
is shown.

1.2 The Main Result

It is a well-known fact that the error probability of a randomized communication protocol with
bounded error can be decreased below an arbitrary constant by repeating the protocol a constant
number of times with independent assignments to the random bits (“probability amplification”).
Thus, error probability is not a really important parameter here.

Contrary to this observation, we also learn from the known results that the error bound has a
decisive influence on the complexity of rectangle approximations in the single-partition model.
Razborov [45] has proven for the disjointness function DISJn (which decides whether two sub-
sets of the set {1, . . . , n} are disjoint) that there is a distribution µ over the input space of
DISJn such that CA, µ, s

ε (DISJn) = 2�(n) for all constants ε < 1/180. On the other hand,
µ

(
DISJ−1

n (1)
)

= 3/4, and thus the function is trivially approximated by the constant 1 with
error 1/4 with respect to µ. Hence, we have an unbounded increase of the complexity if the
error is decreased by some small positive constant.
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For the inner product function over Zp, p a prime, one obtains a similar increase of complexity,
but for an arbitrarily small constant decrease of the error bound. This function checks whether
the standard inner product of two n-bit vectors is different from 0 in Z p. Babai, Kimmel, and
Hayes [10] have proven that exponentially many rectangles are required to approximate the
inner product function over Zp in the single partition model and with respect to the uniform
distribution if the error is bounded by a constant smaller than 1/p, whereas the function is
trivially approximated by the constant 1 with error bounded by 1/p + 2−�(n).

We show here that the described sensitivity to the error bound also occurs in the general model
where the partition of the input variables may be chosen differently for different rectangles, even
for the uniform distribution over the input space, and even when the error is decreased only by
an arbitrary small positive constant. We consider the following function, where [P] is used to
denote the Boolean function which is equal to 1 if the predicate P is true, and 0 otherwise.

Definition 1.5: Define the function MSn : {0, 1}n2 → {0, 1} (“ModSum”) on the n × n matrix
X = (xi j)1≤i, j≤n of Boolean variables by

MSn(X) := RTn(X) ∨ CTn(X),

where RTn : {0, 1}n2 → {0, 1} (“RowTest”) is defined by

RTn(X) :=
n∑

i=1

[
xi,1 + · · · + xi,n ≡ 0 mod 3

]
mod 2

and CTn(X) := RTn
(
X>)

(“ColumnTest”).

We prove the following upper and lower bounds on the complexity of rectangle approximations
for MSn with respect to the uniform distribution.

Theorem 1.6: Let N = n2 (the input size of MSn).

(1) CA, uniform
1, 1/3+δN

(MSn) = O(1) and CA, uniform
1/4+δ′N

(MSn) = 1, where δN = o(1) and δ′N =

2−�(
√

N);

(2) CA, uniform
1, 1/3−γN

(MSn) = 2�(
√

N) and CA, uniform
1/4−γ ′

N
(MSn) = 2�(

√
N), for all γN , γ

′
N > 0 with

γN , γ
′
N = �(1/Poly(N )).

We present another variant of the above main theorem where we allow ourselves to choose a
nonuniform distribution over the input space instead of the uniform one. By adjusting the dis-
tribution, we obtain larger bounds on the error for which we still get exponential lower bounds
on the complexity of rectangle approximations.

Theorem 1.7: Let N = n2. There is a probability distribution µ : {0, 1}N → [0, 1] such that

(1) CA, µ
1, 1/2+δN

(MSn) = O(1) and CA, µ
1/3+δ′N

(MSn) = 1, where δN = o(1) and δ′N = 2−�(
√

N);

(2) CA, µ
1, 1/2−γ (MSn) = 2�(

√
N) and CA, µ

1/3−γ ′(MSn) = 2�(
√

N), for all constants γ, γ ′ > 0.
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1.3 Applications for Branching Programs

One of the most important and, seemingly, also most difficult unresolved tasks in complexity
theory is to find out how the computational power of randomized algorithms relates to that of
deterministic and nondeterministic algorithms. If one believes that the concepts determinism,
randomness, and nondeterminism differ, one has to prove separation results for complexity
classes such as P, NP, and BPP, which still seem to be out of reach today due to the lack of
appropriate techniques for proving lower bounds.

One approach in this situation is to resort to relativization or to results based on unproven (but
plausible) assumptions. On the other hand, one may also study alternative models of computa-
tion which promise to be easier to handle by combinatorial tools than the somewhat “unwieldy”
classical Turing machine.

The latter approach has been quite successful for some nonuniform models of computation, such
as circuits, communication protocols, and branching programs. Branching programs allow to
describe sequential computations in an especially handy way. Furthermore, complexity classes
defined in terms of other well-known nonuniform models of computation may be equivalently
characterized in terms of branching programs.

Definition 1.8: A (deterministic) branching program (BP) on the variable set {x1, . . . , xn} is a
directed acyclic graph with one source and two sinks labeled by the constants 0 and 1, resp. Each
non-sink node is labeled by a variable xi and has exactly two outgoing edges carrying labels
0 and 1, resp. This graph represents a Boolean function f : {0, 1}n → {0, 1} in the following
way. To compute f (a) for some input a ∈ {0, 1}n, start at the source node. For a non-sink node
labeled by xi , check the value of this variable and follow the edge which is labeled by this value
(this is called a “test of variable xi ”). Iterate this until a sink node is reached. The value of f on
input a is the value of the reached sink. For a fixed input a, the sequence of nodes visited in this
way is uniquely determined and is called the computation path for a. The size of a branching
program G is the number of its nodes and is denoted by |G|.

Usually, we consider sequences of BPs representing sequences ( fn)n∈N of Boolean functions,
where fn : {0, 1}n → {0, 1}. In order to simplify notation, we will frequently talk of functions
where we really mean “sequences of functions.” As a further convention, we omit indices
indicating the input size wherever no confusion arises.

Nondeterministic and randomized BPs may be defined by introducing additional “guessing
nodes” or “probabilistic nodes.” For the moment, we may imagine that, when reaching such
nodes during a computation, the successor on the computation path is nondeterministically
guessed or determined by flipping a fair coin, resp. More precise definitions are given later on.

It is a well-known fact that sequences of functions which can be computed by BPs of polyno-
mial size can also be computed within logarithmic space on the nonuniform variant of Turing
machines and vice versa [18, 42]. Hence, it is an important problem to prove superpolynomial
lower bounds on the size of BPs for explicitly defined sequences of functions.

So far, not even superlinear lower bounds for deterministic BPs are known. Nevertheless, super-
polynomial and exponential lower bounds could be proven for several restricted types of BPs.
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One major goal in branching program theory is to extend the available techniques to more and
more general models. The last years have brought some astonishing progress along this line.
We give only a brief overview here (see, e. g., [56] for more details).

A read-once branching program is a (deterministic) BP where each variable may appear at
most once on each path from the source to a sink. This restricted type of BPs has been the first
one for which exponential lower bounds on the size could be proven [55, 61], and it has been
extensively studied. A general technique presented by Simon and Szegedy [50] summarizes
what is behind most of the known proofs of lower bounds for deterministic read-once BPs.

More recently, Gál [19] and Bollig and Wegener [15] have obtained exponential lower bounds
on the size of deterministic read-once BPs even for “very simple” functions, i. e., functions with
polynomial size CNF and DNF, resp. Exponential lower bounds for nondeterministic read-once
BPs have been proven by Jukna [28], Krause, Meinel, and Waack [32], Borodin, Razborov, and
Smolensky [16]. The randomized case has been first handled in the conference version of this
work. Further results for the nondeterministic and randomized variant of read-once BPs are
discussed below.

Read-once BPs are the special case k = 1 of (syntactic) read-k-times branching programs where
each variable may appear at most k times on each path from the source to a sink. An even more
general model are semantic read-k-times branching programs where the restriction on the read
access is only required to hold for all computation paths (instead of all paths). Results for these
variants of BPs have been proven in [13, 16, 30, 41, 47, 51].

The latest records in the competition for lower bounds on the size of less and less restricted
variants of BPs have been achieved for linear-length branching programs, which are BPs where
the length of the longest path from the source to one of the sinks is bounded by a linear function
in the input size. Beame, Saks, and Thathachar [13], Ajtai [2, 3] and Beame, Saks, Sun, and
Vee [12] have proven exponential lower bounds for this model.

In this paper, we focus on another topic of branching program theory. Given the polynomial
relationship between the size of BPs and the logarithm of the space complexity for nonuniform
Turing machines, BPs are also a suitable model for comparing the power of determinism, non-
determinism, and randomness in the nonuniform, space-restricted setting. Complexity classes
for BPs analogous to P, NP, BPP etc. are defined by replacing polynomial time complexity with
polynomial branching program size in the respective model. Due to the difficulty of proving
separation results, it is not too surprising that already for the more restricted variants of BPs
there are several open problems concerning the relationship between the different modes of
computation. Here we deal with such problems for read-once BPs. First, we summarize known
results.

The relationship between determinism and nondeterminism has been studied already in the
early papers on read-once BPs. Jukna [28] and Krause, Meinel, and Waack [32] have shown
that the permutation matrix function requires exponential size for nondeterministic read-once
BPs, whereas one easily proves that its complement has linear size in the same model [32]. More
recently, Jukna, Razborov, Savický, and Wegener [27] have improved upon this by presenting
sequences of functions with exponential size for deterministic read-once BPs which are even
contained in the analog of the complexity class NP ∩ coNP for read-once BPs.
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Initial results on the relationship between determinism and randomness have been obtained by
Ablayev and Karpinski [1], who have considered a randomized variant of OBDDs (ordered
binary decision diagrams). An OBDD is a restricted read-once BPs where the sequence in
which the variables appear along each path from the source to a sink has to be consistent with
a fixed order. Ablayev and Karpinski have presented a sequence of functions fn : 6n → {0, 1},
where |6| = 4, which can be represented by randomized OBDDs with small, one-sided error
and polynomial size, but which require exponential size for deterministic (unrestricted) read-
once BPs. (Their upper bound also works for a Boolean encoding of the functions fn.)

The results contributed in this paper are described in the following.

NP versus BPP for Read-Once BPs. In the classical setting, it seems to be unlikely that
NP ⊆ BPP, since Ko [31] has shown that this would imply NP = RP as well as a collapse of
the polynomial time hierarchy to BPP. On the other hand, BPP may well be contained in NP,
we may even have P = BPP. Some support for the conjecture that P = BPP is provided by
recent derandomization results for BPP-algorithms (see, e. g., [7, 26, 57]).

Analogous questions have been studied for space-bounded complexity. Already Gill [20] has
shown that NL = RL, but it is nevertheless unknown whether the classes NL and BPL are
different. (RL and BPL are the classes of languages which can be decided by probabilistic
Turing machines with bounded one-sided and two-sided error, resp., using at most logarithmic
space.) The situation for the nonuniform setting is the same in this respect, we have NL/Poly =
RL/Poly ⊆ BPL/Poly, but it is open whether this inclusion is proper.

Here we deal with the relationship between nondeterminism and randomness for read-once BPs.
We first prove that the permutation matrix function has randomized OBDDs with small, one-
sided error of polynomial size. Together with exponential lower bound for nondeterministic
read-once BPs from [28, 32], we obtain that P $ RP and BPP 6⊆ NP for read-once BPs. With
respect to the relationship between determinism and randomness, this has been strengthened
in [49] by an exponential gap between the size of deterministic read-once BPs and randomized
read-once BPs with zero error, implying that P $ ZPP for read-once BPs.

On the other hand, we prove that the function considered in the main result of the paper requires
exponential size for randomized read-once BPs with two-sided error bounded by a constant
smaller than 1/3 or one-sided error bounded by a constant smaller than 1/2, while it can be
represented in linear size by nondeterministic read-once BPs. Hence, the analog of the class NP
is not contained in BPP and RP $ NP if the error allowed for the randomized models is not too
large.

Randomized read-once BPs also show the high sensitivity on the error bound already observed
for rectangle approximations. Our results imply that decreasing the bound imposed on the
error probability of a randomized read-once BP by an arbitrarily small constant may result in
an exponential blowup of the size. This is contrary to the situation for probabilistic Turing
machines and for randomized general BPs, where the error probability may be decreased below
an arbitrary small constant while maintaining polynomial size by “probability amplification.”
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UP versus NP for Read-Once BPs. Valiant [52] has introduced the subclass UP of NP which
contains the languages decidable by nondeterministic Turing machines with at most one ac-
cepting computation for each input. Obviously, P ⊆ UP ⊆ NP, but it is not known whether
any of these inclusions are proper. The results of Valiant and Vazirani [53] provide some
evidence for the hypothesis P $ UP = NP. On the other hand, there is an oracle A with
PA = UPA $ NPA [14]. Finally, we note that separating P from UP would also have con-
sequences for the area of cryptography: it is known that there are polynomial time one-way
functions if and only if P $ UP [23].

For the setting of nonuniform, logarithmically space-bounded computations, Allender and Rein-
hardt [6] have shown that unambiguous nondeterminism is indeed as powerful as the unre-
stricted version: the nondeterministic analogs of the classes UL and NL coincide, i. e., we have
UL/Poly = NL/Poly.

A contrary result holds for two-party communication protocols. Yannakakis [58] has proven
that deterministic communication complexity is at most quadratically larger than unambiguous
communication complexity. Furthermore, the results of Mehlhorn and Schmidt [36] can be
exploited to obtain a function of input size n which has nondeterministic communication com-
plexity O(log n) and unambiguous communication complexity �(n) (unpublished observation
due to M. Dietzfelbinger).

The latter result also implies that the concepts of unambiguous and unrestricted nondeterminism
no longer coincide for a very restricted type of Turing machines, namely for nonuniform Turing
machines with logarithmic space-bound and one-way access to their input tape. More precisely,
1-UL/Poly $ 1-NL/Poly, where the prefix “1-” to the complexity classes indicates one-way
access to the input tape. (This unpublished result is attributed to M. Dietzfelbinger by Allender
et al. [5]. The article also contains an improved version of the result.)

Furthermore, the above fact can also be formulated in terms of restricted BPs. Analogous to
the proof for one-way Turing machines, one obtains that there is a sequence of functions which
has nondeterministic OBDDs of polynomial size, but for which unambiguous OBDDs require
exponential size.

We complement these results here by showing that the function from the main result on rectan-
gle approximations requires exponential size for unambiguous read-once BPs. Together with a
linear upper bound on the size for (unrestricted) nondeterministic read-once BPs, this especially
implies that the analogs of the classes UP and NP are different also for read-once BPs.

Overview. The rest of the paper is organized as follows. In the next section, we describe
the technique used for proving lower bounds on the complexity of rectangle approximations.
Section 3 and Section 4 show how this technique is applied for the proof of the main result and
the improved version for a nonuniform distribution over the input space, resp. Then we deal
with the implications of these results for read-once BPs (Section 5). In Sections 6, 7 and 8
we fill in some technical details of the proof of the main result left out at the beginning. We
first give a short introduction into some algebraic concepts and techniques (Section 6), and then
apply these to prove two central lemmas (Section 7 and 8). Finally, in the appendix we improve
Thathachar’s result for rectangle approximations with respect to the error bounds.
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2 Proof Technique

In this section, we describe the technique used for proving lower bounds on the complexity of
rectangle approximations. This is an extension of Yao’s technique [60] for proving lower bounds
on the distributional communication complexity. We consider approximations with respect to
an arbitrary probability distribution µ over the input space here.

For proving large lower bounds on the complexity of rectangle approximations, we look for
functions f with the following two properties:

• The fraction of 0-inputs of f (with respect to the given distribution µ on the input space)
does not tend to 0 or 1 with increasing input size, i. e., there are constants α > 0 and β < 1
such that α < µ

(
f −1(0)

)
< β.

• For each rectangle r , r−1(1) only contains “few” 0-inputs compared to the overall size of the
rectangle. More precisely, if µ

(
r−1(1)

)
is not exponentially small with respect to the input

size of f , then the ratio µ
(
r−1(1) ∩ f −1(0)

)
/µ

(
r−1(1)

)
is bounded by a constant smaller

than 1.

The role of 0- and 1-inputs may be swapped. We concentrate on 0-inputs in this description
since we will apply the technique in this way later on.

The first property is obviously necessary; otherwise, we could approximate f by one of the
constant functions with small error. We first give a formal definition of the second property and
then show that both properties together ensure that rectangle approximations for f have large
complexity.

Definition 2.1: Let f : {0, 1}n → {0, 1} be defined on the variable set X , |X | = n. Let µ be an
arbitrary probability distribution over {0, 1}n. Suppose that there are a constant α, 0 ≤ α ≤ 1,
and a sequence of real numbers (δn)n∈N, such that for each rectangle r defined with respect to
an arbitrary balanced partition of X ,

µ
(
r−1(1) ∩ f −1(0)

)
≤ α · µ

(
r−1(1)

)
+ δn. (LD)

Then we say that f has the low 0-density property with respect to rectangles and to the distri-
bution µ with parameters α and δn.

In the applications of the proof technique, the values of δn in this definition will be exponentially
small in n. The following theorem summarizes the proof technique.

Theorem 2.2: Let f : {0, 1}n → {0, 1} be defined on the variable set X, |X | = n. Let µ be an
arbitrary probability distribution over {0, 1}n. Suppose that f has the low 0-density property
with parameters α and δn. Then

(1) CA
1, ε( f ) ≥ δ−1

n ·
(
(1 − α) · µ

(
f −1(0)

)
− α · ε · µ

(
f −1(1)

))
, for all ε < 1; and

(2) CA
ε ( f ) ≥ δ−1

n ·
(
(1 − α) · µ

(
f −1(0)

)
− max(1 − α, α) · ε

)
, for all ε < 1/2.
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Proof: For technical reasons, it is easier to start with the second part.

Part (2): Let P be a rectangle partition representing g : {0, 1}n → {0, 1}, where the rectangles
of the partition are defined with respect to balanced partitions of the variable set X . Suppose that
P is a rectangle approximation for f with two-sided error ε with respect to µ. For c ∈ {0, 1},
let r c

1, . . . , r
c
kc

be the rectangles on which g computes the result c. We only work with the sets

of input assignments belonging to these rectangles, defined by Rc
i :=

(
r c

i

)−1
(1) for all c and i .

