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Extracting Randomness via Repeated Condensing
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Abstract

On an input probability distribution with some (min-)entropy an eztractor outputs a dis-
tribution with a (near) maximum entropy rate (namely the uniform distribution). A natural
weakening of this concept is a condenser, whose output distribution has a higher entropy rate
than the input distribution (without losing much of the initial entropy).

In this paper we construct efficient explicit condensers. The condenser constructions combine
(variants or more efficient versions of) ideas from several works, including the block extraction
scheme of [NZ96], the observation made in [SZ94, NT99] that a failure of the block extraction
scheme is also useful, the recursive “win-win” case analysis of [ISW99, ISW00], and the error
correction of random sources used in [Tre99].

As a natural byproduct, (via repeated iterating of condensers), we obtain new extractor
constructions. The new extractors give significant qualitative improvements over previous ones
for sources of arbitrary min-entropy; they are nearly optimal simultaneously in the main two
parameters - seed length and output length. Specifically, our extractors can make any of these
two parameters optimal (up to a constant factor), only at a poly-logarithmic loss in the other.
Previous constructions require polynomial loss in both cases for general sources.

We also give a simple reduction converting “standard” extractors (which are good for an
average seed) to “strong” ones (which are good for most seeds), with essentially the same
parameters. With it, all the above improvements apply to strong extractors as well.
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1 Introduction

1.1 Extractors

A line of research, (initiated by [vN51, Blu86, SV86]) is motivated by the question of availability
of truly random bits. The idea is to make truly random bits available (for example to probabilistic
algorithms) by refining the (imperfect) randomness found in some natural physical processes. It
was shown by [SV86] that this task cannot be performed by deterministic algorithms, even when
assuming that the source has some “nice” structure. In light of this, the goal of this line of
research became “spending” as few as possible truly random bits in order to extract as many
as possible (almost) truly random bits from arbitrary imperfect random sources which contain
sufficient randomness.

The most general definition of weak random sources and the formal definition of extractors
emerged from the works of [Zuc90, Zuc96, NZ96]. The definition of extractors requires quantifying
two notions: The first is the amount of randomness in probability distributions, which is measured
using a variant of the entropy function called min-entropy.

Definition 1 A distribution X is called a k-source if the probability it assigns to every element in
its range is bounded by 27%. The min-entropy of X, (denoted by Hoo(X)) is the mazimal k such
that X is a k-source.

The second notion is the quality of the extracted bits, which is measured using the statistical
distance between the extracted bits and truly uniform ones.

Definition 2 Two distributions P, Q, (over the same domain Q) are e-close if they have statistical
distance of at most €. (For every event A C Q, the probability that the two distributions assign to
A differ by at most €). We use Uy to denote the uniform distribution on l bit strings.

Extractors are functions which use few truly random bits to extract many (almost) truly random
bits from arbitrary distributions which “contain” sufficient randomness.

Definition 3 [NZ96] A function Ext : {0,1}" x {0,1}¢ — {0,1}™ is a (k, ¢)-extractor if for every
k-source X, the distribution Ext(X,Uy), (obtained by running the extractor on an element sampled
from X and a uniformly chosen d bit string, which we call the seed) is e-close to Up,.

Informally, we will say that an extractor uses a seed of length d in order to extract m bits from
distributions on n bits which contain k& random bits. We refer to the ratio between m and k as the
fraction of the randomness which the extractor extracts, and to the ratio between k and n as the
entropy rate of the source.

Apart from their obvious application, extractors turned out to be useful in many areas in
complexity theory and combinatorics, with examples being pseudo-random generators for space
bounded computation, deterministic amplification, oblivious sampling, constructive leader election
and explicit constructions of expander graphs, super-concentrators and sorting networks. The
reader is referred to the excellent survey papers [Nis96, NT99].

1.2 Previous Results

Extractor constructions are measured by viewing d and m as functions of the source parameters (n
and k) and the required error €. A recent result of [RRV99a] enables us to rid ourselves of €, and



assume that e is a small constant!. We maintain this convention throughout the introduction.

When constructing extractors there are two possible objectives: minimizing the seed length d
and maximizing the output size m. It should be noted that the existence of an optimal extractor
(which optimizes both parameters simultaneously, and matches the known lower bounds) can be
easily proven using the probabilistic method. Thus, the goal is to match this performance with
explicit constructions?.