In the following, we derive a lower bound on k0. First, observe that, since the sets R0
i , R1

i form
a partition of {0, 1}n,

µ
(

f −1(0)
)

=
k0∑

i=1

µ
(
R0

i ∩ f −1(0)
)
+

k1∑

i=1

µ
(
R1

i ∩ f −1(0)
)
. (1)

Define

e0 :=
k1∑

i=1

µ
(
R1

i ∩ f −1(0)
)
, and e1 :=

k0∑

i=1

µ
(
R0

i ∩ f −1(1)
)
.

Then we have e0 + e1 ≤ ε, since P approximates f with error ε with respect to µ.

Summing up inequality (LD) from the low 0-density property for all rectangles R0
i , i =

1, . . . , k0, yields

k0 · δn ≥
k0∑

i=1

µ
(
R0

i ∩ f −1(0)
)
− α ·

k0∑

i=1

µ
(
R0

i

)
.

Using that µ
(
R0

i

)
= µ

(
R0

i ∩ f −1(0)
)
+ µ

(
R0

i ∩ f −1(1)
)

for all i , we may rewrite this as

k0 · δn ≥ (1 − α)

k0∑

i=1

µ
(
R0

i ∩ f −1(0)
)
− α ·

k0∑

i=1

µ
(
R0

i ∩ f −1(1)
)
.

By Equation (1),

k0 · δn ≥ (1 − α)

[
µ

(
f −1(0)

)
−

k1∑

i=1

µ
(
R1

i ∩ f −1(0)
)
]

− α ·
k0∑

i=1

µ
(
R0

i ∩ f −1(1)
)
,

and thus, using the definitions of e0 and e1,

k0 · δn ≥ (1 − α) · µ
(

f −1(0)
)
− (1 − α) · e0 − α · e1. (2)

We still have to take into account that e0 + e1 ≤ ε. The right hand side of Inequality (2) is
minimized by maximizing (1 − α) · e0 + α · e1 subject to the constraint e0 + e1 ≤ ε. It follows
that

k0 · δn ≥ (1 − α) · µ
(

f −1(0)
)
− max(1 − α, α) · ε.

This yields the claimed lower bound.
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Part (1): We can simply re-use the above proof by exploiting that, in the case of one-sided error,
we have e0 = 0 and e1 ≤ ε · µ

(
f −1(1)

)
. Inequality (2) turns into

k0 · δn ≥ (1 − α) · µ
(

f −1(0)
)
− α · ε · µ

(
f −1(1)

)
,

which gives the desired result. 2

3 Proof of the Main Result

First, we present three combinatorial lemmas which will be used later on. Then we prove
Theorem 1.6. For the convenience of the reader, we repeat the definition of the function for
which we are going to prove the main result.

Definition 3.1: Define the function MSn : {0, 1}n2 → {0, 1} on the n × n matrix X =
(xi j)1≤i, j≤n of Boolean variables by

MSn(X) := RTn(X) ∨ CTn(X),

where RTn : {0, 1}n2 → {0, 1} is defined by

RTn(X) :=
n∑

i=1

[
xi,1 + · · · + xi,n ≡ 0 mod 3

]
mod 2

and CTn(X) := RTn
(
X>)

.

The first lemma below deals with properties of balanced partitions of the input variables of MSn.

Lemma 3.2: Let 5 = (X1, X2) be a partition of the variables in the n × n matrix X =
(xi j)1≤i, j≤n with

∣∣|X1| − |X2|
∣∣ ≤ 1. Call a row or a column of X mixed if X1 contains at

least 2 and at most n − 2 variables of it.

Let β < 1/
√

2 be a constant. Then for n large enough, there are either at least bβnc mixed
rows or columns with respect to 5.

Proof: Call a row dense if it contains at least n − 1 variables from X1, and sparse if it contains
at most one variable from X1. Observe that a row cannot be both dense and sparse, and that a
row is mixed exactly if it is neither dense nor sparse. Let rd, rs be the number of rows which
are dense and sparse, resp.

Case 1: rd, rs ≥ 2. Let i1, i2 be two different dense rows. Then at most two variables in these
rows are not from X1, and thus there are at least n−2 columns j with xi1, j ∈ X1 and xi2, j ∈ X1.
Analogously, there are two sparse rows i3, i4 and at least n − 2 columns j with xi3, j 6∈ X1 and
xi4, j 6∈ X1. It follows that there are at least n − 4 mixed columns.

Case 2: rd ≤ 1 or rs ≤ 1. W. l. o. g., assume that the latter occurs (otherwise, swap the roles of
X1 and X2 in the whole proof). If rd ≤ (1 − β)n − 1, n − (rd + rs) ≥ βn rows are mixed and
we are finished. Hence, assume that rd > (1 − β)n − 1 for the following.
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Suppose that n is large enough such that (1 − β)n − 1 ≥ 1. Then we have rd ≥ 2. Let
I ⊆ {1, . . . , n} be the set of indices of dense rows, |I | = rd . Define

J := { j | there are i1, i2 ∈ I , i1 6= i2 such that xi1, j ∈ X1 and xi2, j ∈ X1}.

Since the rows with index in I are dense, the number of X2-variables in these rows is bounded
from above by |I | = rd . On the other hand, the total number of X2-variables in all columns
whose index is not in J is bounded from below by (rd −1) · (n −|J |). Putting these two bounds
together, we get

|J | ≥ n −
rd

rd − 1
.

Since rd ≥ 2, it follows that |J | ≥ n − 2.

Now each column with index j ∈ J is mixed if less than n − rd − 1 variables xi j with i 6∈ I are
contained in X1. Let c be the number of columns in J which are not mixed and thus contain at
least n − rd − 1 additional X1-variables in rows outside of I .

Putting the above results together, we have obtained the following lower bound on the total
number of variables in X1:

|X1| ≥ rd · (n − 1)+ c · (n − rd − 1).

On the other hand, |X1| ≤ n2/2 + 1/2. Hence,

1

2

(
n2 + 1

)
≥ rd · (n − 1)+ c · (n − rd − 1).

Solving for c, we obtain

c ≤
(
n2 + 1

)
/2 − (n − 1)rd

n − 1 − rd
. (∗)

(Observe that rd < n − 1, since rd · (n − 1) ≤ |X1| ≤
(
n2 + 1

)
/2.)

It is easy to verify that the right hand side of (∗) is decreasing in rd if n is large enough. Using
that rd > (1 − β)n − 1, we obtain

c <

(
n2 + 1

)
/2 −

(
(1 − β)n − 1

)
(n − 1)

βn

=
(

1 −
1

2β

)
n +

2

β
− 1 −

1

2βn
.

By the above definitions, we have at least |J | − c ≥ n − 2 − c mixed columns. We have shown
that

n − 2 − c >
1

2β
· n −

2

β
− 1 +

1

2βn
=

1

2β
· n − O(1).

Since β is a constant with β < 1/
√

2, it follows that n − 2 − c ≥ βn for n large enough. 2
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The next two lemmas constitute the core part of the proof of the main result and are required
to apply the technique presented in the last section. We choose the uniform distribution on the
input space here.

As already remarked, we require that the fraction of 0-inputs of the function under consideration
does not tend to 0 or 1 for increasing input size. The following statement implies an asymptoti-
cally tight bound on the fraction of 0-inputs for MSn (remember that MSn = RTn ∨ CTn):

Lemma 3.3: Let ξ, η ∈ {0, 1}. Then

∣∣RT−1
n (ξ) ∩ CT−1

n (η)
∣∣ · 2−n2 = 1/4 ± 2−�(n).

The proof of this lemma is technically involved and therefore deferred to its own section, Sec-
tion 7.

By Lemma 3.2, we know that for an arbitrary balanced partition of the input matrix of MSn,
there are either many mixed rows or columns. We claim that in the first case, the function RTn

(RowTest) is hard to approximate with respect to the given partition, whereas in the second
case CTn (ColumnTest) is hard to approximate. For this, we prove an upper bound on the
discrepancy of the respective function.

Definition 3.4: Let f : {0, 1}n → {0, 1} be an arbitrary function, and let 5 be an arbitrary bal-
anced partition of the input variables of f . For an arbitrary5-rectangle r define the discrepancy
of f with respect to r , Disc( f, r), by

Disc( f, r) :=
∣∣∣
∣∣ f −1(1) ∩ r−1(1)

∣∣ −
∣∣ f −1(0) ∩ r−1(1)

∣∣
∣∣∣ · 2−n.

Let Disc( f,5) denote the maximum of Disc( f, r) taken over all 5-rectangles r .

The following technical lemma provides a bound on the discrepancy of a suitable class of sub-
functions of RTn and CTn.

Lemma 3.5: Let c = (c0, c1, . . . , cm), where c0 ∈ Z2 and c1, . . . , cm ∈ Z3. Define the function
RT∗

c : {0, 1}2m × {0, 1}2m → {0, 1} on vectors u1, u2, v1, v2 ∈ {0, 1}m by

RT∗
c

((
u1, u2),

(
v1, v2)) :=

[
m∑

i=1

[
u1

i + u2
i + v1

i + v2
i ≡ ci mod 3

]
≡ c0 mod 2

]
.

Let 5 = (U, V ), where U =
{
u1

i , u2
i

∣∣ i = 1, . . . ,m
}

and V =
{
v1

i , v
2
i

∣∣ i = 1, . . . ,m
}
. Then

Disc(RT∗
c ,5) ≤ 2−m + 3−m.

A proof of this fact is given later on in Section 8. Intuitively, the functions RT∗
c are “very

similar” to the well-known inner product function (the standard inner product in Z2), for which
discrepancy bounds have been proven in communication complexity theory (see, e. g., [17]).

We can now easily apply this fact to get the desired upper bounds on the discrepancy of RTn

or CTn.
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Lemma 3.6 (Discrepancy Lemma): Let 5 = (X1, X2) be a partition of the variables in the
matrix X = (xi j)1≤i, j≤n with

∣∣|X1| − |X2|
∣∣ ≤ 1. Suppose that m rows of X are mixed with

respect to 5. Then

Disc(RTn,5) ≤ 2−m + 3−m .

An analogous statement holds for mixed columns instead of rows and CTn instead of RTn .

Proof: We only prove the claim for RTn . For the ease of notation, we omit subscripts indicating
the input size in the following. For a function f and an assignment a to some variables of f ,
we use fa to denote the subfunction of f obtained by setting variables to constants according
to a.

Let r be an arbitrary 5-rectangle. Our goal is to prove that Disc(RT, r) ≤ 2−m + 3−m .

In each of the m mixed rows of the matrix X with respect to 5, choose two different variables
from X1 and two different variables from X2. Let X ′

1 ⊆ X1 and X ′
2 ⊆ X2 be the sets of the

chosen variables. Observe that
∣∣X ′

1 ∪ X ′
2

∣∣ = 4m. Let 5′ :=
(
X ′

1, X ′
2

)
.

We set all variables in X\
(
X ′

1 ∪ X ′
2

)
to constants according to an arbitrary assignment a. Then

all variables except those in X ′
1 ∪ X ′

2 are fixed. We consider the subfunction RTa of RT defined
on the remaining variables in X ′

1 ∪ X ′
2, and the subfunction ra of the rectangle r , which is a

rectangle with respect to the balanced partition 5′.

It is easy to see that there are constants c0 ∈ Z2 and c1, . . . , cm ∈ Z3 (depending on the
assignment a) such that

RTa
(
Xa

)
=

[
m∑

i=1

[
u1

i + u2
i + v1

i + v2
i ≡ ci mod 3

]
≡ c0 mod 2

]
,

where u1
i , u2

i and v1
i , v2

i are used to denote the unfixed X1- and X2-variables, resp., in the i th
mixed row, for i = 1, . . . ,m. Hence, the subfunction RTa is of the type described in Lemma 3.5,
and we have

Disc
(
RTa,5

′) ≤ 2−m + 3−m.

Since ra is a 5′-rectangle, we obtain
∣∣∣
∣∣r−1

a (1) ∩ RT−1
a (0)

∣∣ −
∣∣r−1

a (1) ∩ RT−1
a (1)

∣∣
∣∣∣ · 2−4m ≤ 2−m + 3−m . (∗)

This statement holds for all assignments a to X\
(
X ′

1 ∪ X ′
2

)
. Due to the law of total probability,

∑

ass. a to
X\(X ′

1∪X ′
2)

∣∣r−1
a (1) ∩ RT−1

a (c)
∣∣ · 2−4m · 2−

(
n2−4m

)
=

∣∣r−1(1) ∩ RT−1(c)
∣∣ · 2−n2

,

for c ∈ {0, 1}. Applying this to (∗) gives the desired result,

Disc(RT, r) =
∣∣∣
∣∣r−1(1) ∩ RT−1(0)

∣∣ −
∣∣r−1(1) ∩ RT−1(1)

∣∣
∣∣∣ · 2−n2 ≤ 2−m + 3−m.

2
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Now we are prepared to prove the main theorem, which we cite below for the convenience of
the reader.

Theorem 1.6: Let N = n2 (the input size of MSn).

(1) CA, uniform
1, 1/3+δN

(MSn) = O(1) and CA, uniform
1/4+δ′N

(MSn) = 1, where δN = o(1) and δ′N =

2−�(
√

N);

(2) CA, uniform
1, 1/3−γN

(MSn) = 2�(
√

N) and CA, uniform
1/4−γ ′

N
(MSn) = 2�(

√
N), for all γN , γ

′
N > 0 with

γN , γ
′
N = �(1/Poly(N )).

Proof of Theorem 1.6: Part (1): The bound for two-sided error follows directly from
Lemma 3.3: The constant function 1, which is itself a rectangle, approximates MSn with two-
sided error at most 1/4 + 2−�(n) = 1/4 + 2−�(

√
N).

It remains to handle the case of one-sided error. Let 5rows = (X1, X2) be a balanced partition
of X where both parts X1, X2 only contain complete rows of X , except possibly for one row
which is divided “as equally as possible.” It is easy to see that RTn can be computed by a
deterministic two-party communication protocol with respect to 5rows using at most 3 bits of
communication. By Proposition 1.3, this yields a rectangle partition P representing RTn with
at most 8 rectangles. The 1-inputs for MSn in RT−1

n (0) ∩ CT−1
n (1) are the only inputs mapped

to the wrong value by P . Using Lemma 3.3, we can thus bound the relative error of P on the
1-inputs of MSn by

∣∣RT−1
n (0) ∩ CT−1

n (1)
∣∣

∣∣MS−1
n (1)

∣∣ ≤
1/4 + εn

3/4 − ε′n

where εn, ε
′
n = 2−�(n). This is of order 1/3 + o(1), as claimed.

Part (2): We are going to show that MSn has the low 0-density property with respect to the
uniform distribution and appropriate parameters. Let r be an arbitrary rectangle defined with
respect to a balanced partition 5 = (X1, X2) of the input variables of MSn . We claim that

∣∣r−1(1) ∩ MS−1
n (0)

∣∣ · 2−n2 ≤ α ·
∣∣r−1(1)

∣∣ · 2−n2 + δn,

for α = 1/2 and exponentially small δn defined below.

We first apply Lemma 3.2. W. l. o. g., assume that there are m :=bβnc mixed rows of the input
matrix X with respect to 5, for a constant β chosen such that β < 1/

√
2. By Lemma 3.6, we

get
∣∣∣
∣∣r−1(1) ∩ RT−1

n (0)
∣∣ −

∣∣r−1(1) ∩ RT−1
n (1)

∣∣
∣∣∣ · 2−n2 ≤ 2−m + 3−m.

Hence, especially,

∣∣r−1(1) ∩ RT−1
n (0)

∣∣ · 2−n2 ≤ (1/2) ·
∣∣r−1(1)

∣∣ · 2−n2 + (1/2) ·
(
2−m + 3−m)

,
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and furthermore, since MS−1
n (0) ⊆ RT−1

n (0),

∣∣r−1(1) ∩ MS−1
n (0)

∣∣ · 2−n2 ≤ (1/2) ·
∣∣r−1(1)

∣∣ · 2−n2 + (1/2) ·
(
2−m + 3−m)

.

We have thus shown that MSn has the low-0-density property with parameters α = 1/2 and
δn := (1/2) ·

(
2−m + 3−m

)
, where m = bβnc.

It only remains to apply Theorem 2.2 from the last section. We conclude that

CA
1, ε( f ) ≥ δ−1

n ·
(
(1/2) ·

∣∣MS−1
n (0)

∣∣ · 2−n2 − (1/2) · ε ·
∣∣MS−1

n (1)
∣∣ · 2−n2

)
, and

CA
ε ( f ) ≥ δ−1

n ·
(
(1/2) ·

∣∣MS−1
n (0)

∣∣ · 2−n2 − (1/2) · ε
)
,

for all appropriate ε. We have
∣∣MS−1

n (0)
∣∣ · 2−n2 = 1/4 ± 2−�(n), and

∣∣MS−1
n (1)

∣∣ · 2−n2 = 3/4 ± 2−�(n).

Thus, the above lower bounds are still of order 2�(n) = 2�(
√

N) if the error bounds are ε =
1/3 − γN for one-sided error and ε = 1/4 − γ ′

N for two-sided error, where γN , γ
′
N > 0 are

chosen such that γN , γ
′
N = �(1/Poly(N )). 2

4 Improving the Error Bounds

In this section, we prove Theorem 1.7, the alternative version of the main result with a nonuni-
form distribution over the input space. Our aim is to adjust the distribution such that we get the
best possible error bounds.

In Section 3, we have proven a combinatorial lemma saying that, for each partition of the input
matrix of MSn , there are either many rows or many columns which are “mixed,” i. e., contain at
least two variables of either side of the partition. Here we extend this lemma as follows.

Suppose that we have many mixed rows with respect to the given partition. We are going to
show that we can choose a large subset of mixed rows and two pairs of variables in each of
these rows, one pair from each side of the partition, such that no column contains two variables
from both sides of the partition. This will ensure that, while the subfunction of RTn (RowTest)
defined on the chosen variables is “difficult,” the subfunction of CTn (ColumnTest) is “easy.”

We present the desired combinatorial lemma in the following abstract form.