In the remainder of this sub-section we survey the best explicit extractors constructions known
for the two objectives. Tables 1,2 state more extractor constructions, but are far from covering the

mass of work done in this area.

1. Minimizing the seed length: A lower bound of Q(logn) on the seed length was given in
[NZ96]. In contrast to the (non-explicit) optimal extractor which uses a seed of length O(logn) to
extract all the randomness from the source, explicit constructions of extractors can optimize the
seed length only at the cost of extracting a small fraction of the randomness. The situation is not
so bad for large k, (k = Q(n)) as the extractor of [Zuc97] uses a seed of length O(logn) to extract a
constant fraction of the initial randomness. However, for smaller k, explicit constructions can only
extract a polynomial fraction of the initial randomness, (m = k'~® for an arbitrary constant ).
This result was first achieved in [Tre99] for £ = n*(1) and later extended for any & in [ISW00].

2. Maximizing the output size: Explicit extractors can extract large fractions of the ran-
domness only at the cost of enlarging the seed length. A general method to increase the fraction
extracted at the cost of enlarging the seed length was given in [WZ99]. The best extractors which
extract all the randomness out of random sources are constructed this way from extractors which
extract a constant fraction of the randomness. In light of this, we focus our attention to extractors
which extract a constant fraction. The best such explicit extractor is by [RRV99b], which uses a
seed of length O(log®n).

Concluding this presentation, we stress that while there are explicit constructions which are
optimal in any of these two parameters, the cost is a polynomial loss in the other.

1.3 New Results

We give two constructions, each optimal in one of the parameters and losing only a poly-logarithmic
factor in the other. Thus, both come closer to simultaneously optimizing both parameters. The re-
sults are stated for constant €, (see section 7 for the exact dependence on €). In the first construction
we extract any constant fraction of the initial randomness using a seed of length O(log n-(loglogn)?).
This improves the best previous such result by [RRV99b] which uses a seed of length O(log? n).

Theorem 1 For every n,k and constant €, there are explicit (k,e)-extractors Ext : {0,1}" x
{0, 1}0O(log n-(loglogn)*) _, {0,1}(=®)% where o > 0 is an arbitrary constant.

Using [WZ99], we get the following corollary®, which also improves the previous best construc-
tion which extract all the randomness by [RRV99b].

![RRV99a] gave a general explicit transformation which transforms an extractor with constant error into an
extractor with arbitrary small error while harming the other parameters only slightly more than they need to be
harmed. The exact dependence of our results on € is presented in section 7.

2A family of extractors is explicit if it can be computed in polynomial time. Formally, a family E = {E,} of
extractors is defined given polynomially computable integer functions d(n), m(n), k(n),e(n) where E, : {0,1}" x
{0,134 — {0,1}™™ is a (k(n),e(n))-extractor. The family is explicit in the sense that F, can be computed in
time polynomial in n.

3The corollary does not follow directly from the version of theorem 1 stated here. A stronger version in which
€ = 1/polylog(n) is necessary. The stronger version follows from our exact analysis, see section 7.
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Table 1: Extracting a constant fraction: m = (1 — a)k for arbitrary a > 0

H reference ‘ min-entropy k ‘ seed length d ‘
[Zuc97] k=Q(n) O(logn)

[TS96] any k O(log’ n)

[ISW00] | k= 20(v/logn) O(logn - loglog logn)

[RRV99b] | any k O(log” n)
Thm. 1 | any k O(logn - (loglogn)?)
H optimal ‘ any k ‘ O(logn) ‘

Table 2: Optimizing the seed length: d = O(logn)
| reference | min-entropy k | output length m ||

[Zuc97] | k= Q(n) (1—a)k
[Tre99] | k= n®0 ke
[ISW00] | k = 200leem) | (k)
[ISW00] | any k ke
E
Thm. 2 | any & Q(logn)
| optimal | any k | k |

All the results are stated for constant €. « is an arbitrary small constant.

Corollary 1 For every n,k and constant €, there are explicit (k,e€)-extractors Ext : {0,1}" x
{0’ 1}O(logn-(loglogn)Q-logk) N {O, 1}]6-

Our second construction uses the optimal seed length (that is O(logn)) to extract m = Q(k/ logn)
bits, this improves the best previous result by [ISW00] which could only extract m = k'~ bits.

Theorem 2 For every n,k and constant €, there are explicit (k,e)-extractors Ext : {0,1}™ x
{0’ 1}O(logn) N {0, 1}Q(k/ logn)

Using [ISW00], we get the following corollary, (in which the “loss” depends only on k)*.

Corollary 2 For every n,k and constant €, there are explicit (k,e€)-extractors Ext : {0,1}" x
{0’ 1}O(logn) N {0’ 1}Q(k/(log k-loglogk))

Condensers

The main construction of this paper is of a primitive we call a condenser (which is a natural
weakening of an extractor). We call the ratio between the amount of randomness in a source and
its length the entropy-rate of the source. Using this terminology, an extractor is a function that uses
few random bits to convert any random source which contains enough randomness into a source
with entropy rate 1. A condenser® is a function that uses few random bits to convert any random
source which contains enough randomness into a source of larger entropy rate.

Though weaker than extractors, condensers can be used to construct extractors by repeatedly
condensing the source until its entropy-rate becomes close to 1.

4[ISW00] show that an extractor Ext : {0,1}’”0(1) x {0,1}* = {0,1}™ can be used to construct an extractor
Ext : {0,1}" x {0,1}4+00cen) _; £ 1}2(m/loglogk) for any p.

5The notion of condensers was also used in [RR99]. While similar in spirit, that paper deals with a completely
different set of parameters and uses different techniques.



Transforming general extractors into strong extractors

Speaking informally, a strong extractor is an extractor in which the output distribution is inde-
pendent of the seed®. In some applications of extractors it is beneficial to have the strong version.
Most extractor constructions naturally lead to strong extractors, yet some (with examples being
[TS96, ISW00] and the constructions of this paper), are not strong or difficult to analyze. We solve
this difficulty by giving a general explicit transformation which transforms any extractor into a
strong extractor with essentially the same parameters. Exact details are given in section 8.

1.4 Technique
High level overview

In contrast to latest extractors papers [Tre99, RRV99b, ISW00] we do not use Trevisan’s paradigm.
Instead, we revisit [NZ96] and attempt to construct block sources, (A special kind of sources which
allow very efficient extraction). Following [SZ94, NT99], we observe that when failing to produce
a block source the method of [NZ96] “condenses” the source. This enables us to use a “win-win”
case analysis as in [ISW99, ISW00] which eventually results in a construction of a condenser. Our
extractors are then constructed by repeated condensing. The parameters of these extractors are
not as good as those stated in section 1.3. In order to get the promised parameters, we improve
the construction of [NZ96].

Block sources

One scenario in which very efficient extraction is possible, is when the source distribution X is
made of two independent concatenated distributions X = (X, X2), where X7 is a kj-source and
X is a keg-source. Extractors for this special scenario (which are called block-source extractors)
can be constructed by composing two extractors: An extractor with optimal seed length can be
used to extract random bits from X5, and these bits, (being independent of X7), can be used as
seed to extract all the randomness from X using an extractor with large output. (Note, that with
today’s best extractors this argument uses the optimal seed length to extract all the randomness
from X7, as long as ko is at least polylog(n)). The requirement that X; and X5 be independent
could be relaxed in the following way, (that was suggested in [CG88]): Intuitively, it is sufficient
that X7 contains k; random bits, and X5 contains ko random bits which are not contained in Xj.
Such sources are called block-sources’. Thus, extracting randomness from general sources can be
achieved by giving a construction which uses few random bits to transform a general source into a
block source, and using a block-source extractor.

This approach was suggested by Nisan and Zuckerman in [NZ96]. They constructed a “block
extraction scheme”, that is a scheme which given an arbitrary source X, uses few random bits
to produce a new source B (called a block) which is shorter than the initial source, and contains
a large fraction of the initial randomness. This means that the distribution (B, X) meets the
first requirement of block sources: The first block contains randomness. Intuitively, to meet the
second requirement one should give an upper bound on the amount of randomness contained in B,
and conclude that there is some randomness in X which is not contained in B. However, in the
construction of Nisan and Zuckerman such an upper bound can be achieved only “artificially”, by

In the original paper [NZ96] strong versions of extractors were defined and constructed, and the notion of a
“non-strong” extractor was later given by Ta-Shma, [TS96].