Lemma 4.1: Let X = (xi j)1≤i, j≤n be a matrix with entries from {0, 1, ∗}.
For a set I ⊆ {1, . . . , n} of row indices, call a column j split with respect to I if there are
i0, i1 ∈ I such that xi0, j = 0 and xi1, j = 1. Suppose that there is a set I ⊆ {1, . . . , n}, |I | = m,
of row indices such that

(i) each row i with i ∈ I contains exactly two 0- and exactly two 1-entries, and the remaining
entries in these rows are ∗-entries;

(ii) all rows i with i 6∈ I contain only ∗-entries.

Then there is a set I ∗ ⊆ I with |I ∗| ≥ m/16 such that no column is split with respect to I ∗.
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Proof: We assign colors from {0, 1} independently and uniformly at random to the columns of
X . Let χ( j) be the random variable describing the color of column j , where j = 1, . . . , n.
Define Iχ as the set of rows which is obtained by starting with the complete set I and removing
all rows which have an entry with the “wrong” color χ( j) in column j , for j = 1, . . . , n.

We show that the expected number of remaining rows, E[Iχ ], is still |I |/16 = m/16. For i ∈ I ,
define Sχ (i) as the random variable which is equal to 1 if row i is contained in Iχ , and equal
to 0 otherwise. Since each row i ∈ I has exactly two entries of color 0 and 1, resp., we have
E[Sχ (i)] = 1/16. Hence,

E[Iχ ] =
∑

i∈I

E[Sχ (i)] = |I |/16 = m/16.

This implies that there is a fixed coloring χ∗ with |Iχ∗| = m/16. It only remains to choose
I ∗ := Iχ∗ . 2

Analogously to Section 3, we use a discrepancy bound to establish the new lower bound on the
complexity of rectangle approximations for MSn . We prove the following extended version of
the “discrepancy lemma” (Lemma 3.6) from Section 3.

Lemma 4.2 (Extended Discrepancy Lemma): Let 5 = (X1, X2) be a partition of the vari-
ables in the matrix X = (xi j)1≤i, j≤n with with

∣∣|X1| − |X2|
∣∣ ≤ 1. Suppose that m rows of X

are mixed with respect to 5.

Let r be an arbitrary 5-rectangle. Then, for c ∈ {0, 1},
∣∣∣
∣∣r−1(1) ∩ RT−1

n (0) ∩ CT−1
n (c)

∣∣ −
∣∣r−1(1) ∩ RT−1

n (1) ∩ CT−1
n (c)

∣∣
∣∣∣ · 2−n2 = 2−�(m).

An analogous statement holds for mixed columns instead of rows and exchanged roles of RTn

and CTn .

Proof: The proof is essentially along the same lines as the proof of Lemma 3.6 in Section 3.
Again, we omit subscripts indicating the input size for the ease of notation, and we use fa for
the subfunction of f belonging to an assignment a.

We only prove the statement for mixed rows. Let 5 = (X1, X2) be the given partition with m
mixed rows. First, we apply Lemma 4.1. For this, we choose two variables from X1 and two
from X2 in each of the mixed rows and identify them with 0- and 1-entries, resp. The lemma
yields a subset I of the indices of mixed rows with |I | ≥ m/16 such that for each column j of
X , all variables xi j with i ∈ I are either contained in X1 or in X2, but not both. Let m ′ := |I |.
Let X ′

1 ⊆ X1 and X ′
2 ⊆ X2 be the sets of the variables chosen in the rows with index in I , and let

5′ :=
(
X ′

1, X ′
2

)
. Furthermore, let a be an arbitrary assignment to the variables in X\

(
X ′

1 ∪ X ′
2

)
.

We already know that RTa has small discrepancy with respect to the partition5′ from Section 3.
Substituting m for m ′ in Lemma 3.5, we obtain:

Disc
(
RTa,5

′) ≤ 2−m′ + 3−m′
. (∗)
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Now we consider the function CTa . We have ensured that no column of X is split with respect
to the rows with index in I , which means that all variables of a column (which are not set to
constants) either belong to X ′

1 or to X ′
2, but not both. Hence, it is easy to compute CTa by a

deterministic communication protocol with respect to the partition 5′ =
(
X ′

1, X ′
2

)
: obviously,

1 bit of communication is sufficient.

By Proposition 1.3 from the introduction, we conclude that, for c ∈ {0, 1}, there are 5′-
rectangles rc,1 and rc,2 such that r−1

c,1 (1) ∩ r−1
c,2 (1) = ∅ and

CT−1
a (c) = r−1

c,1 (1) ∪ r−1
c,2 (1).

Since ra and rc,1, rc,2 are all5′-rectangles, ra ∧rc,1 and ra ∧rc,2 are also5′-rectangles. Hence,
by (∗),
∣∣∣
∣∣(r−1

a (1) ∩ r−1
c,i (1)

)
∩ RT−1

a (0)
∣∣ −

∣∣(r−1
a (1) ∩ r−1

c,i (1)
)
∩ RT−1

a (1)
∣∣
∣∣∣ · 2−4m ′ ≤ 2−m′ + 3−m′

,

for i = 1, 2 and c ∈ {0, 1}. Using that r−1
c,1 (1) ∩ r−1

c,2 (1) = ∅ and summing for i = 1, 2, we get

∣∣∣
∣∣r−1

a (1) ∩ CT−1
a (c) ∩ RT−1

a (0)
∣∣ −

∣∣r−1
a (1) ∩ CT−1

a (c) ∩ RT−1
a (1)

∣∣
∣∣∣ · 2−4m ′

≤ 2
(

2−m′ + 3−m′
)
.

By summing over all assignments a to X\
(
X ′

1 ∪ X ′
2

)
(applying the law of total probability), we

obtain the desired result:
∣∣∣
∣∣r−1(1) ∩ CT−1(c) ∩ RT−1(0)

∣∣ −
∣∣r−1(1) ∩ CT−1(c) ∩ RT−1(1)

∣∣
∣∣∣ · 2−n2

≤ 2
(

2−m′ + 3−m′
)

= 2−�(m).

2

Finally, we apply the above lemma to prove the new result on the complexity of rectangle
approximations for MSn . We use the distribution over the input space of MSn which assigns the
measure 0 to the “easy” inputs in the set RT−1

n (1) ∪ CT−1
n (1). More precisely, let

A :=
(
RT−1

n (1) ∩ CT−1
n (0)

)
∪

(
RT−1

n (0) ∩ CT−1
n (1)

)
∪

(
RT−1

n (0) ∩ CT−1
n (0)

)
.

Define µ : {0, 1}n2 → [0, 1] for x ∈ {0, 1}n2
by µ(x) := |A|−1 if x ∈ A, and µ(x) := 0

otherwise. For this distribution µ, we get the result announced in the introduction:

Theorem 1.7: Let N = n2.

(1) CA, µ
1, 1/2+δN

(MSn) = O(1) and CA, µ
1/3+δ′N

(MSn) = 1, where δN = o(1) and δ′N = 2−�(
√

N);

(2) CA, µ
1, 1/2−γ (MSn) = 2�(

√
N) and CA, µ

1/3−γ ′(MSn) = 2�(
√

N), for all constants γ, γ ′ > 0.
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Proof: We only describe the proof of the lower bounds, the upper bounds are obtained in the
same way as for Theorem 1.6. We use the technique from Section 2. It follows from Lemma 3.3
that

µ
(
MS−1

n (0)
)

= (1/3) · (1 + εn), and µ
(
MS−1

n (1)
)

= (2/3) · (1 + ε′
n),

where |εn|, |ε′n| → 0 for n → ∞. In the remainder of the proof, we show that MSn has the
low-0-density property with respect to µ and parameters α := 1/2 and δn with δn = 2−�(n).

Let r be an arbitrary rectangle defined with respect to a balanced partition of the input variables
of MSn . Suppose that at least m = bβnc rows of X are mixed with respect to the partition of r ,
where β < 1/

√
2 is a constant. By Lemma 4.2,

∣∣∣
∣∣r−1(1) ∩ RT−1

n (0) ∩ CT−1
n (c)

∣∣ −
∣∣r−1(1) ∩ RT−1

n (1) ∩ CT−1
n (c)

∣∣
∣∣∣ · 2−n2 ≤ δn,

for c ∈ {0, 1} and some δn with δn = 2−�(m) = 2−�(n). For c = 0, this especially implies

∣∣r−1(1) ∩ RT−1
n (0) ∩ CT−1

n (0)
∣∣ · 2−n2 ≤

∣∣r−1(1) ∩ RT−1
n (1) ∩ CTn(0)

∣∣ · 2−n2 + δn.

Furthermore, since

RT−1
n (0) ∩ CT−1

n (0) = MS−1
n (0) ∩ A, and RT−1

n (1) ∩ CT−1
n (0) ⊆ MS−1

n (1) ∩ A,

we get

|A| · 2−n2 · µ
(
r−1(1) ∩ MS−1

n (0)
)

≤ |A| · 2−n2 · µ
(
r−1(1) ∩ MS−1

n (1)
)
+ δn,

or, equivalently,

µ
(
r−1(1) ∩ MS−1

n (0)
)

≤ (1/2) · µ
(
r−1(1)

)
+ ρ · δn,

where ρ := 2n2
/(2|A|). Again by Lemma 3.3, ρ = O(1). This is the desired low-0-density

property for MSn with respect to µ. It only remains to substitute the above facts into Theo-
rem 2.2. 2

5 Applications for Read-Once Branching Programs

In this section, we prove the complexity theoretical results for randomized read-once BPs an-
nounced in the introduction. We first give a formal definition of randomized branching programs
and present some elementary facts concerning this model. In the second subsection, it is de-
scribed how lower bounds on the complexity of rectangle approximations can be used to prove
lower bounds for randomized read-once branching programs. We apply this technique to get
the desired results in the final two subsections.
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5.1 Definitions and Basic Facts

Definition 5.1: A randomized branching program is a branching program defined on two dis-
joint sets of variables X = {x1, . . . , xn} and Y = {y1, . . . , yr} which has the additional property
that on each path from the source to a sink, each variable from Y occurs at most once. The vari-
ables in Y are called probabilistic variables, and nodes labeled by these variables are called
probabilistic nodes. The other variables and nodes are called non-probabilistic.

Let g : {0, 1}n × {0, 1}r → {0, 1} be the function represented by a given randomized branching
program G according to the deterministic semantics of branching programs (Definition 1.8).
Let f : {0, 1}n → {0, 1} be a function defined on the variables in X . For each assignment
x ∈ {0, 1}n to the variables in X , define the error probability of G on x with respect to f by

errG, f (x) := Pry{g(x, y) 6= f (x)},

where the assignments y to the Y -variables are chosen according to the uniform distribution
over {0, 1}r .

We call G a randomized branching program for f with

(1) unbounded two-sided error, if for all x ∈ {0, 1}n, errG, f (x) < 1/2;

(2) unbounded one-sided error, if for all x ∈ {0, 1}n,

errG, f (x) = 0, if f (x) = 0;

errG, f (x) < 1, if f (x) = 1;

(3) two-sided error ε, for constants ε with 0 ≤ ε < 1/2, if for all x ∈ {0, 1}n, errG, f (x) ≤ ε;

(4) one-sided error ε, for constants ε with 0 ≤ ε < 1, if for all x ∈ {0, 1}n,

errG, f (x) = 0, if f (x) = 0;

errG, f (x) ≤ ε, if f (x) = 1.

We subsume the first two types of error under the label “unbounded error,” while “bounded
error” means one of the last two types.

For randomized branching programs with unbounded one-sided error, we use the more com-
mon name nondeterministic branching program in the following. The definition of nonde-
terministic branching programs given here coincides with the standard definitions (see, e. g.,
Meinel [37, 38] and Razborov [44]), which requires that a path consistent with an assignment
x ∈ {0, 1}n from the source to the 1-sink (an accepting path) exists if and only x ∈ f −1(1). In
the nondeterministic case, the variables in Y are called nondeterministic variables, and nodes
labeled by these variables are called nondeterministic nodes.

It will be convenient to define complexity classes for randomized BPs analogously to the stan-
dard classes for Turing machines.
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Definition 5.2: Let P-BP, NP-BP, and PP-BP denote the classes of sequences of functions rep-
resentable by deterministic, nondeterministic, and randomized BPs with unbounded two-sided
error, resp. Let RP-BP and BPP-BP denote the classes of sequences of functions representable
by randomized BPs with one-sided error bounded by a constant ε < 1 and two-sided error
bounded by a constant ε < 1/2, resp.

The following inclusions are obvious from the definitions.

Proposition 5.3: P ⊆ RP ⊆ BPP ⊆ PP, RP ⊆ NP ⊆ PP.

Several simple facts for randomized BPs may be proven essentially in the same way as for
probabilistic Turing machines. For example, we can adapt the well-known technique of iterating
probabilistic computations to decrease the error probability of randomized BPs:

Proposition 5.4 (Probability amplification):

(1) Let G be a randomized BP representing f : {0, 1}n → {0, 1} with one-sided error ε,
0 ≤ ε < 1. Then there is a randomized BP G ′ for f with one-sided error εm and size
|G ′| = O(m|G|).

(2) Let G be a randomized BP representing f : {0, 1}n → {0, 1} with two-sided error ε,
0 ≤ ε < 1/2. Let 0 ≤ ε′ ≤ ε. Then there is a randomized BP G ′ for f with two-sided
error ε′ and size |G ′| = O

(
m2|G|

)
, where m = O

(
log

(
(ε′)−1

)
(1/2 − ε)−2

)
.

Proof: Part (1): We use copies G1, . . . ,Gm of G with disjoint sets of probabilistic variables
and identify the 1-sink of G i with the source of G i+1, for i = 1, . . . ,m − 1. The resulting
randomized BP obviously has the claimed properties.

Part (2): We start with a deterministic read-once BP G0 of size O
(
m2

)
representing the thresh-

old function which computes 1 if the number of ones in the input of length m is at least dm/2e,
and 0 otherwise (see [54] for the easy construction of such a read-once BP). We replace each
node of G0 by a copy of G, identifying the c-sink of G with the c-successor of the node, for
c ∈ {0, 1}. Each copy uses its own set of probabilistic variables. The resulting randomized
BP G ′ has size O

(
m2|G|

)
. Using Chernoff bounds, we can prove that G ′ represents f with

two-sided error at most 2 · exp
(
−(1/2 − ε)2m

)
. This is bounded from above by ε′ if we choose

m :=
⌈

ln
(
2/ε′

)
(1/2 − ε)−2⌉. 2

The derandomization technique of Ajtai and Ben-Or [4] for probabilistic circuits is also appli-
cable for randomized BPs. As a consequence, the complexity classes for bounded error (one-
and two-sided) turn out to coincide with P-BP.

Proposition 5.5: RP-BP = BPP-BP = P-BP.

We will see that the situation becomes different for restricted BPs.

Proof: By Proposition 5.4, we can decrease the error probability of a given randomized BP for
an n-variable function with two-sided error ε < 1/2 to less than 2−n while maintaining polyno-
mial size. As for probabilistic circuits, the resulting randomized BP can be made deterministic
by setting the probabilistic variables to constants in an appropriate way. 2
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Randomized BPs are defined in a such a way that they may be simulated by probabilistic nonuni-
form Turing machines and vice versa analogously to the well-known result for the deterministic
case [18, 42]. Especially, this gives us the following results (where PL/Poly is the class of
all sequences of functions computable by a probabilistic nonuniform Turing machine with un-
bounded two-sided error using at most logarithmic space).

Proposition 5.6: NP-BP = NL/Poly, PP-BP = PL/Poly.

This is proven by a straightforward modification of the well-known simulations for the deter-
ministic case. For details, see [37] and [48], resp. (In [48], it is also shown how the class
BPL/Poly can be characterized in terms of randomized BPs.)

For the simulations used here, it is crucial that the probabilistic variables of a randomized BP
may only be read once. Results of Babai, Nisan, and Szegedy [11] and Nisan [40] lead to the
conjecture that, for the scenario of uniform space-bounded computation, the model where ran-
dom bits may be accessed more than once (without explicitly storing them) is more powerful
than the usual read-once model. The following facts indicate that dropping the read-once re-
striction is also likely to lead to a more powerful model for randomized BPs with unbounded
error. Let NP∗-BP and PP∗-BP be the analogs of the classes NP-BP and PP-BP, resp., for the
model where probabilistic variables may be read arbitrarily often.

Proposition 5.7: NP∗-BP = NP/Poly, PP∗-BP = PP/Poly.

For proofs, see again [37] and [48], resp. This justifies the read-once restriction imposed on the
probabilistic variables for randomized BPs.

In the remainder of this subsection, we discuss randomized variants of restricted BPs, which are
obtained analogously to Definition 5.1 by requiring that the non-probabilistic variables fulfill
the respective restriction. Thus, a randomized read-once branching program is a randomized
BP where each non-probabilistic variable may appear at most once on each path from the source
to a sink.

Complexity classes for randomized read-once BPs are introduced analogously to Definition 5.2,
and are denoted by P-BP1, NP-BP1, BPP-BP1, and so on. Additionally, we consider the fol-
lowing classes. For an arbitrary sequence of real numbers (εn)n∈N with 0 ≤ εn < 1, let

RPεn -BP1 := {( fn)n∈N | ∃ (Gn)n∈N : Gn is a rand. read-once BP repr. fn with

one-sided error εn and |Gn| = Poly(n) }.

Define BPPεn -BP1 analogously for sequences (εn)n∈N with 0 ≤ εn < 1/2 and two-sided instead
of one-sided error.

As for general BPs, we have some trivial inclusion relations between the basic complexity
classes.

Proposition 5.8: P-BP1 ⊆ BPP-BP1 ⊆ PP-BP1, RP-BP1 ⊆ NP-BP1 ⊆ PP-BP1.
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For randomized read-once BPs, it is not as easy as for randomized general BPs to mimic known
proofs for probabilistic Turing machines, because it is no longer obvious how computations
may be iterated. Especially, the proof of Proposition 5.4 (probability amplification) does not
work anymore. In fact, we are going to prove in this section that it cannot work: An analog of
Proposition 5.4 for read-once BPs instead of unrestricted BPs does not exist.

Hence, it is not even obvious that RP-BP1 ⊆ BPP-BP1. Nevertheless, we can prove this without
probability amplification using the idea described in the following.