"More precisely, a (k1, k2)-block source is a distribution X = (X3, X2) such that X; is a ki-source, and for every
possible value z1 of X1, the distribution of X5, conditioned on the event that X; = x1, is a k2-source.



making the length of B smaller than k. This has a costly effect, as the amount of randomness that
is guaranteed to be in B is proportional to its length. In particular, when k£ < y/n choosing the
length of B this way, it may be the case that B contains no randomness. As a result, the extractors
of [NZ96] do not work when k < y/n.

A “win-win” analysis

A way to go around this problem was suggested in [SZ94, NT99]. The idea is to argue that when
the block extraction scheme fails to produce a block source, it produces a block B which is more
“condensed” than the initial source. More precisely, we will use the block extraction scheme to
produce a block B, (say of length n/2). Consider the distribution (B, X). Recall that for our
purposes, it suffices that X contains very few random bits that are not contained in B. In other
words, when we fail to construct a block source, this happens because (almost) all the randomness
“landed” in B. In this case, we obtained a block that is more condensed than the initial source X.
(It has roughly the same amount of randomness and half the length).

Using this idea recursively, at each step either we construct a block source, (from which we can
extract randomness), or we condense the source. There is a limit on how much we can condense
the source. Certainly, when the length reduces to k, no further condensing is possible. This means
that running this procedure recursively enough times we will obtain a block source.

The outcome of the above procedure is several “candidate” distributions, where one of them
is a block source. Not knowing which is the “right one”, we run block source extractors on all
of them, (using the same seed). We know that one of the distributions we obtain is close to
uniform. It turns out that the number candidate distributions is relatively small. This means
that concatenating the output distributions produces a new source which is much shorter than the
initial source and contains a large fraction of the initial randomness. Thus, we have constructed
a condenser. Our extractors are then constructed by repeatedly condensing the source until it
becomes close to uniform.

A very similar approach has already been used in [NT99]. (Actually, the construction in that
paper is far more complex, partly because the extractors they had available were not as good as
the ones we have now). Still, (even when plugging in very good extractors), the method explained
above is too costly and ends up constructing an extractor that uses a large seed and extracts a
small fraction of the randomness. We overcome this problem by improving the main primitive in
our construction: the block extraction scheme of Nisan and Zuckerman.

Improved block extraction

Let us delve into the parameters. The block extraction scheme of Nisan and Zuckerman spends
O(logn) random bits when producing a block B of length n/2, and can guarantee that B is an
Q(k/log(n/k))-source. This turns out to be too costly to run our recursive construction.

One problem is that the number of random bits used by the block extraction scheme is too large
for our purposes. Since the block extraction scheme already spends O(logn) random bits, we can
only afford to run it a constant number of times if we want to shoot for optimal seed length. Using
the strategy described above we will need to run it roughly logn times, resulting in a large seed
length. We overcome this problem by derandomizing the construction of Nisan and Zuckerman.
We reduce the number of random bits used from logn to loglogn, allowing us to run it a larger
number of times. We find it surprising that some non-trivial extraction task can be performed
using a sub-logarithmic amount of random bits.

A second problem is that we want the block B to contain a constant fraction of the initial



randomness. In the construction of Nisan and Zuckerman this happens only when k = Q(n). To
overcome this problem we show how to reduce the case of k& = o(n) into the case of k& = Q(n).
This is done by error correcting the source prior to using the block extraction scheme. We give
a non-constructive argument to show that every error corrected random source has a “piece” of
length k which is an Q(k)-source. Intuitively, this enables the block extraction scheme to be carried
out on the condensed piece, where it performs best®.

1.5 Organization of the paper

In section 2 we define block sources. In section 3 we construct a block extraction scheme. In section
4 we use the method of [NT99] to show that when using the block extraction scheme either we get a
block source or we condense the source. In section 5 we run the block extraction scheme recursively
and obtain condensers. In section 6 we use the condensers to construct extractors. Section 7 gives
the exact dependence of our extractors on the error parameter e. In section 8 we show how to
transform arbitrary extractors into strong extractors.

2 Block sources

Block sources are random sources which have a special structure. The notion of block sources was
defined in [CG88].

Definition 4 [CG88] Two random wvariables (X1,X2) form a (k1,ke)-block source if X1 is a ki-
source, and for every possible value x1 of X1 the distribution of X, giwven that X1 = z1, is a
ko-source.

Block source extractors are extractors which work on block sources.