Lemma 5.9: Let G be a randomized read-once BP which represents f : {0, 1}n → {0, 1} with
one-sided error ε < 1. Let r ≥ 1. Then there is a randomized read-once BP G ′ with size at
most O(|G| + r) which represents f with two-sided error at most ε/(1 + ε)+ 2−r .

Proof: It is easy to see that for each δ ∈ {i · 2−r | 0 < i < 2r }, there is a randomized BP Gr,δ

which consists only of at most r probabilistic nodes (i. e. no non-probabilistic nodes except for
the sinks), and which has the property that the 1-sink is reached with probability δ for a random
assignment to the probabilistic variables.

For the construction of G ′, we identify the 1-sink of such a randomized BP Gr,δ with the 1-
sink of G, and the 0-sink with the source of G. The error probability of G ′ with respect to f
is bounded by max{1 − δ, δ + (1 − δ)(1 − ε)}. This is minimized by choosing δ as close as
possible to δopt := ε/(1 + ε). Since δ may be chosen from the set {i · 2−r | 0 < i < 2r }, we can
ensure that |δ − δopt| < 2−r . The resulting randomized BP G ′ for this value of δ represents f
with two-sided error at most ε/(1 + ε)+ 2−r and size O(|G| + r). 2

Corollary 5.10: RP-BP1 ⊆ BPP-BP1.

5.2 Proof Technique for Randomized Read-Once BPs

In this subsection, we describe how lower bounds on the complexity of rectangle approxima-
tions may be used to derive lower bounds on the size of randomized read-once BPs.

First, we show that lower bounds on the complexity of rectangle partitions yield lower bounds
on the size of deterministic read-once BPs:

Theorem 5.11: Let G be a deterministic read-once BP representing f : {0, 1}n → {0, 1}. Then

C( f ) ≤ 2n|G|.

The proof of this theorem is along the same lines as the proof of the corresponding fact for
rectangle covers and nondeterministic read-once BPs due to Borodin, Razborov, and Smolen-
sky [16]. The proof given here also uses ideas of Okol’nishnikova [41].

Proof: First, we simplify the structure of the given read-once BP G. A read-once BP is called
regular if for each node v the same set of variables is tested on all paths from the source to v.
Furthermore, it is required that on each path from the source to the sinks all variables are tested.
It is easy to see that an arbitrary read-once BP G with n variables can be converted into a regular
read-once BP G ′ of size |G ′| ≤ 2n|G| by inserting dummy tests.
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Let G ′ be a regular read-once BP obtained from the given read-once BP G for f . Let X =
{x1, . . . , xn} be the variable set of G and f . We introduce some more notation.

• For two nodes v, w of G ′, let X (v,w) ⊆ X be the set of all variables tested on paths from v

to w, including the variable at v and excluding the variable at w.

• For an arbitrary assignment a ∈ {0, 1}n to the variables of G ′, define fv,w(a) = 1 iff there
is a path from v to w which is consistent with the assignment a (i. e., for each node u on the
path labeled by a variable xi , the path runs through the ai -edge starting at u).

Notice that fv,w does not essentially depend on variables from X\X (v,w).

Define a subset C of the nodes of G′ as follows. For each path from the source to a sink, include
the node reached after testing bn/2c variables. Let s be the source of G ′, and let t0 and t1 be
the 0- and the 1-sink, resp. For v ∈ C , define r0

v := fs,v ∧ fv,t0 and r1
v := fs,v ∧ fv,t1 . These

functions are combinatorial rectangles due to the definition of C and the regularity of G′. Since
each computation path in G ′ runs through exactly one node of C , we have

f −1(0) =
⋃

v∈C

(
r0
v

)−1
(1), and r0

v ∧ r0
w = 0, for v 6= w;

f −1(1) =
⋃

v∈C

(
r1
v

)−1
(1), and r1

v ∧ r1
w = 0, for v 6= w.

Hence, the rectangles r 0
v , r

1
v , v ∈ C , form a rectangle partition representing f . Their number is

bounded by |C| ≤ |G ′| ≤ 2n|G|. 2

As an easy corollary of the above theorem, we obtain that the complexity of rectangle approxi-
mations may be used to lower bound the size of deterministic read-once BPs which approximate
a given function. We give a definition for approximating (unrestricted) BPs below, an exten-
sion to the various restricted variants of BPs (especially, to approximating read-once BPs) is
obvious.

Definition 5.12: Let µ : {0, 1}n → [0, 1] be an arbitrary probability distribution. A determin-
istic BP G is an approximating BP for f : {0, 1}n → {0, 1} with two-sided error ε with respect
to µ, where 0 ≤ ε < 1/2, if G represents a function g : {0, 1}n → {0, 1} with

µ ({x | f (x) 6= g(x)}) ≤ ε;

and it is an approximating BP with one-sided error ε, 0 ≤ ε < 1, if

µ ({x | f (x) = 0 ∧ g(x) = 1}) ≤ ε · µ
(

f −1(1)
)
, and

µ ({x | f (x) = 1 ∧ g(x) = 0}) = 0.

Corollary 5.13: Let f : {0, 1}n → {0, 1} be an arbitrary function, and let µ be an arbitrary
probability distribution on {0, 1}n.

(1) Let G be an approximating read-once BP for f with one-sided error ε, 0 ≤ ε < 1, with
respect to µ. Then CA, µ

1, ε ( f ) ≤ 2n|G|.
(2) Let G be an approximating read-once BP for f with two-sided error ε, 0 ≤ ε < 1/2, with

respect to µ. Then CA, µ
ε ( f ) ≤ 2n|G|.
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Proof: Follows directly from the definitions and Theorem 5.11. 2

Finally, we apply the above insights to randomized read-once BPs. This is done using a simple
counting argument originally due to Yao [60].

Lemma 5.14 (Yao’s trick): Let G be a randomized read-once BP representing the function
f : {0, 1}n → {0, 1} with two-sided error ε, 0 ≤ ε < 1/2, with respect to a probability distribu-
tion µ on {0, 1}n. Then there is an approximating read-once BP G ′ for f with two-sided error ε
with respect to µ and size at most |G|. An analogous statement holds in the case of one-sided
error.

Proof: We only prove the statement for two-sided error, the case of one-sided error can
be handled in the same way. Let G be a randomized read-once BP representing f with
two-sided error ε. Let Y = {y1, . . . , yr} be the set of probabilistic variables of G. Let
g : {0, 1}n × {0, 1}r → {0, 1} denote the function computed by G according to the determin-
istic semantics of BPs.

We know that, for all assignments a ∈ {0, 1}n to the non-probabilistic variables,

∑

b∈{0,1}r

2−r · [g(a, b) 6= f (a)] ≤ ε.

Hence, also
∑

a∈{0,1}n

µ(a)
∑

b∈{0,1}r

2−r · [g(a, b) 6= f (a)] ≤ ε.

By changing the order of summation, we get

∑

b∈{0,1}r

2−r
∑

a∈{0,1}n

µ(a) · [g(a, b) 6= f (a)] ≤ ε.

It follows that there is at least one assignment b0 ∈ {0, 1}r to the probabilistic variables with

µ{a | a ∈ {0, 1}n, g(a, b0) 6= f (a)} ≤ ε.

Define G′ as the read-once BP obtained from G by setting the variables y1, . . . , yr to constants
according to b0. This is done by redirecting all edges leading to a yi -node to its bi -successors
and deleting the yi -node afterwards, for i = 1, . . . , r . We obviously obtain an approximating
read-once BP for f with two-sided error ε and size at most |G|. 2

The following theorem summarizes the proof technique for randomized read-once BPs, which
we call “rectangle technique” for easier reference. It follows by simply putting together Corol-
lary 5.13 and Lemma 5.14.

26



Theorem 5.15 (Rectangle Technique for Randomized Read-Once BPs):
Let f : {0, 1}n → {0, 1} be an arbitrary function, and let µ be an arbitrary probability distri-
bution on {0, 1}n.

(1) Let G be a randomized read-once BP representing f with one-sided error ε with respect to
µ, where 0 ≤ ε < 1. Then CA, µ

1, ε ( f ) ≤ 2n|G|.
(2) Let G be a randomized read-once BP representing f with two-sided error ε, with respect

to µ, where 0 ≤ ε < 1/2. Then CA, µ
ε ( f ) ≤ 2n|G|.

5.3 NP versus BPP for Read-Once Branching Programs

In this subsection, we compare the power of randomized read-once BPs with that of nondeter-
ministic read-once BPs. First, we show that randomized read-once BPs with two-sided error
may be exponentially smaller than nondeterministic ones. For this, we consider the following
well-known function.

Definition 5.16: The permutation matrix function PERMn is defined on an n × n matrix X =
(xi j)1≤i, j≤n of Boolean variables by PERMn(X) = 1 iff X is a permutation matrix, i. e., if each
row and each column contains exactly one entry equal to 1.

Jukna [29] and Krause, Meinel, and Waack [32] have independently shown that nondetermin-
istic read-once BPs for PERM have exponential size. Krause, Meinel, and Waack have also
shown that PERM ∈ coNP-BP1. We complement this by the insight that PERMn can be rep-
resented in polynomial size even by randomized OBDDs, i. e., by randomized read-once BPs
where the non-probabilistic variables appear in the same order on each path from the source to
a sink.

Theorem 5.17:

(1) For all εn with 0 ≤ εn < 1 and εn = �(1/Poly(n)), ¬PERMn can be represented by
randomized OBDDs with one-sided error εn and polynomial size;

(2) each nondeterministic read-once BP representing PERMn has size 2�(n).

Proof: It only remains to show Part (1). The construction uses the well-known fingerprinting
technique due to Freivalds (see, e. g., the monograph [39] for details on the history). Ablayev
and Karpinski [1] have first applied this technique to the construction of randomized OBDDs.

We use the following representation of PERMn . Let xi = (xi,1, . . . , xi,n) be the i th row of X .
Let |x | be the value of x interpreted as a binary representation. Then PERMn(X) = 1 if and
only if

n∑

i=1

|xi | = 2n − 1 ∧ all xi contain exactly one entry equal to 1.

We apply the fingerprinting technique to check probabilistically whether the binary representa-
tion of the sum of the values |xi | is equal to the vector (1, . . . , 1) ∈ {0, 1}n.
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The randomized OBDD G for PERMn starts with a tree of probabilistic nodes at the top by
which we randomly choose a prime number from the set Pm of the m smallest primes (m is fixed
below). For each prime p ∈ Pm , we append a deterministic OBDD BP G p at the respective leaf
of the tree. In G p, the variables of the input matrix are read in a rowwise order. This allows to
simultaneously compute the sum of all |xi | and to check whether each xi contains exactly one
entry equal to 1. If at least one row with zero or more than one entry equal to 1 is found, or if
the sum of the |xi | modulo p is not equal to 2n −1 mod p, the 0-sink is reached. Otherwise, the
1-sink is reached. It easy to see how G p can be constructed by standard techniques such that
|G p| = 2

(
p · n2

)
.

If PERMn(X) = 1, the 1-sink is reached for all p. The randomized OBDD errs if
PERMn(X) = 0, the matrix X has exactly one entry equal to 1 in each row, and the sum of
all |xi | is equal to 2n − 1 modulo the randomly chosen prime p. Since

∣∣∣∣∣

n∑

i=1

|xi | −
(
2n − 1

)
∣∣∣∣∣ ≤ n · 2n−1,

there are fewer than n − 1 + dlog ne primes for which the sum of the |xi | is equal to 2n − 1
modulo p. Hence, the error probability can be bounded from above by 2n/m. For m :=⌈
ε−1

n · 2n
⌉

, this bound is small enough. By the prime number theorem, |Pm| = 2(m log m).
Thus, the overall size of G for the above choice of m is O

(
n4 log n · ε−1

n

)
. 2

Corollary 5.18:

(1) P-BP1 $ RP-BP1;

(2) RP-BP1 6= coRP-BP1;

(3) BPP-BP1 6⊆ NP-BP1 ∪ coNP-BP1.

Proof: The first two parts follow immediately from the above facts on PERMn . For the third
part, consider the function 2PERMn : {0, 1}2n2 → {0, 1}, defined on two Boolean n×n matrices
X and Y by 2PERMn(X,Y ) := PERMn(X) ∧ ¬PERMn(Y ). By Theorem 5.17, this function
is contained in the class BPP-BP1. From the exponential lower bound on the size of nondeter-
ministic read-once BPs for PERMn it follows that 2PERM is neither contained in NP-BP1 nor
in coNP-BP1. 2

It is much harder to show that nondeterminism can be more powerful than randomness for read-
once BPs. We require a function which is “easy” enough to be computable by nondeterministic
read-once BPs of small size, but for which we nevertheless can apply the proof technique from
the last subsection. The function MSn from the main result on rectangle approximations has the
desired properties. More precisely, we obtain the following results.
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Theorem 5.19: Let N = n2 (the input size of MSn).

(1) The function MSn can be represented in size O(N ) by

(a) randomized read-once BPs with one-sided error 1/2; and

(b) randomized read-once BPs with two-sided error 1/3 + δN ,
for arbitrary δN > 0 with log(1/δN ) = Poly(N ).

(2) Let γ, γ ′ > 0 be arbitrary constants. Then

(a) each randomized read-once BPs for MSn with one-sided error 1/2 − γ , and

(b) each randomized read-once BPs for MSn with two-sided error 1/3 − γ ′

requires size 2�(
√

N).

Proof: Part (1): We first describe two deterministic sub-BPs Gr and Gc. In Gr, we read the
variables of the input matrix rowwise and evaluate RTn (it easy to see how this can be done
in a read-once BP using standard techniques). Likewise, we evaluate CTn in Gc reading the
variables columnwise. A randomized read-once BP for MSn is now obtained by adding a single
probabilistic node which allows to choose randomly between G r and Gc. This BP has obvi-
ously linear size and one-sided error 1/2. The result for two-sided error follows by Lemma 5.9
(choose r = dlog(1/δN )e).

Part (2): Both lower bounds follow by applying the proof technique from Theorem 5.15 to the
results from Theorem 1.7. 2

We remark that the additional positive term in the error bound for Part (1b) is only required to
account for the “rounding error” incurred by representing the constant probability 1/3 in binary
with polynomial length. This term disappears if we allow to assign outcomes of biased coin-
flips (probabilities 1/3 and 2/3) to the probabilistic variables of a randomized BP instead of fair
ones as in the standard model.

Theorem 5.19 immediately yields the following results on complexity classes:

Corollary 5.20:

(1) NP-BP1 6⊆ BPP-BP11/3−γ , for all constants γ > 0;

(2) RP-BP11/2−γ $ NP-BP1, for all constants γ > 0;

(3) RP-BP11/2−γ $ RP-BP11/2 and BPP-BP11/3−γ ′ $ BPP-BP11/3+δn ,

for all δn > 0 with log(1/δn) = Poly(n) and all constants γ, γ ′ > 0.

Part (3) of this theorem shows that there is no “probability amplification” technique for random-
ized read-once BPs similar to Proposition 5.4 for general BPs. Decreasing the error probability
by an arbitrarily small constant may lead to an exponential blowup of the size for randomized
read-once BPs.
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5.4 Unrestricted versus Unambiguous Nondeterminism for
Read-Once Branching Programs

We now deal with the power of nondeterminism for read-once BPs. We consider the following
restricted nondeterministic model.

Definition 5.21: A nondeterministic read-once BP is called unambiguous read-once BP if for
each input there is at most one accepting computation path. Let UP-BP1 denote the class of
sequences of functions with unambiguous read-once BPs of polynomial size.

We are going to prove that multiple accepting paths for the same input have to be allowed to
exploit the full power of nondeterministic read-once BPs. We already know that the function
MSn can be represented in linear size by nondeterministic read-once BPs according to Theo-
rem 5.19 (Part (1a)). On the other hand, every unambiguous read-once BP for this function
requires exponential size:

Theorem 5.22: Each unambiguous read-once BP for MSn has size 2�(n).

Corollary 5.23: UP-BP1 $ NP-BP1.

In order to prove Theorem 5.22, we use the following variant of Theorem 5.11 from Subsec-
tion 5.2.

Theorem 5.24: Let G be an unambiguous read-once BP for the function f : {0, 1}n → {0, 1}
defined on the variable set X, |X | = n. Then there are combinatorial rectangles r1, . . . , rk

(each with its own partition of the input variables) such that

(i) k ≤ 2n|G|;
(ii) r−1

1 (1) ∪ · · · ∪ r−1
k (1) = f −1(1) and r−1

i (1) ∩ r−1
j (1) for i 6= j .

Proof: This is very much similar to the proof of Theorem 5.11, as well as to the proof of
Borodin, Razborov, and Smolensky establishing an analogous fact for nondeterministic read-
once BPs and covers of the 1-inputs by rectangles.

We use the notation from the proof of Theorem 5.11, and we assume that the given unambiguous
read-once BP G is regular with respect to variables in X (which increases the size by a factor
of at most 2n). For each 1-input of f , there is exactly one accepting computation path from the
source s of G to the 1-sink t1. Hence,

f −1(1) =
⋃

v∈C

(
r1
v

)−1
(1), and r1

v ∧ r1
w = 0, for v 6= w,

where r1
v = fs,v ∧ fv,t1 , for v ∈ C , are the combinatorial rectangles from the proof of Theo-

rem 5.11. Obviously, these rectangles have the required properties. 2
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Proof of Theorem 5.22: Let G be an unambiguous read-once BP representing MSn . By The-
orem 5.24, there is a partition of MS−1

n (1) into rectangles r1, . . . , rk , where k ≤ 2n|G| and the
rectangles are defined with respect to balanced partitions of the input matrix X of MSn . Let 5i

be the partition of the inputs used by rectangle ri , for i = 1, . . . , k.

We start with a sketch of the essence of the proof. First, observe that

MS−1
n (1) =

(
RT−1

n (0) ∩ CT−1
n (1)

)
∪

(
RT−1

n (1) ∩ CT−1
n (0)

)
∪

(
RT−1

n (1) ∩ CT−1
n (1)

)
.