Definition 5 A (k,t,¢)-block source extractor is a function Ext : {0,1}™ x {0,1}"2 x {0,1}¢ —
{0,1}™, such that for every (k,t)-block source (X1, X3), (where the X ’s are of length ni,no respec-
tively), the distribution Ext(X1, Xo,Uy) is e-close to Up,.

The definition of block sources is tailored to allow the following composition of extractors.

Theorem 3 (implicit in [NZ96]) If there exist an explicit (k, e1)-extractor Exty : {0,1}™ x{0,1}% —
{0,1}™, and an ezplicit (t,ez)-extractor Exty : {0,1}"2 x {0,1}% — {0,1}%1, then there exists an
explicit (k,t,e1 + e2)-block-source extractor Ext : {0,1}™ x {0,1}"2 x {0,1}9 — {0,1}™.

We can use the above theorem to compose two extractors: one which optimizes the seed length
and another which optimizes the output length. The resulting block-source extractor will “inherit”
the nice properties of both its component extractors. Particularly, taking Fzt; to be the extractor
of [RRV99b] and Ezts to be the extractor of [[SW00], we get the following block-source extractor:

1

Corollary 3 For every ni,no, k and t > log* ny there exists an explicit (k,t, n% + =

extractor BE : {0,1}™ x {0,1}" x {0,1}00en2) _, 10 1}k,

)-block source

8As far as we know, the idea of error correcting random sources (in the context of extracting randomness) first
appeared in [Tre99]. Interestingly, we use error correcting codes with slightly different properties, and use a different
method in analyzing them.



Remark 1 In the rest of the paper we assume that k > log*n. We need need this assumption
since we’re going to transform a k-source into a block-source in which the second block contains
log* n bits. We can make this assumption because for k = 20(\/@), theorems 1,2 follow from the
constructions in [ISW00], (see tables 1,2).

Thus, to construct extractors which achieve short seed length and large output simultaneously,
it suffices to use few random bits, and convert any k-source into a (k’,log® n)-block source such
that k' is not much smaller than k.

This turns out to be a tricky problem, no such (efficient in terms of random bits spent) scheme
is known when k < y/n.

3 Improved block extraction

Current constructions of block sources rely on a building block which we will call a “block extraction
scheme”. Intuitively, this is a scheme which given an arbitrary source X, uses few random bits
to produce a new source B (called a block) which is shorter than the initial source, and contains
a large fraction of the initial randomness. As explained in the introduction, given such a scheme,
we may hope that B does not contain all the randomness of X, which intuitively means that the
distribution (B, X) is a block source.

The following definition formalizes the notion of a block extraction scheme.

Definition 6 A (n,k,u,r,~, p)-block extraction scheme is a function:
B:{0,1}" x {0,1}* — {0,1}*

Such that for every k-source X on {0,1}", the distribution B(X,Y), (obtained by sampling X from
the source, and y uniformly from {0,1}*), is p-close to a 77"—k—source.

Intuitively, the block extraction scheme spends u random bits in order to produce a block B of

length n/r, which is guaranteed to be p-close to a yk/r-source’.

Using this notation, Nisan and Zuckerman proved the following theorem:
Lemma 1 [NZ96] There ezists an explicit (n, k,O(lognlog %), T, Q(@), p)-block extraction scheme,
k

as long as p > 27 for some constant c.
The following lemma improves lemma, 1.

Lemma 2 There ezists an explicit (n,k, O(loglogn + log(1/p) + logr),r, (1), p)-block extraction
scheme as long as p > c\/% for some constant c.

Lemma 2 improves lemma 1 in two respects (as long as one settles for small r and large p).

1. We reduce the number of random bits spent by the block extraction scheme. In [NZ96] the
number of random bits is logarithmic in n, whereas in lemma 2 the number of random bits
is double logarithmic in n.

This is achieved by derandomizing the proof of Nisan and Zuckerman using small bias spaces.
In section 3.2 we describe the property that a distribution needs to have in order to allow the
Nisan-Zuckerman analysis, and construct a small sample space with this property.

9The block extraction scheme of [NZ96] has a stronger property, namely that for a (1 — p)-fraction of the s,
B(X,y) is p-close to a ”’T—k—source. This property is also shared by our new construction, but is not needed later in
the analysis. Another interesting property of both constructions is that they do not depend on k.

7



2. We increase the amount of randomness guaranteed in the output block. In [NZ96] the amount
of randomness guaranteed in the output block B is Q(H%](“T/k)). Lemma 2 guarantees that

B contain Q(%) random bits.

Note that the two quantities are the same when k£ = Q(n). Indeed, our improvement is
achieved by reducing the case of kK = o(n) to that of £ = Q(n). In section 3.1 we show that
once a random source is error corrected, there are some k indices, (to the error corrected
source) which induce an Q(k)-source. Thus, by error correcting the source we can focus on
a small portion of it in which the ratio between min-entropy and length is constant. The
argument of Nisan and Zuckerman is then carried out only on this portion of the source
where it performs best. The exact analysis is given in section 3.3.

3.1 Error corrected random sources

In this subsection we show that if we apply an error correcting code to an arbitrary k-source, we
obtain a k-source which has k indices which induce an $2(k)-source.
We use the following construction of error correcting codes.

Theorem 4 [Jus72] There exist constants a,b and an explicit error correcting code EC : {0,1}" —
{0,1}°™ such that for every x1 # zo € {0,1}", d(EC(z1), EC(z2)) > bn. (d(z1,22) denotes the
Hamming distance between z1, 22 ).

In the remainder of this section we fix a,b and EC to be these of theorem 4. For a vector
z € {0,1}" and a set T' C [n] we use z|7 to denote the restriction of z to T'.

Lemma 3 Let X be a k-source on {0,1}". There ezists a set T C [an] of size k, such that EC(X)|r
is an Q(k)-source.

Lemma 3 is an immediate corollary of lemma 4 which was mentioned to us by Russell Impagli-
azzo and seems to be folklore.

Lemma 4 [Imp99] Let X be a k-source on {0,1}". For every v, there ezists a set T C [an] of size
v, such that EC(X)|r is a 3 -log1/(27F + (1 - g)”)—source.

For this lemma we need another notion of measuring the amount of randomness in a distribution.

Definition 7 For a distribution P over (, define the Ly-norm of P: C(P) = ¥ cq P(w)?. In
words, C(P) is the probability that two independent samples from P gave the same outcome. We
refer to C(P) as the collision probability of P.

A distribution with low min-entropy has an element which gets large probability. This element
has a large chance of appearing in two consecutive independent samples. This gives the following
connection.

Fact 1 If C(P) < 2% then P is a k/2-source.

Our goal becomes showing that there exist a subset of [an] on which the error corrected source
has low collision probability. We will show that a random (multi)-set has this property.

Proof: (of lemma 4) Consider the following probability space: zi,zo are independently chosen
from the distribution X, and T' = (4, ..,%,) are chosen independently where each i; is uniformly

8



distributed in [an]. Denote B = {(z1,z2,T)|EC(z1)|r = EC(x2)|r}. We now bound the probabil-
ity of B in the above sample space.

Pr(B) = Pr(B|z; = z2) Pr(z; = z2) + Z Pr(B|z1 = a1,z2 = a2) Pr(z; = a1,z2 = ag) (1)

a17£a2

X is a k-source, and therefore Pr(z; = z3) < 27%. For given a; # ao, we know that the
distance between EC(a1) and EC(as) is at least bn. Thus, any of the i;’s has a chance of 2 to
“hit” a coordinate where EC(a;) and EC(a2) disagree. Having chosen v such coordinates the
probability that none of them differentiated between EC(a;) and EC (a) is bounded by (1 — 2)v.

Plugging this in 1 we get that
b

Pr(B) <27+ (1 - =)
a
In the sample space we considered, T" was chosen at random. Still, there is a fixing T” of the
random variable T' for which the above inequality holds. For this 7" we have that the probability
that independently chosen 1 and x5 have EC(z1)|;» = EC(z2)|1 is small. In other words we just
proved that

C(EC(X)|r) <27% + (1 - 2

The lemma immediately follows from fact 1. °

3.2 A small sample space for intersecting large sets

The block extraction scheme of Nisan and Zuckerman is obtained by restricting the source to some
subset of the indices which is selected using few random bits. More precisely, they construct a small
sample space of small subsets of [n] (having a property that we immediately describe) and prove
that the distribution obtained by sampling an element from a k-source and restricting it to the
indices in a random set from the sample space contains a large fraction of the initial randomness.
In this section we construct a smaller such sample space which enables us to spend less random
bits to construct a block extraction scheme.
It will be convenient to have a notion of efficiently constructible distributions.