Consider an arbitrary rectangle ri from the given partition of MS−1
n (1). We claim that the

following happens: Either r−1
i (1) is exponentially small, or around half of the inputs in r −1

i (1)
are from the set RT−1

n (1) ∩ CT−1
n (1) (or both). Then all rectangles which are not exponentially

small and which are used to cover the sets RT−1
n (0)∩CT−1

n (1) or RT−1
n (0)∩CT−1

n (1) “overlap”
into the set RT−1

n (1)∩CT−1
n (1). As a consequence, the set RT−1

n (1)∩CT−1
n (1) is either covered

twice by rectangles (which is not allowed), or the used rectangles have to be exponentially small.

We now prove this in detail. Fix a constant β < 1/
√

2. By Lemma 3.2, either at least m := bβnc
rows or columns of X are mixed for each partition 5i (or both). Define

I := {i | there are at least m mixed rows with respect to 5i},

and J := {1, . . . , k}\I . Notice that for each i ∈ J , there are at least m mixed columns with
respect to 5i by Lemma 3.2. To simplify notation, we define Ri := r−1

i (1) for i = 1, . . . , k.

Let µ be the uniform distribution on the assignments to the input variables of MSn . By the
“extended discrepancy lemma,” Lemma 4.2, we have

∑

i∈I

µ
(
Ri ∩ RT−1

n (1) ∩ CT−1
n (1)

)
≥

∑

i∈I

µ
(
Ri ∩ RT−1

n (0) ∩ CT−1
n (1)

)
− |I | · δn, (1)

∑

j∈J

µ
(
R j ∩ RT−1

n (1) ∩ CT−1
n (1)

)
≥

∑

j∈J

µ
(
R j ∩ RT−1

n (1) ∩ CT−1
n (0)

)
− |J | · δn, (2)

where δn = 2−�(m) = 2−�(n).

Furthermore, since Ri ∩ RT−1
n (0) ∩ CT−1

n (0) = ∅ for all i = 1, . . . , k,
∑

i∈I

µ
(
Ri ∩ RT−1

n (1) ∩ CT−1
n (0)

)
≤ |I | · δn, and (3)

∑

j∈J

µ
(
R j ∩ RT−1

n (0) ∩ CT−1
n (1)

)
≤ |J | · δn. (4)

The sets Ri form a partition of the 1-inputs of MS, thus we can combine (1)+ (4) and (2)+ (3)
to obtain

∑

i∈I

µ
(
Ri ∩ RT−1

n (1) ∩ CT−1
n (1)

)
≥ µ

(
RT−1

n (0) ∩ CT−1
n (1)

)
− (|I | + |J |) · δn, (5)

∑

j∈J

µ
(
R j ∩ RT−1

n (1) ∩ CT−1
n (1)

)
≥ µ

(
RT−1

n (1) ∩ CT−1
n (0)

)
− (|I | + |J |) · δn. (6)
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Finally, adding (5) and (6) yields

µ
(
RT−1

n (1) ∩ CT−1
n (1)

)
≥

µ
(
RT−1

n (1) ∩ CT−1
n (0)

)
+ µ

(
RT−1

n (0) ∩ CT−1
n (1)

)
− 2(|I | + |J |) · δn.

By Lemma 3.3,

µ
(
RT−1

n (1) ∩ CT−1
n (0)

)
+ µ

(
RT−1

n (0) ∩ CT−1
n (1)

)
− µ

(
RT−1

n (1) ∩ CT−1
n (1)

)
≥ 1/4 − εn,

where εn = 2−�(n). Hence,

k = |I | + |J | ≥
1

2
· δ−1

n (1/4 − εn) = 2�(n),

which yields the desired bound on the size of G, since |G| ≥ k/(2n). 2

6 Algebraic Tools

Counting the number of solutions of equations is a fundamental combinatorial problem. It is
also one of the foundations for the proofs of the results in this paper. In this section, we present
algebraic tools which allow to count the numbers of solutions of equations over finite fields in
many cases. The presentation heavily relies upon Babai’s lecture notes [8]. For the proofs not
given here and further background information we refer to his paper, or to standard textbooks
like [35].

6.1 A Brief Introduction to Characters over Finite Abelian Groups

For the following, let (G,+) be a finite, abelian group. Let |G| denote the order of G.

A character of G is a homomorphism from G to the complex unit circle, i. e., a homomorphism
χ : G → C where |χ(a)| = 1 for all a ∈ G. We use Ĝ to denote the set of all characters of G.
The special character χ with χ(a) = 1 for all a ∈ G is called the trivial character of G and is
denoted by χ0.

From the definition, we can immediately conclude that, for all characters χ , χ(0) = 1 (since
χ(0) = χ(0+0) = χ(0) ·χ(0)). Furthermore, for all a ∈ G, χ(−a) = χ(a)−1 = χ(a) (where
the bar denotes complex conjugation). This is because χ(a) · χ(−a) = χ(a − a) = χ(0) = 1.
Finally, it also follows that (χ(a))|G| = χ (|G| · a) = χ(0) = 1 for all a ∈ G, i. e., the values
of χ are |G|th roots of unity in C. (By n · a = a · n, where n ∈ Z, we mean the nth power of a
in additive notation, i. e., a + · · · + a, n times.)

For χ,ψ ∈ Ĝ, the product character χ · ψ ∈ Ĝ is defined by

(χ · ψ)(g) := χ(g) · ψ(g), for all g ∈ G.

It is easy to verify that Ĝ becomes a group under the multiplication of characters defined in this
way, which is called the character group of G

We collect some important facts on the structure of character groups.
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Proposition 6.1: Let G = H1 × H2, i. e., G is the direct product of the groups H1 and H2, and
let χ ∈ Ĥ1, ψ ∈ Ĥ2. Then ϕ := χ × ψ defined by

ϕ(g, h) := χ(g) · ψ(h), for all g ∈ H1, h ∈ H2,

is a character of G. Moreover, all characters of G are of this form, and

Ĝ ∼= Ĥ1 × Ĥ2.

This can also be verified in an elementary way. Together with the structure theorem for finite
abelian groups (see, e. g., [34]), the above proposition implies:

Theorem 6.2: G ∼= Ĝ.

Especially, we have
∣∣Ĝ

∣∣ = |G|. An important tool for handling characters is presented in the
following.

Theorem 6.3 (Orthogonality relations):

(1) For χ,ψ ∈ Ĝ,

1

|G|
∑

g ∈ G

χ(g)ψ(g) =
{

1, if χ = ψ;

0, otherwise.

(2) For g, h ∈ G,

1

|G|
∑

χ∈Ĝ

χ(g)χ(h) =
{

1, if g = h;

0, otherwise.

Characters may be used to generalize the well-known discrete Fourier transform. As shown
in the next subsection, such generalized Fourier transforms are a useful tool for computing the
number of solutions of equations.

Definition 6.4: Let f : G → C be an arbitrary function. The Fourier transform of f is the
function f̂ : Ĝ → C defined by

f̂ (χ) :=
∑

a∈G

χ(a) f (a), for all χ ∈ Ĝ.

Proposition 6.5: The mapping F of functions to their Fourier transform has an inverse F−1.
This maps a function F : Ĝ → C to the function f : G → C given by

f (a) =
1

|G|
∑

χ∈Ĝ

χ(a)F(χ), for a ∈ G.
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Proof: We only have to check that the above formula, applied to the Fourier transform f̂ of a
function f , indeed recovers the original function. For a ∈ G,

∑

χ∈Ĝ

χ(a) f̂ (χ) =
∑

χ∈Ĝ

χ(a)
∑

b∈G

χ(b) f (b) =
∑

b∈G

f (b)
∑

χ∈Ĝ

χ(b − a).

By Theorem 6.3, the last sum is equal to |G|, if b = a, and equal to 0, if b 6= a. Hence,
∑

χ∈Ĝ

χ(a) f̂ (χ) = |G| · f (a),

as desired. 2

At the end of this subsection, we consider some concrete examples of character groups which
will pop up in the following.

Proposition 6.6:

(1) Let G = Zp ×Zq , where p and q are different primes. For each u ∈ Zp and v ∈ Zq , define
the function χu,v : G → C by

χu,v(w) := e2π iuw/p · e2π ivw/q , for all w ∈ G,

where G, Zp and Zq are represented by subsets of Z for the computation of the exponents
(notice that Zp × Zq

∼= Zpq ). Then χu,v is a character of G, and all characters of G are
obtained in this way.

(2) Let G = (Zm
p ,+), where p is a prime, m ≥ 1 an integer, and “+” the addition of vectors in

Zm
p . Define the standard inner product in Zm

p by 〈u, v〉 :=
∑m

i=1 uivi for vectors u, v ∈ Zm
p .

For each u ∈ Zm
p , the function χu : Zm

p → C defined by

χu(v) := e2π i〈u,v〉/p, for v ∈ Zm
p ,

is a character of Zm
p , and all characters are obtained in this way.

Proof: Since we always have
∣∣Ĝ

∣∣ = |G|, it only remains to verify that, in both cases, the
given functions are different characters of their respective groups. This is done by elementary
calculations. 2

6.2 On the Number of Solutions of Equations over Finite Abelian Groups

Let (G,+) be an arbitrary finite abelian group. Let A1, . . . , An ⊆ G and b ∈ G. We consider
the equation

x1 + · · · + xn = b, where x1 ∈ A1, . . . , xn ∈ An . (EQ)

We are interested in the number of solutions of (EQ) and define

S(A1, . . . , An; b) :=
∣∣{x | x = (x1, . . . , xn) ∈ A1 × · · · × An ∧ x1 + · · · + xn = b}

∣∣.
These numbers can be computed by the following formula:
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Theorem 6.7: For arbitrary A1, . . . , An ⊆ G and b ∈ G,

S(A1, . . . , An; b) =
2n

|G|
+

1

|G|
·

∑

χ∈Ĝ,χ 6=χ0

χ(b)
n∏

k=1

∑

a∈Ak

χ(a).

Proof: We apply generating functions in the same way as this is usually done in combinatorics.
Instead of generating functions of the type

∑
n≥1 cnzn , we use generalized Fourier series. Define

the function F : Ĝ → C by

F(χ) :=
n∏

k = 1

∑

a∈Ak

χ(a)

for all χ ∈ Ĝ. The idea is that the function F captures all information on the different possible
ways to sum elements from A1, . . . , An . A term

∑
a∈Ak

χ(a) represents the |Ak | possible ways
to choose the kth summand in (EQ) from the set Ak : the factor χ(a) in the overall product
belongs to the decision to include a in the sum.

We have

F(χ) =
n∏

k = 1

∑

a∈Ak

χ(a) =
∑

a1∈A1,...,an∈An

χ(a1 + · · · + an) =
∑

b∈G

χ(b) S(A1, . . . , An; b).

Thus, F is the Fourier transform of the function f : G → C defined by f (b) :=
S(A1, . . . , An; b). The formula for the inverse Fourier transform yields

f (b) =
1

|G|
∑

χ∈Ĝ

χ(b) F(χ) =
1

|G|
∑

χ∈Ĝ

χ(b)
n∏

k = 1

∑

a∈A

χ(a).

Pulling out the term for χ = χ0 gives the claimed formula. 2

At the end of this section, we discuss an important special version of the above formula which
will be used later on.

Let A be an arbitrary m × n matrix over Zp, where p is a prime, and let b ∈ Zm
p be an arbitrary

vector. It is easy to count the number of solutions x ∈ Zn
p of the linear system of equations

A · x ≡ b mod p: there are exactly pn−rank(A) such solutions, where rank(A) is the rank of the
matrix A over Zp.

This simple formula no longer holds if we restrict ourselves to Boolean solutions. Using the
tools developed in this section, we can nevertheless come up with an exact formula also for this
case.
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Theorem 6.8: Let p be a prime. Let A be an arbitrary m × n matrix over Z p with column
vectors a1, . . . , an ∈ Zm

p , and let b ∈ Zm
p . Furthermore, define ω := e2π i/p, and let 〈 · , · 〉

denote the standard inner product in Zm
p , i. e., 〈u, v〉 =

∑m
k=1 ukvk mod p for u, v ∈ Zm

p . Then
the number of x ∈ {0, 1}n with A · x ≡ b mod p is exactly

p−m · 2n + p−m
∑

v ∈ Zm
p

v 6= 0

ω−〈b, v〉
n∏

k = 1

(
1 + ω〈ak, v〉

)
.

Variants of this formula appear in different disguises in the literature (see, e. g., [21] for the
restricted case m = 1 and [43] for a closely related result for p = 2).

Proof: By application of Theorem 6.7. We choose G = (Zm
p ,+), and Ak := {0, ak}, for

k = 1, . . . , n. The characters of Zm
p have already been described in Proposition 6.6. 2

7 Proof of Lemma 3.3

It is easy to prove that approximately one half of all Boolean n ×n matrices X satisfy one of the
equations RTn(X) = ξ or CTn(X) = η, resp., for arbitrary ξ, η ∈ {0, 1}. Lemma 3.3 states that,
in spite of the fact that both of these equations are defined on the same set of variables, they
behave as if they were independent of each other: approximately 1/4 of all Boolean matrices X
satisfy RTn(X) = ξ and CTn(X) = η. In this section, we prove this astonishing fact.

Proof of Lemma 3.3: Let X = (xi j)1≤i, j≤n . We have RTn(X) = ξ and CTn(X) = η if and
only if there are r1, . . . , rn ∈ Z3 and c1, . . . , cn ∈ Z3 such that

x1,1 + x1,2 + · · · + x1,n ≡ r1

x2,1 + x2,2 + · · · + x2,n ≡ r2
...

xn,1 + xn,2 + · · · + xn,n ≡ rn

x1,1 + x2,1 + · · · + xn,1 ≡ c1

x1,2 + x2,2 + · · · + xn,2 ≡ c2
...

x1,n + x2,n + · · · + xn,n ≡ cn

(1)

and, additionally,

n∑

i=1

[ri ≡ 0 mod 3] ≡ ξ mod 2 ∧
n∑

i=1

[ci ≡ 0 mod 3] ≡ η mod 2. (2)

Let xi := (xi,1, . . . , xi,n), for i = 1, . . . , n, and x := (x1, . . . , xn)
>. Furthermore, let b :=

(r1, . . . , rn, c1, . . . , cn)
> ∈ Z2n

3 . Then (1) is equivalent to

A · x ≡ b mod 3, (3)
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where A is the 2n × n2 matrix defined as follows (empty spaces indicate 0-entries):

A :=

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷


1 1 · · · 1
1 1 · · · 1

. . .
1 1 · · · 1

1 1 1
1 1 1

. . .
. . .

· · · . . .
1 1 1








n





n

Our first aim is to estimate the number of Boolean solutions of the linear system (3) for fixed ri
and ci . Later on, we deal with the number of possible choices for the ri and ci .

Claim: The number of solutions x ∈ {0, 1}n2
of system (3) is 3−(2n−1) · 2n2 ·

(
1 ± 2−�(n)), if

r1 + · · · + rn ≡ c1 + · · · + cn mod 3, (∗)
and 0 otherwise.

Proof of the Claim: By elementary transformations of the system (3), it follows that (∗) is
necessary for the existence of solutions.

Now suppose that (∗) is fulfilled. Define m := 2n. Let a0, . . . , an2−1 ∈ Zm
3 denote the column

vectors of the coefficient matrix A. Let e0, . . . , em−1 be the standard basis of Zm
3 , i. e., ek

is the vector which has a 1 at position k and zeros everywhere else. Then we have ak =
ebk/nc + en+kmod n , for k = 0, . . . , n2 − 1. Let N be the number of Boolean solutions of (3). By
Theorem 6.8,

N = 3−m · 2n2 + 3−m
∑

v ∈ Zm
3

v 6= 0

ω−〈b, v〉
n2−1∏

k=0

(
1 + ω〈ak, v〉

)
, where ω = e2π i/3. (#)

Let us first compute the value of the sum which is obtained by substituting the special vector

u = (u0, . . . , um−1) = ( 1 , . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n

)

for v.

Since ubk/nc = 1 and un+kmodn = −1 for all k, we get

n2−1∏

k=0

(
1 + ω〈ak, u〉

)
=

n2−1∏

k=0

(
1 + ωubk/nc+un+kmod n

)
= 2n2

.
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Furthermore, we have ω−〈b, u〉 = 1 because of (∗). The same arguments work for −u instead
of u. Hence, we can rewrite (#) as

N = 3 · 3−m · 2n2 + 3−m
∑

v /∈ {0,u,−u}
ω−〈b, v〉

n2−1∏

k=0

(
1 + ω〈ak, v〉

)
,

where the summation is over all vectors v ∈ Zm
3 not contained in the set {0, u,−u}. By sub-

tracting 3−(m−1) · 2n2
on both sides and taking absolute values, we obtain

εn :=
∣∣∣N − 3−(m−1) · 2n2

∣∣∣ ≤ 3−m
∑

v /∈ {0,u,−u}

n2−1∏

k=0

∣∣∣1 + ω〈ak, v〉
∣∣∣

= 3−m
∑

v /∈ {0,u,−u}
v=(v0,...,vm−1)

n2−1∏

k=0

∣∣1 + ωvbk/nc+vn+kmod n
∣∣.

We want to show that

εn = 3−(m−1) · 2n2 · 2−�(n), or, equivalently, 3m · εn = 3 · 2n2−�(n) = 2n2−�(n).

To do this, we have to get a relatively precise bound on the above sum of product terms. One
may verify easily that, for arbitrary integers `,

∣∣∣1 + ω`
∣∣∣ =

√
2(1 + cos(2π`/3))1/2 =

{
2, if ` ≡ 0 mod 3;

1, if ` ≡ 1, 2 mod 3.

Thus, we require that sufficiently “few” of the factors in the above products are equal to 2.
(Observe that, if only for one vector v /∈ {0, u,−u} all factors would be equal to 2, then we
would already have “lost.”)

For v ∈ Zm
3 , define

Z(v) :=
∣∣{ j

∣∣ 0 ≤ j ≤ n2 − 1 ∧ vb j/nc + vn+ j mod n ≡ 0 mod 3
}∣∣.