Definition 8 Call a distribution P on n bits, polynomially constructible using u(n) bits'®, if there
exists an algorithm A : {0,1}4"™) — {0,1}" which runs in time polynomial in n, such that the
distribution A(Y') whereY is chosen uniformly from {0,1}*™) is identical to P.

Intuitively, a k-source has k random bits “hidden” somewhere. This suggests that the property
needed is that the distribution of sets will “intersect” any set of k indices.

Definition 9 A distribution S over subsets of [n] is called (n,k,r,d)-intersecting if for every G C
[n] with |G| > k, Prs(|SN G| < £) <.

The following is implicit in [NZ96]*!.

10Naturally, one should speak about a sequence P = {P,} of distributions for this to make sense.

111t should be noted that the argument of [NZ96] is not as straightforward as the above intuition suggests. In fact,
the proof is quite involved and a hint to that may be found in the fact that the distribution needs to intersect sets
of size m and not k.



Lemma 5 [NZ96] There exists some constant ¢ such that if X is a k-source on {0,1}" and S is

a distribution over subsets of [n] which is (n, W,r, d)-intersecting then the distribution X|g

(obtained by sampling = from X and s from S and computing x|,) is (4v/38 + 27K _close to a
k
Q(W)—soume.
Nisan and Zuckerman use a construction based on O(log(1/4))-wise independence to prove the
following lemma.

Lemma 6 [NZ96] For every n,k,r and 6 > 2=9*/") there is a (n,k,r,8)-intersecting distribution
on subsets of size n/r which is polynomially constructible using O(logn - log(1/6)) bits.

Using lemma 5 this immediately implies the block extraction scheme of lemma 1. We will be
mostly interested in the case when r is small, (say r < logn) and ¢ is large, (say & > log~ %) n).
For this setup we can save random bits and make the dependence on n double logarithmic.

Lemma 7 There ezists a constant ¢ such that for every n,k,r and § > cr/k, there is a (n,k,r,0)-
intersecting distribution on subsets of size n/r which is polynomially constructible using O(log log n+
log r + log(1/4d)) bits.

In the rest of this section we prove lemma 7. We will view distributions over n bit strings as
distributions over subsets of [n]. (Using the standard correspondence (W1, ---,W,,) < {i|W; = 1}).
We will construct a distribution (Wi, ---, W,,) with the following properties:

e For every 1 <i<n,Pr(W; =1) = 1/2r.

e For every set G C [n] with |G| > k, the probability that the sum of the W;’s for i € G
is far from the expected |G|/2r is small. (It is important to note that we allow the “small
probability” to be quite large, since we are shooting for large §).

Note that the second condition gives both the intersecting property and the fact that the selected
sets are rarely of size larger than n/r. We are interested in constructing such a distribution using
as few as possible random bits. A pairwise independent distribution has these properties but
takes logn random bits to construct. We can do better by using the “almost I-wise dependent”
distributions of [NN90]. A technicality is that we want a distribution in which the probability that
a single bit evaluates to 1 is close to 1/2 and not to 1/2r.

Let us define almost [-wise dependent distributions.

Definition 10 (/NN90]) A distribution (Py,---, P,) over {0,1}" is said to be (€,l)-wise dependent
with mean p if for every subset {i1,---,4;} of [n], the distribution (P;,,---,P;,) is e-close to the
distribution over [ bit strings where all bits are independent and each of them takes the value 1 with
probability p.

Naor and Naor showed that almost /-wise dependent distributions can be constructed using
very few random bits.

Theorem 5 [NN90] For every n,l and €, an (¢,1)-wise dependent distribution with mean 1/2 is
polynomially constructible using O(loglogn + I + log(1/¢)) bits.

The following corollary follows easily by taking an almost 2¢-dependent distribution over gn
bits, (with mean close to 1/2), viewing it as n blocks of ¢ bits, and setting the variable of the i’th
block to the value 1 if all the variables in the corresponding block are 1.

10



Corollary 4 For every n,e and q, an (e,2)-wise dependent distribution with mean 2~7 is polyno-
mially constructible using O(loglogn + q + log(1/¢)) bits.

We are ready to construct our intersecting distribution.