With this notation, we have established above that 3m · εn ≤
∑
v /∈ {0,u,−u} 2Z(v). For the follow-

ing, fix a vector v ∈ Zm
3 . Identify Z3 with {0, 1, 2}. Our goal is to characterize Z(v) in terms of

the numbers of 0-, 1-, and 2-entries in v = (v0, . . . , vm−1). For c ∈ {0, 1, 2}, define

αc(v) :=
∣∣{ j | 0 ≤ j ≤ n − 1 ∧ v j ≡ c mod 3}

∣∣, and

βc(v) :=
∣∣{ j | n ≤ j ≤ 2n − 1 ∧ v j ≡ c mod 3}

∣∣.
We have α0(v)+α1(v)+α2(v) = n and β0(v)+β1(v)+β2(v) = n. In order to compute Z(v),
we have to count the numbers j = 0, . . . , n2 −1 such that vk +v` ≡ 0 mod 3, where k = b j/nc
and ` = n + j mod n. The same number is obtained if we consider all possible values for `,
i. e., ` = n, . . . , 2n − 1, and count all k ∈ {0, . . . , n − 1} such that vk + v` ≡ 0 mod 3. Thus,

Z(v) =
2n−1∑

`=n

Z`(v), where Z`(v) :=
∣∣{k | 0 ≤ k ≤ n − 1 ∧ vk + v` ≡ 0 mod 3}

∣∣.
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Since vk + v` ≡ 0 ⇔ vk ≡ −v`, we have Z`(v) = α−v`(v) (computing the subscript of α
in Z3). Thus,

Z(v) =
2n−1∑

`=n

Z`(v) =
∑

c ∈ {0,1,2}
α−c(v)βc(v) = α0(v)β0(v)+ α1(v)β2(v)+ α2(v)β1(v).

Putting the above insights together, we obtain:

3m · εn ≤
∑

v /∈ {0,u,−u}
2Z(v)

=
∑

v /∈ {0,u,−u}
2α0(v)β0(v)+ α1(v)β2(v)+ α2(v)β1(v)

=
∑

0 ≤α0,α1,α2, β0,β1,β2 ≤ n
α0+α1+α2 =β0+β1+β2 = n
α0β0, α1β2, α2β1 6= n2

(
n

α0, α1, α2

)(
n

β0, β1, β2

)
2α0β0 + α1β2 + α2β1.

Observe that the terms for indices with α0β0 = n2, α1β2 = n2 or α2β1 = n2 which are excluded
in the above sum are all equal to 2n2

. Thus,

3m · εn + 3 · 2n2 ≤
∑

0 ≤α0,α1,α2, β0,β1,β2 ≤ n
α0+α1+α2, β0+β1+β2 = n

(
n

α0, α1, α2

)(
n

β0, β1, β2

)
2α0β0 + α1β2 + α2β1 =: R.

By the multinomial theorem,

R =
∑

0 ≤α0,α1,α2 ≤ n
α0+α1+α2 = n

(
n

α0, α1, α2

) (
2α0 + 2α1 + 2α2

)n

=
n∑

k = 0

n−k∑

`= 0

(
n

k

)(
n − k

`

) (
2k + 2` + 2n−k−`

)n
.

Remember that we want to show that 3m · εn = 2n2−�(n). Hence, it remains to prove an upper
bound of order 3 · 2n2 + 2n2−�(n) on the above sum. This is provided in Lemma 7.1 at the end
of the section. 2

Now we know the number of solutions of System (3) for fixed row and column sums ri and ci .
It remains to count the number of different choices for the ri and ci . For this, we have to take
into account Equation (2) and the necessary condition for solutions from the above claim.
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Before we estimate the number of ri and ci fulfilling these equations, we present another tech-
nical tool. For c ∈ Z2 and d ∈ Z3, define

Nn,c,d :=
∣∣{(x1, . . . , xn) ∈ Zn

3

∣∣
n∑

i=1

[xi ≡ 0 mod 3] ≡ c mod 2 ∧ x1 + · · · + xn ≡ d mod 3
}∣∣.

Claim: For arbitrary c ∈ Z2 and d ∈ Z3, Nn,c,d = (1/6) · 3n ·
(
1 ± 2−�(n)).

Proof of the claim: We apply Theorem 6.7 from the last section. We consider the group G =
Z2 × Z3

∼= Z6. Define A := {(1, 0), (0, 1), (0,−1)} ⊆ G, for k = 1, . . . , n, and b := (c, d) ∈
G. Let yk = (yk,1, yk,2) ∈ A, for k = 1, . . . , n. We have y1 + · · · + yn = b in G if and only if

y1,1 + · · · + yn,1 ≡ c mod 2 ∧ y1,2 + · · · + yn,2 ≡ d mod 3.

Furthermore, yk,1 = [yk,2 ≡ 0 mod 3] for all k due to the definition of A. Hence, the number
of solutions of y1 + · · · + yn = b in G with yk ∈ A for all k is equal to Nn,c,d . The formula
from Theorem 6.7 yields

Nn,c,d =
1

6
· 3n +

1

6
·

∑

u∈Z6, u 6=0

χu(b)
n∏

k=1

∑

a∈A

χu(a),

where χu , u ∈ Z6, is defined by χu(v) := e2π iuv/2 · e2π iuv/3 = (−1)uv · e2π iuv/3 for v ∈ Z6

(see Proposition 6.6).

We have (1, 0) = 3, (0, 1) = 4, and (0,−1) = 2 in Z6. Thus
∑

a∈A

χu(a) = (−1)2u · e4π iu/3 + (−1)3u · e6π iu/3 + (−1)4u · e8π iu/3

= e2π iu/3 + e−2π iu/3 + (−1)u = 2 · Re
(

e2π iu/3
)

+ (−1)u

=





3, if u ≡ 0 mod 6;

−2, if u ≡ 1, 5 mod 6;

1, if u ≡ 3 mod 6;

0, if u ≡ 2, 4 mod 6.

We substitute this into the above formula and obtain the estimate
∣∣∣∣Nn,c,d −

1

6
· 3n

∣∣∣∣ ≤
1

6
·
∑

u 6=0

∣∣∣
∑

a∈A

χu(a)
∣∣∣
n

=
1

6
·
(

2n+1 + 1
)
.

This proves the claim. 2

At this point, we can put all results together. For each d ∈ Z3, there are exactly Nξ,d · Nη,d
choices for r1, . . . , rn ∈ Z3 and c1, . . . , cn ∈ Z3 such that Equation (2) is fulfilled and

r1 + · · · + rn ≡ c1 + · · · + cn ≡ d mod 3.
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Altogether, we have

∑

d∈Z3

Nξ,d · Nη,d =
1

12
· 32n ·

(
1 ± 2−�(n)

)

choices for the ri and ci . For each of these choices, we obtain 3−2n+1 · 2n2 ·
(
1 ± 2−�(n)) inputs

in RT−1
n (ξ) ∩ CT−1

n (η) by our first claim. Thus, the total number of inputs is

1

12
· 32n ·

(
1 ± 2−�(n)

)
· 3−2n+1 · 2n2 ·

(
1 ± 2−�(n)

)
=

1

4
· 2n2 ·

(
1 ± 2−�(n)

)
.

2

To complete the proof, it only remains to verify the following fact already used above.

Lemma 7.1:
n∑

k = 0

n−k∑

`= 0

(
n

k

)(
n − k

`

) (
2k + 2` + 2n−k−`

)n
= 3 · 2n2 + 2n2−�(n).

Proof: Our plan is to split the summation intervals of the inner and outer sum and to handle the
resulting partial sums separately. We first remove the term for k = n, this is equal to(2n + 2)n.
Let S be the remaining double sum, where k ≤ n − 1.

We start with a decomposition of the outer sum. Let α be a constant with 0 < α < 1/2 (fixed
later on). Define S1, S2, and S3 as the partial sums which are obtained by restricting the outer
index k to the intervals 0 ≤ k ≤ bαnc, dαne ≤ k ≤ b(1 − α)nc, and b(1 − α)nc ≤ k ≤ n − 1,
resp. Then S ≤ S1 + S2 + S3.

Sum S2: Let us first consider S2. We have dαne ≤ k ≤ b(1 − α)nc, and for integers k, this is
equivalent to αn ≤ k ≤ (1−α)n. We observe that, for fixed k or `, the function 2k +2`+2n−k−`

attains its maximal values at the borders of the summation interval of the remaining variable.
Using the bounds for k and `, we thus get

2k + 2` + 2n−k−` ≤ 2k + 1 + 2n−k ≤ 2(1−α)n+1 + 1.

Hence,

S2 ≤
(

2(1−α)n+1 + 1
)n

b(1−α)nc∑

k = dαne

(
n

k

) n−k∑

`= 0

(
n − k

`

)
≤

(
2(1−α)n+1 + 1

)n
3n,

where we have generously estimated the sum of the binomial coefficients by using the binomial
theorem. Furthermore,

(
2(1−α)n+1 + 1

)n
3n = 2(1−α)n2+n+(log2 3)n

(
1 + 2−(1−α)n−1

)n
.
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Since α is a positive constant, this is upper bounded by 2γ n2
for some constant γ < 1. Thus,

the sum S2 turns out to be “very small.”

Sums S1 and S3: We further split the sums S1 and S3 into three partial sums each, depending on
the value of `. Let β be a constant with 0 < β < 1/2. For i = 1, 3, define Si,1, Si,2, and Si,3 as
the partial sums which are obtained from Si by restricting ` to the intervals 0 ≤ ` ≤ bβ(n − k)c,
dβ(n − k)e ≤ ` ≤ b(1 − β)(n − k)c, and b(1 − β)(n − k)c ≤ ` ≤ n − k, resp. We observe
that

n−k∑

`=b(1−β)(n−k)c

(
n − k

`

)(
2k + 2` + 2n−k−`

)n
=

bβ(n−k)c∑

`= 0

(
n − k

`

) (
2k + 2` + 2n−k−`

)n
.

Hence, Si,3 = Si,1 for i = 1, 3, and S1 ≤ 2 · S1,1 + S1,2 as well as S3 ≤ 2 · S3,1 + S3,2. It is
therefore sufficient to derive estimates for the sums S1,1, S1,2 and S3,1, S3,2.

Sum S1,1: Let us look at S1,1 first, where 0 ≤ k ≤bαnc and 0 ≤ ` ≤ bβ(n − k)c. We pull out
the term for k = ` = 0, which is equal to (2n + 2)n , and estimate the sum of the remaining
terms. Let S′

1,1 denote this sum. For indices k and ` where k ≥ 1, we get

2k + 2` + 2n−k−` ≤ max
{

2n−1 + 3, 2bαnc + 1 + 2b(1−α)nc
}
.

Since α is a constant with 0 < α < 1, the maximum is equal to 2n−1 + 3 for n large enough.
The same upper bound is obtained for indices k and ` where ` ≥ 1. Thus,

S′
1,1 ≤

(
2n−1 + 3

)n
bαnc∑

k = 0

(
n

k

) bβ(n−k)c∑

`= 0

(
n − k

`

)
.

For the partial sums of the first binomial coefficients, we use the well-known asymptotically
optimal estimate (see, e. g., [22]):

bβ(n−k)c∑

`= 0

(
n − k

`

)
≤ 2H(β)(n−k)−(1/2) log2(n−k)+c ≤ 2H(β)(n−k)+c′

,

where c and c′ are constants and H(x) = −
(
x log2 x + (1 − x) log2(1 − x)

)
is the entropy

function.

Hence,

S′
1,1 ≤

(
2n−1 + 3

)n
bαnc∑

k = 0

(
n

k

)
2H(β)(n−k)+c′ ≤

(
2n−1 + 3

)n
2H(β)n+c′

bαnc∑

k = 0

(
n

k

)

≤
(

2n−1 + 3
)n

2(H(α)+H(β))n+c′′
, for some constant c′′

= 2n2−(1−H(α)−H(β))n+c′′
(

1 + 3 · 2−(n−1)
)n
.
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By choosing α and β small enough such that H(α) + H(β) < 1, we obtain a bound of order
2n2−�(n). Altogether, S1,1 = 2n2 + 2n2−�(n).

Sum S3,1: Here we have b(1 − α)nc ≤ k ≤ n − 1 and 0 ≤ ` ≤ bβ(n − k)c. Due to these
bounds, we again get 2k + 2` + 2n−k−` ≤ 2n−1 + 3, and

S3,1 ≤
(

2n−1 + 3
)n

n−1∑

k = b(1−α)nc

(
n

k

) bβ(n−k)c∑

`= 0

(
n − k

`

)
.

These partial sums of binomial coefficients may be estimated in the same way as for S′
1,1, which

yields S3,1 = 2n2−�(n).

Sum S1,2: For the sum S1,2, where 0 ≤ k ≤ bαnc and dβ(n − k)e ≤ ` ≤ b(1 − β)(n − k)c,
we can apply the same ideas as for the sum S2 at the beginning. We have

2k + 2` + 2n−k−` ≤ 2k + 2(1−β)(n−k)+1 + 1 ≤ max
{

2(1−β)n+1 + 2, 2αn + 2(1−α)(1−β)n+1
}
.

Since α and β are positive constants, the maximum is bounded from above by 2γ
′n for some

constant γ ′ < 1 if n is large enough, and we obtain

S1,2 ≤ 2γ
′n2

bαnc∑

k = 0

(
n

k

)b(1−β)(n−k)c∑

`=dβ(n−k)e

(
n − k

`

)
≤ 2γ

′n2 · 3n ≤ 2γ
′′n2

for some constant γ ′′ < 1.

Sum S3,2: For the last remaining sum, we have b(1 − α)nc ≤ k ≤ n − 1 and dβ(n − k)e ≤
` ≤ b(1 − β)(n − k)c. Due to these bounds,

2k + 2` + 2n−k−` ≤ 2k + 2(1−β)(n−k)+1 ≤ max
{

2n−1 + 22−β, 2(1−α)n + 2α(1−β)n+1
}
.

For n large enough, the maximum is equal to 2n−1 + 22−β . This yields

S3,2 ≤
(

2n−1 + 22−β
)n

n−1∑

k =b(1−α)nc

(
n

k

) b(1−β)(n−k)c∑

`= dβ(n−k)e

(
n − k

`

)

≤
(

2n−1 + 22−β
)n

n−1∑

k =b(1−α)nc

(
n

k

)
2n−k

≤
(

2n−1 + 22−β
)n

2bαnc
n−1∑

k =b(1−α)nc

(
n

k

)

≤
(

2n−1 + 22−β
)n

2bαnc2H(α)n+c,
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for some constant c. If we choose α small enough such that α + H(α) < 1, this bound is of
order 2n2−�(n).

We collect the conditions imposed on α and β. We require that 0 < α < 1/2, 0 < β < 1/2 and
additionally H(α) + H(β) < 1 and α + H(α) < 1. Obviously, α and β can be chosen in this
way. Altogether, we have proven:

S1 ≤ 2 · S1,1 + S1,2 = 2 · 2n2 + 2n2−�(n),

S2 ≤ 2γ n2
, for a constant γ < 1,

S3 ≤ 2 · S3,1 + S3,2 = 2n2−�(n).

Thus, S = 2 ·2n2 +2n2−�(n), and together with the term for k = n, (2n + 2)n = 2n2 +2n2−�(n),
this is of the claimed size. 2

8 Proof of Lemma 3.5

In this section, we always work with a fixed partition of the input variables, and we write com-
binatorial rectangles as Cartesian products of sets of input assignments. We are going to prove
the following bound on the discrepancy of subfunctions of RTn already used in Section 1.6.

Lemma 3.5: Let c = (c0, c1, . . . , cm), where c0 ∈ Z2 and c1, . . . , cm ∈ Z3. Define the function
RT∗

c : {0, 1}2m × {0, 1}2m → {0, 1} on vectors x1, x2, y1, y2 ∈ {0, 1}m by

RT∗
c

((
x1, x2),

(
y1, y2)) :=

[
m∑

i=1

[
x1

i + x2
i + y1

i + y2
i ≡ ci mod 3

]
≡ c0 mod 2

]
.

Let R = A × B, where A, B ⊆ {0, 1}2m . Then

Disc(RT∗
c, R) ≤ 2−m + 3−m.

The proof of this lemma is based on an adaptation of a technique due to Babai, Hayes, and
Kimmel [10]. The key notion of this technique is a measure called “multicolor discrepancy,”
which generalizes the discrepancy measure used in communication complexity theory (see Def-
inition 3.4) to arbitrary finite, abelian groups instead of Z2. This can be applied to RT∗

c by
“decomposing” the function into suitable functions over Z3 as “building blocks.”

We first describe a slightly extended version of the technique from [10].

8.1 Multicolor Discrepancy

For the whole section, let X1, X2 be fixed finite sets, and let X := X1 × X2. Let G be a finite
abelian group.
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Definition 8.1: Let f : X1 × X2 → G be an arbitrary function and R be a combinatorial
rectangle in X = X1 × X2, i. e., R = A × B, where A ⊆ X1, B ⊆ X2.

For every Y ⊆ G, define the strong Y -discrepancy of f with respect to R, 0Y ( f, R), by

0Y ( f, R) := |εY ( f, R)|, where εY ( f, R) :=
1

|X |

(∣∣ f −1(Y ) ∩ R
∣∣ − |R| ·

|Y |
|G|

)
.

The expression (1/|X |) · | f −1(Y )∩ R| measures the portion of the inputs in R which is mapped
to “colors” in the set Y by the function f . Intuitively, the strong Y -discrepancy of f is close
to zero for all rectangles R iff the Y -colored inputs are “randomly” distributed in the input
space. More precisely, this means that every rectangle R gets approximately the same number
of Y -colored inputs as if we would label the inputs in R by values chosen randomly from G
according to the uniform distribution, which would give an expected number of |R| · |Y |/|G|
inputs with color from Y .

Babai, Hayes, and Kimmel consider strong Y -discrepancy for one-element sets Y in [10]. Ob-
serve that εY ( f, R) =

∑
y∈Y ε{y}( f, R).

The goal is to derive small upper bounds on the strong discrepancy 0Y ( f, R) for a given func-
tion f and arbitrary rectangles R. Babai, Hayes, and Kimmel observed that there is a way to ob-
tain such bounds by using the technique of character sums (or generalized Fourier transforms).
For the following, we use the definitions and basic facts already introduced in Section 6. Addi-
tionally, we use δA for the characteristic function of an arbitrary set A ⊆ G, i. e., δA(x) := 1 if
x ∈ A, and δA(x) := 0, otherwise.

To derive bounds on strong discrepancy, Babai, Hayes and Kimmel consider the following
alternative measure, which may appear to be rather unrelated to strong discrepancy at the first
glance.

Definition 8.2: Let f : X → G be an arbitrary function and R = A × B, where A ⊆ X1,
B ⊆ X2. Furthermore, let χ ∈ Ĝ be a character of G. Define the weak χ -discrepancy of f with
respect to R by

0weak
χ ( f, R) :=

1

|X |

∣∣∣∣∣
∑

x∈R

χ( f (x))

∣∣∣∣∣ .

The following fact proven in [10] (Prop. 2.9) provides a basic relation between weak discrep-
ancy and strong Y -discrepancy for one-element sets Y = {y}.

Proposition 8.3: For all χ ∈ Ĝ, χ 6= χ0,

0weak
χ ( f, R) =

∣∣∣∣∣∣
∑

y∈G

χ(y) ε{y}( f, R)

∣∣∣∣∣∣
.

By this proposition,

0weak
χ ( f, R) ≤ |G| · max

y∈G
|ε{y}( f, R)| = |G| · max

y∈G
0{y}( f, R).
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This may serve as a justification for the term “weak discrepancy.”

Babai, Hayes, and Kimmel discuss the relationship between strong and weak discrepancy in
more detail in [10]. The decisive point for the applicability of the whole approach of “multicolor
discrepancy” is that it is also possible to bound strong discrepancy in terms of weak discrepancy.
Below, we present the central lemma which establishes such a relation. We consider strong Y -
discrepancy for arbitrary sets Y . The same has already been proven for the case |Y | = 1 in [10]
(Lemma 2.7).

Lemma 8.4:

0Y ( f, R) ≤
1

|G|
∑

χ∈Ĝ
χ 6=χ0

∣∣̂δY (χ)
∣∣ · 0weak

χ ( f, R).

Proof: By a straightforward adaptation of the proof of Lemma 2.7 from [10]. First, we observe
that, by the formula for the inverse Fourier transform,

δY (y) =
1

|G|
∑

χ∈Ĝ

χ(y) δ̂Y (χ), for all y ∈ G.

Substituting this into the definition of εY ( f, R), we get

εY ( f, R) =
∑

y∈G

ε{y}( f, R) δY (y) =
∑

y∈G

ε{y}( f, R) ·
1

|G|
∑

χ∈Ĝ

χ(y) δ̂Y (χ)

=
1

|G|
∑

χ∈Ĝ

δ̂Y (χ)
∑

y∈G

χ(y) ε{y}( f, R).

For χ = χ0, the inner sum is

∑

y∈G

ε{y}( f, R) =
1

|X |
∑

y∈G

(∣∣ f −1(y) ∩ R
∣∣ − |R| ·

1

|G|

)
= 0.

Hence,

0Y ( f, R) = |εY ( f, R)| ≤
1

|G|
∑

χ∈Ĝ
χ 6=χ0

δ̂Y (χ)

∣∣∣∣∣∣
∑

y∈G

χ(y) ε{y}( f, R)

∣∣∣∣∣∣
.

By Proposition 8.3, this is the claimed estimate. 2
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8.2 Some Facts on Fourier Transforms

We present two lemmas which will be used later on. The aim is to describe the size of sets
in terms of the Fourier transforms of their characteristic function. For the required facts on
characters of finite groups, we refer to the appendix.

Lemma 8.5: Let G and G ′ be finite abelian groups, and let ϕ : G → G ′ be a group homomor-
phism. Then the set

{
χ ◦ ϕ | χ ∈ Ĝ ′

}
is a subgroup of Ĝ, and there is subgroup H of G such

that Ĥ =
{
χ ◦ ϕ | χ ∈ Ĝ ′

}
. Furthermore, if ϕ is onto (ϕ(G) = G ′), then

∣∣Ĥ
∣∣ = |H | = |G ′|.

Proof: It is easy to verify that
{
χ ◦ ϕ | χ ∈ Ĝ ′

}
is a subgroup of Ĝ by elementary cal-

culations. Since G ∼= Ĝ (Theorem 6.2), it follows that there is a subgroup H of G with
Ĥ =

{
χ ◦ ϕ | χ ∈ Ĝ ′

}
. The last claimed fact is again easy to verify. 2

Lemma 8.6: Let G be a finite abelian group, and let H be a subgroup of G.

(1) For A ⊆ G,
1

|H |
∑

χ∈Ĥ

∣∣̂δA(χ)
∣∣2 = |A|.

(2) For A, B ⊆ G,
1

|H |
∑

χ∈Ĥ

∣∣̂δA(χ)
∣∣ ∣∣̂δB(χ)

∣∣ ≤
√

|A||B|.

Proof: Part (1): By the definition of the Fourier transform, we have

∑

χ∈Ĥ

∣∣̂δA(χ)
∣∣2 =

∑

χ∈Ĥ

(∑

a∈G

χ(a) δA(a)

) ∑

b∈G

χ(b) δA(b)

=
∑

χ∈Ĥ

(∑

a∈A

χ(a)

) ∑

b∈A

χ(b)

=
∑

χ∈Ĥ

∑

a,b∈A

χ(a)χ(b)

=
∑

a,b∈A

∑

χ∈Ĥ

χ(a − b) = |H | · |A|.

The last line follows from the orthogonality relations for the characters of H (Theorem 6.3).

Part (2): By the Cauchy-Schwarz inequality in R|H |,

1

|H |
∑

χ∈Ĥ

∣∣̂δA(χ)
∣∣ ∣∣̂δB(χ)

∣∣ ≤
1

|H |

(∑

χ∈Ĥ

∣∣̂δA(χ)
∣∣2

)1/2(∑

χ∈Ĥ

∣∣̂δB(χ)
∣∣2

)1/2

=
(

1

|H |
∑

χ∈Ĥ

∣∣̂δA(χ)
∣∣2

)1/2( 1

|H |
∑

χ∈Ĥ

∣∣̂δB(χ)
∣∣2

)1/2

=
√

|A||B|.

For the final step, we have applied the first part of the lemma. 2
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8.3 Application to RowTest

We describe the function RT∗
c in the following way. Let c = (c0, c1, . . . , cm), where c0 ∈ Z2

and c1, . . . , cm ∈ Z3.

Define ϕ : Zm
3 × Zm

3 → Zm
3 by ϕ(u, v) := u + v, where u, v ∈ Zm

3 . Furthermore, define
f : Z2m

3 × Z2m
3 → Zm

3 by f (x, y) := ϕ(x)+ ϕ(y), where x, y ∈ Z2m
3 . Finally, let

Yc :=
{

x ∈ Zm
3

∣∣∣∣
m∑

i=1

[xi ≡ ci mod 3] ≡ c0 mod 2

}
.

Then, for all x, y ∈ {0, 1}2m ⊆ Z2m
3 , RT∗

c(x, y) = 1 iff f (x, y) ∈ Yc.

Notice that, by these definitions, we have extended the input space {0, 1}2m × {0, 1}2m of RT∗
c

to the larger input space Z2m
3 × Z2m

3 of f . This is crucial for the smooth application of the
algebraic concepts used for the technique of multicolor discrepancy. For the remainder of this
section, we work within the groups G :=

(
Z2m

3 ,+
)

or G ′ :=
(
Zm

3 ,+
)

(where + denotes the
usual vector addition).

Lemma 8.7: For all c = (c0, c1, . . . , cm), where c0 ∈ Z2 and c1, . . . , cm ∈ Z3,

max
χ∈Ĝ′, χ 6=χ0

∣∣̂δYc(χ)
∣∣ ≤ 2m−1.

Proof: We first consider the case c1 = · · · = cm = 0. Define Am := Y0,0,...,0 and Bm :=
Y1,0,...,0, i. e., Am contains the vectors in Zm

3 with an even number of zero entries, whereas
Bm contains the vectors with an odd number of zero entries. Define ω := e2π i/3. Then all
characters of G ′ =

(
Zm

3 ,+
)

are obtained by defining χu(v) := ω〈u,v〉 for u, v ∈ Zm
3 , where

〈u, v〉 :=
∑3

i=1 uivi is the standard inner product in Zm
3 (Proposition 6.6). Finally, for u ∈ Zm

3
let

Sm(u) :=
∑

v∈Am

ω〈u,v〉, and Tm(u) :=
∑

v∈Bm

ω〈u,v〉.

By these definitions,̂δYc(χu) = Sm(u) or δ̂Yc(χu) = Tm(u) (depending on the value of c0).

First, we consider the case u = 0. Then

Sm(u) = |Am | =
m∑

k = 0

(
m

k

)
1

2
(1 + (−1))k 2m−k =

1

2

(
3m − 1

)
,

Tm(u) = |Bm | =
1

2

(
3m + 1

)
.

Now let u = (u1, . . . , um) 6= 0. There is at least one i such that ui 6= 0. Define u′ :=
(u1, . . . , ui−1, ui+1, . . . , um), and for an arbitrary vector v = (v1, . . . , vm) ∈ Zm

3 , let v′ :=
(v1, . . . , vi−1, vi+1, . . . , vm).
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We have

Sm(u) =
∑

v ∈ Am

ω〈u,v〉 =
∑

v ∈ Am

vi = 0

ω〈u′,v′〉 +
∑

v ∈ Am

vi = 1

ω〈u′,v′〉+ui +
∑

v ∈ Am

vi = −1

ω〈u′,v′〉−ui

=
∑

v′ ∈ Bm−1

ω〈u′,v′〉 + ωui
∑

v′ ∈ Am−1

ω〈u′,v′〉 + ωui
∑

v′ ∈ Am−1

ω〈u′,v′〉

= Tm−1
(
u′) +

(
ωui + ωui

)
Sm−1

(
u′)

= Tm−1
(
u′) − Sm−1

(
u′)

Analogously, Tm(u) = Sm−1
(
u′) − Tm−1

(
u′). Hence, if u′ 6= 0,

Sm(u) = −2 · Sm−1
(
u′) , and

Tm(u) = −2 · Tm−1
(
u′) .

Let u have k nonzero entries, and let u ′ be a vector obtained from u by deleting k − 1 nonzero
entries (and decreasing the size of the vector accordingly). Then, by induction,

Sm(u) = (−2)k−1 · Sm−k+1
(
u′) = (−2)k−1 (Tm−k(0)− Sm−k(0)) = (−2)k−1.

Analogously,

Tm(u) = (−2)k−1 · Tm−k+1
(
u′) = (−2)k−1 (Sm−k(0)− Tm−k(0)) = (−1)k 2k−1.

Especially, we obtain that |Sm(u)|, |Tm(u)| ≤ 2m−1 for all u 6= 0.

It finally remains to consider the general case where c = (c0, c1, . . . , cm) is arbitrarily chosen.
Let c′ := (c1, . . . , cm)

> ∈ Zm
3 . Obviously, we have Yc = Am − c′ or Yc = Bm − c′.

The claim follows from the fact that the absolute value of a Fourier coefficient of a function is
invariant under translations of the inputs. To see this, define τa : G ′ → G ′ by τa(x) := x + a,
where a ∈ G ′ is fixed. Let g : G′ → C be an arbitrary function. Then

|ĝ◦τa(χ)| =

∣∣∣∣∣
∑

u∈G′

χ(u)g(u + a)

∣∣∣∣∣ =

∣∣∣∣∣
∑

u∈G′

χ(u + a)g(u)

∣∣∣∣∣ =

∣∣∣∣∣χ(a)
∑

u∈G′

χ(u)g(u)

∣∣∣∣∣ = |̂g(χ)|.

2

Lemma 8.8: Let c = (c0, c1, . . . , cm), where c0 ∈ Z2, c1, . . . , cm ∈ Z3. Let G =
(
Z2m

3 ,+
)

and G ′ =
(
Zm

3 ,+
)
. Let f : G × G → G ′ be defined by f (x, y) := ϕ(x) + ϕ(y) for x, y ∈ G,

where ϕ : G → G ′ with ϕ(u, v) := u + v for (u, v) ∈ G = Z2m
3 . Then

0Yc( f, R) ≤ 3−4m · 2m−1 ·
√

|R|

for all rectangles R = A × B, where A, B ⊆ G.
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Proof: We have

|εYc( f, R)| ≤ 3−m
∑

χ∈Ĝ′

χ 6=χ0

∣∣̂δYc(χ)
∣∣ · 0weak

χ ( f, R) (by Lemma 8.4)

= 3−m
∑

χ∈Ĝ′

χ 6=χ0

∣∣̂δYc(χ)
∣∣ · 3−4m

∣∣∣∣∣∣
∑

(x,y)∈R

χ(ϕ(x)+ ϕ(y))

∣∣∣∣∣∣
(by Def. 8.2)

= 3−m
∑

χ∈Ĝ′

χ 6=χ0

∣∣̂δYc(χ)
∣∣ · 3−4m

∣∣∣∣∣∣
∑

x∈A

χ(ϕ(x))

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

y∈B

χ(ϕ(y))

∣∣∣∣∣∣
(using R = A × B)

The mapping ϕ is obviously a group homomorphism (a linear transform) from G = Z2m
3 to

G ′ = Zm
3 , and it is onto. By Lemma 8.5, there is a subgroup H of G with Ĥ :=

{
χ ◦ ϕ

∣∣ χ ∈ Ĝ ′},
and |H | = 3m . By the definition of the Fourier transform, we have

∣∣∣∣∣
∑

x∈A

χ(ϕ(x))

∣∣∣∣∣ =
∣∣̂δA(χ ◦ ϕ)

∣∣

for all χ ∈ Ĝ ′. Lemma 8.6 from Section 8.2 yields

3−m
∑

χ∈Ĝ′

∣∣∣∣∣∣
∑

x∈A

χ(ϕ(x))

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

y∈B

χ(ϕ(y))

∣∣∣∣∣∣
= 3−m

∑

ψ∈Ĥ

∣∣̂δA(ψ)
∣∣ ∣∣̂δB(ψ)

∣∣ ≤
√

|A||B|. (∗)

Now we are ready to complete the estimate for εYc( f, R). We have

|εYc( f, R)| ≤ 3−m
∑

χ∈Ĝ′

χ 6=χ0

∣∣̂δYc(χ)
∣∣ · 3−4m

∣∣∣∣∣∣
∑

x∈A

χ(ϕ(x))

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

y∈B

χ(ϕ(y))

∣∣∣∣∣∣

≤ 3−4m · max
χ∈Ĝ′, χ 6=χ0

∣∣̂δYc(χ)
∣∣ · 3−m

∑

χ∈Ĝ′

χ 6=χ0

∣∣∣∣∣∣
∑

x∈A

χ(ϕ(x))

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

y∈B

χ(ϕ(y))

∣∣∣∣∣∣

≤ 3−4m · max
χ∈Ĝ′, χ 6=χ0

∣∣̂δYc(χ)
∣∣ ·

√
|A||B| (using (∗))

≤ 3−4m · 2n−1 ·
√

|A||B| (by Lemma 8.7).

2

Finally, we use Lemma 8.8 to prove the desired upper bound on the discrepancy of RT∗
c .
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Proof of Lemma 3.6: Let S := {0, 1}2m × {0, 1}2m . We use the trivial embedding of S into
X = Z2m

3 × Z2m
3 . Let R ⊆ S. Then we have

(RT∗
c)

−1(1) ∩ R = f −1(Yc) ∩ R, and

(RT∗
c)

−1(0) ∩ R = f −1(Yc) ∩ R,

where f is the function from Lemma 8.8. Furthermore, Y(c0,c1,...,cm) = Y(c0,c1,...,cm), and

|Y(0,c1,...,cm)| =
1

2

(
3m − 1

)
, and |Y(1,c1,...,cm)| =

1

2

(
3m + 1

)
.

This follows in the same way as for the case c1 = · · · = cm = 0 considered in the proof of
Lemma 8.7.

Let ε := max
{
0Yc( f, R), 0Yc

( f, R)
}
, where R is an arbitrary rectangle in S =

{0, 1}2m × {0, 1}2m . By the definition of strong discrepancy,

1

|X |

∣∣∣
∣∣ f −1(Yc) ∩ R

∣∣ − |R| · |Yc|/|G ′|
∣∣∣ ≤ ε, and

1

|X |

∣∣∣
∣∣ f −1(Yc) ∩ R

∣∣ − |R| · |Yc|/|G ′|
∣∣∣ ≤ ε.

Thus,

1

|S|

∣∣∣
∣∣ f −1(Yc) ∩ R

∣∣ −
∣∣ f −1(Yc) ∩ R

∣∣
∣∣∣ ≤ 2ε ·

|X |
|S|

+
|R|

|S||G ′|
∣∣|Yc| − |Yc|

∣∣
︸ ︷︷ ︸

= 1

≤ 2ε ·
|X |
|S|

+
1

|G ′|
.

Rewriting this for the function RT∗
c instead of f , we obtain

1

|S|

∣∣∣
∣∣(RT∗

c)
−1(1) ∩ R

∣∣ −
∣∣(RT∗

c)
−1(0) ∩ R

∣∣
∣∣∣ ≤ 2ε ·

|X |
|S|

+
1

|G ′|
.

It only remains to substitute the upper bound

ε ≤ 3−4m · 2m−1 ·
√

|R|

from Lemma 8.8, which yields

1

|S|

∣∣∣
∣∣(RT∗

c)
−1(1) ∩ R

∣∣ −
∣∣(RT∗

c)
−1(0) ∩ R

∣∣
∣∣∣ ≤ 2−3m ·

√
|R| + 3−m ≤ 2−m + 3−m.

The last inequality follows using the trivial bound |R| ≤ 24m . 2
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Appendix: Improving Thathachar’s Result

Thathachar has proven that a function which is closely related to the function from the main
result of this paper has deterministic read-(k + 1)-times BPs of polynomial size, but requires
exponential size for randomized and nondeterministic read-k-times BPs (for not too large k). In
this part of the appendix, we improve the lower bound for the randomized case with respect to
the error bound.

First, we sketch the technique for proving lower bounds on the size of randomized read-k-
times BPs (for arbitrary k) which is behind Thathachar’s original result as well as the improved
one. This proof technique has first been used in the conference version of this work [47] and is
based on ideas of Borodin, Razborov, and Smolensky [16] for the nondeterministic case. The
key notion of the technique are generalized rectangles defined as follows.

Definition A.1: Let X be a set of variables, n := |X |. Let k, a be integers, where k ≥ 1 and
2 ≤ a ≤ n. Let sets X1, . . . , Xka ⊆ X be given with

(i) X1 ∪ · · · ∪ Xka = X and |X i | ≤ dn/ae, for i = 1, . . . , ka;

(ii) each variable from X appears in at most k of the sets X i .

A function r : {0, 1}n → {0, 1} is called (k, a)-rectangle in {0, 1}n with respect to X1, . . . , Xka

(or generalized rectangle, if we do not care about the parameters) if there are functions
r1, . . . , rka : {0, 1}n → {0, 1} such that

(i) ri does not essentially depend on the variables from X i , for i = 1, . . . , ka;

(ii) r = r1 ∧ · · · ∧ rka .

By setting k = 1 and a = 2 in this definition, we obtain combinatorial rectangles (as in Defi-
nition 1.1) as a special case. The following theorem shows that deterministic read-k-times BPs
yield partitions of the input space into (k, a)-rectangles analogous to the partitions into (1, 2)-
rectangles studied in the main part of the paper.

Theorem A.2: Let G be a deterministic read-k-times BP representing the function
f : {0, 1}n → {0, 1} defined on variables from the set X, |X | = n. Let a ≥ 2 be an integer.
Then there are (k, a)-rectangles r1, . . . , rt (each with its own sets X1, . . . , Xka according to
Definition A.1) such that

(i) t ≤ (2|G|)ka;

(ii) r−1
i (1) ⊆ f −1(0) or r−1

i (1) ⊆ f −1(1), for all i = 1, . . . , t;

(ii) r−1
1 (1) ∪ · · · ∪ r−1

t (1) = {0, 1}n and r−1
i (1) ∩ r−1

j (1) for i 6= j .

The proof is essentially along the same lines as the proof of the analogous result for nondeter-
ministic read-k-times BPs in the paper [16] of Borodin, Razborov, and Smolensky. The above
theorem allows to exploit lower bounds on approximations of functions by generalized rectan-
gles to prove lower bounds on randomized read-k-times BPs. This works exactly in the same
way as described in Section 5.2, we simply have to substitute generalized rectangles where
(1, 2)-rectangles have been used before. A detailed description can be found in [46] and [48].
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Next, we define Thathachar’s function. Let q 6= 2 be a prime and k ≥ 2. We consider k-
dimensional matrices as inputs, the indices of matrix entries are from the hypercube {1, . . . , n}k .
For d ∈ {1, . . . , k} and i ∈ {1, . . . , n}, we define the index set

I d
i := {(i1, . . . , ink ) ∈ {1, . . . , n}k | id = i},

this is “the i th hyperplane in the dth direction” (e. g., for k = 2, the sets I 1
i , I 2

i contain the
indices of rows and columns, resp.). Notice that

∣∣I d
i

∣∣ = nk−1 for all i and d . For the whole
section, let X be a k-dimensional Boolean matrix of variables and let X d

i be the set of variables
in X corresponding to the index set I d

i .

Definition A.3: Define CHSPk
n : {0, 1}nk → {0, 1} (“Conjunctive Hyperplanar Sum-of-Pro-

ducts”) on the k-dimensional matrix X of Boolean variables by

CHSPk
n(X) :=

∧

1≤d≤k

PTk
n,d(X),

where PTk
n,d : {0, 1}nk → {0, 1} is defined for d ∈ {1, . . . , k} by

PTk
n,d(X) :=




n∑

i=1

⊕

x∈Xd
i

x ≡ 0 mod q


 .

(As usual, “⊕” denotes the addition in Z2, a ⊕ b := (a + b) mod 2 for a, b ∈ {0, 1}.)

For the following, we allow that k is a function of n, but we assume that q is a constant with
respect to n. We remark that in Thathachar’s original paper, the function CHSPk

n is defined for
input matrices over {−1, 1}. It is easy to verify that Thathachar’s results also hold for the usual
Boolean input space due to the one-to-one and onto correspondence between the encodings.

Thathachar has proven the following.

Theorem A.4 (Thathachar [51]): Let N = nk+1 (the input size of CHSPk+1
n ).

(1) The complement of CHSPk+1
n , ¬CHSPk+1

n , can be represented by nondeterministic read-
once BPs of size O

(
(k + 1)N

)
;

(2) each nondeterministic read-k-times BP and each randomized read-k-times BP with two-
sided error (1/3) · 2−(2q−1)k+1

for CHSPk+1
n has size exp

(
�

(
N 1/(k+1) · k−3 · 2−2k

))
.

The first part of this theorem is easy to see. In a nondeterministic read-once BP for ¬CHSPk+1
n ,

we guess a single direction d ∈ {1, . . . , k + 1} and then evaluate ¬PTk+1
n,d by a deterministic

read-once BP of size O
(
nk+1

)
. For a 1-input of ¬CHSPk+1

n , at least one of the k + 1 func-
tions ¬PTk+1

n,d yields the output 1. This nondeterministic read-once BP can also be seen as a

randomized read-once BP with one-sided error 1 − 1/(k + 1), hence we even have CHSPk+1
n ∈

coRP1−1/(k+1)-BP1.

The lower bounds in Part (2) are based on the technique of Borodin, Razborov, and Smolensky
for the nondeterministic case and the variant of this technique described above for the random-
ized case, resp. We improve the result for the randomized case as follows.
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Theorem A.5: Let N = nk+1 and k = O(log n). Let γN , γ
′
N > 0 be arbitrarily chosen such

that γN , γ
′
N = �(1/Poly(N )). Then each randomized read-k-times BP for CHSPk+1

n with

(1) two-sided error q−(k+1) − γN ; or

(2) one-sided error (q − 1)/
(
qk+1 − 1

)
− γ ′

N

has size exp
(
�

(
N 1/(k+1) · k−3 · 2−2k

))
.

The most difficult part of the proof of Theorem A.5 has already been done by Thathachar. He
has shown that the function CHSPk+1

n has low 1-density with respect to (k, a)-rectangles and
the uniform distribution, where a is suitably chosen.

Lemma A.6 (Thathachar [51]): Let a := 144 ·k ·2k , and let r be an arbitrary (k, a)-rectangle
in {0, 1}N , N = nk+1. Then

∣∣r−1(1) ∩
(
CHSPk+1

n

)−1
(1)

∣∣ · 2−N ≤ α ·
∣∣r−1(1)

∣∣ · 2−N + δN ,

where α := 1/q and δN := 2γ
(
6(k+1)2k+1

)−1
N 1/(k+1)

, γ := cos(π/q)1/80 < 1.

The key to the improvement with respect to the error bounds is the following asymptotically
precise estimate of the number of 1-inputs of CHSPk

n:

Lemma A.7: Let N = nk and k = 2o(n). Then
∣∣(CHSPk

n

)−1
(1)

∣∣ · 2−N = q−k ·
(

1 ± 2−�
(
N 1/k

))
.

We prove this later on. First, we put the lemmas together to obtain the desired result.

Proof of Theorem A.5: Part (1): We apply the “rectangle technique” for (k, a)-rectangles,
where we choose a := 144 · k · 2k . Let G be a randomized read-k-times BP representing
CHSPk+1

n with two-sided error ε. Then G yields an approximation of CHSPk+1
n with respect to

the uniform distribution over {0, 1}N which also has two-sided error ε and uses at most (2|G|)ka

(k, a)-rectangles. The version of Theorem 2.2 for (k, a)-rectangles and exchanged roles of 0-
and 1-inputs yields the lower bound

δ−1
N ·

(
(1 − α) ·

∣∣(CHSPk+1
n

)−1
(1)

∣∣ − max(1 − α, α) · ε
)

on the number of (k, a)-rectangles in such an approximation. Hence,

|G| ≥
1

2
·
[
δ−1

N ·
(
(1 − α) ·

∣∣(CHSPk+1
n

)−1
(1)

∣∣ − max(1 − α, α) · ε
)]1/(ka)

.

Plugging in the results from Lemma A.6 and A.7 yields

|G| ≥
1

2
·
[
δ−1

N ·
((

1 −
1

q

)
·
(

q−(k+1) − ϑN − ε
))]1/(ka)

,

where ϑN = 2−�
(
N 1/(k+1)

)
= 2−�(n).
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Substituting ε = q−(k+1) − γN , we get

|G| ≥
1

2
· δ−1/(ka)

N ·
((

1 −
1

q

)
· (γN − ϑN )

)1/(ka)

.

By assumption, we have γN ≥ 1/p(N ) for some polynomial p and N large enough. Since
k = O(log n), it follows that N = nk+1 = nO(log n) = 2O

(
log2 n

)
, and thus γN = 2−O

(
log2 n

)
. On

the other hand, ϑN = 2−�(n). Hence, γN − ϑN ≥ c · γN for some constant c > 0 and N large
enough, and

(γN − ϑN )
1/(ka) = 2−O

(
log2 n·k−2·2−k

)
.

Since

δ
−1/(ka)
N = 2�

(
n·k−3·2−2k

)
,

the lower bound for |G| is of the required size.

Part (2): Let G be a randomized read-k-times BP representing CHSPk+1
n with one-sided error ε.

Analogously to the first part, but with the lower bound for one-sided error from Theorem 2.2,
we obtain

|G| ≥
1

2
·
[
δ−1

N ·
(
(1 − α) ·

∣∣(CHSPk+1
n

)−1
(1)

∣∣ − α · ε ·
∣∣(CHSPk+1

n

)−1
(0)

∣∣
)]1/(ka)

≥
1

2
· δ−1/(ka)

N

[(
1 −

1

q

) (
q−(k+1) − ϑN

)
−

1

q
· ε ·

(
1 − q−(k+1) − ϑ ′

N

)]1/(ka)

,

where ϑN , ϑ
′
N = 2−�

(
N 1/(k+1)

)
= 2−�(n). Now we substitute ε = (q − 1)/

(
qk+1 − 1

)
− γ ′

N
and estimate the term within the brackets. We have

(
1 −

1

q

)
· q−(k+1) −

1

q
· ε ·

(
1 − q−(k+1))

=
(

1 −
1

q

)
· q−(k+1) −

((
1 −

1

q

) (
qk+1 − 1

)−1 −
γ ′

N

q

)
·
(
1 − q−(k+1))

=
γ ′

N

q
·
(
1 − q−(k+1)) ≥

γ ′
N

q
·
(
1 − q−2) = c · γ ′

N ,

for some constant c > 0. Furthermore,

−
(

1 −
1

q

)
· ϑN +

1

q
· ε · ϑ ′

N

= −
(

1 −
1

q

)
· ϑN +

((
1 −

1

q

)
·
(
qk+1 − 1

)−1 −
γ ′

N

q

)
· ϑ ′

N

= 2−�(n).

Hence, the term within the brackets above is of order c·γ ′
N −2−�(n). Since γ ′

N = �(1/Poly(N )),
we obtain that the lower bound for |G| is of the desired size analogously to the first part. 2
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In the remainder of the section, we prove Lemma A.7. As for the function MSn in Section 7,
we will have to count the number of solutions of equations over finite fields. We prove the
following tool in advance.

Lemma A.8: Let n be an arbitrary positive integer, q an odd prime, and c ∈ Z2q . Define

S(n, q, c) :=
∣∣{x ∈ Zn

2

∣∣ x1 + · · · + xn ≡ c mod (2q)
}∣∣.

Then
∣∣S(n, q, c)− 2n/(2q)

∣∣ ≤ (1 − 1/(2q)) · 2n/2 · (1 + cos(π/q))n/2.

If q is a constant with respect to n, then S(n, q, c) = 2n/(2q) ·
(
1 ± 2−�(n)).

Proof: Our aim is to apply Theorem 6.7 from the first part of the appendix. We choose G =
(Z2q,+). The character group of G consists of the functions χu , u ∈ Z2q , defined by

χu(v) = (−1)uv · ωuv, for all v ∈ Z2q ;

where ω = e2π i/q and the computation of the exponents is done in Z. Using Theorem 6.7, we
obtain the estimate
∣∣S(n, q, c)− 2n/(2q)

∣∣ ≤ 1/(2q) ·
∑

u∈Z2q , u 6=0

|1 + χu(1)|n ≤ 1/(2q) ·
∑

u∈Z2q , u 6=0

∣∣1 + (−1)u · ωu
∣∣n
.

We have |1 + (−1)u ·ωu|2 = 2
(
1 + cos(πu(1 + 2/q))

)
. The function cos(πu(1 + 2/q)) attains

its maximal value 1 if u ≡ 0 mod (2q), and its minimal value −1 if u ≡ q mod (2q). For
u 6≡ 0 mod (2q), the maximal value is obtained by choosing u such that u(1 + 2/q) is as close
to an even integer as possible. Since the distance is at least 1/q, we have cos(πu(1 + 2/q)) ≤
cos(π/q) for u 6≡ 0 mod (2q). Substituting this into the above estimate gives the first part of
the claim. For the second part, we use that cos(π/q) = 1 − (π/q)2/2 + O

(
(π/q)4

)
by Taylor

series expansion. 2

Proof of Lemma A.7: Let X be the k-dimensional input matrix of CHSPk
n . We start by “guess-

ing” the results of the parity checks for all kn hyperplanes, let these be the constants pd
i ∈ Z2,

for d ∈ {1, . . . , k} and i ∈ {1, . . . , n}. We have CHSPk
n(X) = 1 iff

∑

x∈Xd
i

x ≡ pd
i mod 2, for all d ∈ {1, . . . , k} and i ∈ {1, . . . , n}; (1)

and

n∑

i=1

pd
i ≡ 0 mod q, for all d ∈ {1, . . . , k}. (2)

Equation (1) can also be seen as a linear system of equations for the nk variables of X in Z2.
We recursively define the kn × nk coefficient matrix of this system.
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First, let M1 be the n × n identity matrix. For k > 1, define the kn × nk matrix Mk as follows
(empty spaces indicate zero-entries):

Mk :=

nk−1
︷ ︸︸ ︷ nk−1

︷ ︸︸ ︷ nk−1
︷ ︸︸ ︷




1 1 · · · 1
1 1 · · · 1

.
.
.

1 1 · · · 1

k-1M k-1M · · · k-1M








n





(k − 1)n

The matrix Mk consists of n lines containing nk−1 consecutive ones each in the upper part and
of n copies of the (k − 1)n × nk−1-dimensional matrix Mk−1 in the lower part.

Let x = (x1, . . . , xnk ) and b := (p1
1, . . . , p1

n, . . . , pk
1, . . . , pk

n) ∈ Zkn
2 . By these definitions,

Equation (1) becomes

Mk · x ≡ b mod 2. (3)

We count the number of solutions of this system for fixed pd
i . As the second step, we will count

the number of possible choices for the pd
i .

We prove by induction that Mk has rank kn − (k − 1). For k = 1, the claim is obviously true.
Now consider the matrix Mk , k > 1. We assume that Mk−1 has rank (k − 1)n − (k − 2).
For i = 1, . . . , n call the columns (i − 1)nk−1 + 1, . . . , ink−1 in Mk the i th block. Apply the
following column-transformations on Mk : Add the first block to all n − 1 other blocks, which
cancels out all copies of Mk−1 in the lower part except in the first block and changes all zeros
to ones in the first row of the blocks 2, . . . , n. It is easy to see that the set of column vectors in
the blocks 2, . . . , n obtained in this way has rank n − 1. Furthermore, no column vector from
the first block is a linear combination of columns in the blocks 2, . . . , n and vice versa. Finally,
the column vectors of the first block have rank (k − 1)n − (k − 2) by assumption. Hence, Mk

has rank (k − 1)n − (k − 2)+ (n − 1) = kn − (k − 1) altogether.

Now we apply the following row transformations to Mk in order to simplify the System (3).
For d = 1, . . . , k − 1, add the rows (d − 1)n + 2, . . . , (d − 1)n + n as well as the rows
dn + 1, . . . , dn + n to row (d − 1)n + 1. In each modified row (d − 1)n + 1, this cancels out all
entries in the coefficient matrix, and on the right hand side of the equation we obtain the new
constant

n∑

i=1

pd
i +

n∑

i=1

pd+1
i .
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Let M̃k the matrix obtained from Mk by removing the rows (d − 1)n + 1, d = 1, . . . , k − 1. Let
b̃ be the right hand side obtained from b in the same way. Then we can replace system (3) by

M̃k · x ≡ b̃ mod 2 ∧ (4)
n∑

i=1

pd
i +

n∑

i=1

pd+1
i ≡ 0 mod 2, for d = 1, . . . , k − 1. (5)

We have proven above that M̃k has full rank. Hence, System (3) has exactly 2nk−kn+k−1 solu-
tions if (5) is fulfilled, and no solution otherwise.

It remains to count the number of the pd
i fulfilling (2) and (5). We first notice that (5) is

equivalent to

n∑

i=1

p1
i ≡

n∑

i=1

p2
i ≡ · · · ≡

n∑

i=1

pk
i mod 2.

For c ∈ Z2 define

Nc :=
∣∣{(x1, . . . , xn) ∈ Zn

2

∣∣ x1 + · · · + xn ≡ c mod 2 ∧
n∑

i=1

xi ≡ 0 mod q
}∣∣,

to count the number of possible choices for a set of constants pd
1 , . . . , pd

n for fixed parity c.
Since Z2q

∼= Z2 × Zq , we have N0 = S(n, 2q, 0) and N1 = S(n, 2q, q). By Lemma A.8,

N0 =
2n

2q
· (1 + γn) , N1 =

2n

2q
·
(
1 + γ ′

n

)
,

where |γn|, |γ ′
n| = 2−�(n). The total number of choices for the pd

i fulfilling (2) and (5) is

N k
0 + N k

1 =
(

2n

2q

)k

·
(
(1 + γn)

k + (1 + γ ′
n)

k) .

Since k = 2o(n), this is of order 2 · (2n/(2q))k ·
(
1 ± 2−�(n)). For each of these choices we

obtain 2nk−kn+k−1 1-inputs for CHSPk
n . Hence, the total number of 1-inputs is

2nk−kn+k−1 (
N k

0 + N k
1

)
= 2nk · 2−kn+k−1 · 2

(
2n

2q

)k

·
(

1 ± 2−�(n)
)

= 2nk · q−k · (1 + o(1)).

2
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