Definition 11 Let g be an integer such that 1/4r < 279 < 1/2r, and € = min(cé?,c/r?) where ¢
is a constant which will be determined later. Let W = (Wy,---,W,) be the (€,2)-wise dependent
distribution with mean 2~ guaranteed in corollary 4.

Almost pairwise dependent distributions are very much like pairwise independent distributions
in the sense that they allow the use of Chebychev’s inequality.

Lemma 8 [NN90] If (X1, --,Xy) is a (€,2)-wise dependent distribution with mean p, then for
every 0 < A <1

1
Pr(] E Xi —pn| > dpn) < O(/\2—pn + Ve)
1<i<n

as long as € < )‘24—5”2.
The next lemma follows:

Lemma 9 The constant ¢ in definition 11 can be fixed in a way in which the distribution W has
the following properties:

1. For every set G C [n] such that |G| > k, Pr(Xieq Wi < &) < 6/3.

2. Pr(Xicicn Wi > 1) <4/3.

Proof: We use lemma 8 to deduce both parts of the lemma. To meet the condition in lemma 8
we need to make sure that € < % = ©(1/r?). The requirement that ¢ < ¢/r? takes care of this
condition for small enough constant c. Applying lemma 8 we get that the probability of deviation
from the mean (in both parts of the lemma) is bounded by O(r/k + §y/c) = O(d\/c). (The last
equality follows from the condition of lemma 7). This is bounded from above by §/3 for small
enough c. .

We are ready to prove lemma, 7

Proof: (of lemma 7) The first item of lemma 9 shows that W is (n, k,r, §/3)-intersecting, and the
second item shows that W could be transformed into a distribution over subsets of size exactly n/r
without changing it by much. This change is done by adding arbitrary indices to the set if its size
is smaller than n/r and deleting arbitrary indices if its size is larger than n/r. Adding indices will
not spoil the intersecting property, and the probability that we need to delete indices is bounded
by 6/3. The lemma follows. o

11



3.3 Construction of block extraction scheme

In this subsection we put everything together and prove lemma 2. We are ready to define our block
extraction scheme.

Definition 12 (block extraction scheme) Given r,p and a constant e (which will be fixed later)
let u = O(loglogn + logr + log(1/p)) be the number of bits used by lemma 7 to construct a
(an, ek, ar, (8)?)-intersecting distribution. For y € {0,1}%, let Sy be the set defined by y in the
intersecting distribution. We now define:

B(‘Ta y) = EC(‘T)‘Sy
We are finally ready to prove lemma, 2.

Proof: (of lemma 2) Let V' denote the distribution EC(X). Lemma 3 implies that there exists a
set T' C [an] of size k such that V| is a dk-source, (for some constant d). Consider the distribution
S NT, (the restriction of the intersecting distribution to the coordinates of T'). It is trivial (from
the definition) that this distribution is (k, ek, ar, (£)?)-intersecting. We now use lemma 5 on V7.
Let us first check that the conditions of lemma 5 are met. We fix the constant e of definition
12, setting e = (cd)/(—logd), where c is the constant from lemma 5. The conditions of lemma
5 are met since V|r is a dk-source of length k& and we have a distribution which is intersecting
sets of size ek = %. We conclude that V|snr is p-close to an Q(k/r)-source. Revealing

more indices does not decrease the amount of randomness and thus B(X,Y) = V| is p-close to an
Q(k/r)-source. o

4 Partitioning to two “good” cases

In this section we show that using the block extraction scheme B (defined in section 3), essentially
one of two “good” things happen. Either (B(X,-), X) is a block source or B(X,-) is much more
condensed than X. Unfortunately, the above claim is not true. For some sources it may be the
case that none of the two “good” cases applies'?. However, this problem has already been solved
in [NT99]. The solution is to prove a weaker statement which has the same flavor, and can be used
the same way later on. The exact statement is that every source can be partitioned into three sets:
The first has negligible weight and can be ignored. On the second, the block extraction scheme
produces a block source, and on the third, the block extraction scheme condenses the source. To
make this formal, we introduce the following notation:

Definition 13 For a distribution P over a set Q and A C Q such that P(A) # 0, we define the
conditional distribution Py on Q which gives weight P(w)/P(A) for w € A, and zero otherwise.
We say that a random variable U on 2, is a k-source in A, if the distribution U(w), where w is
chosen according to Py, is a k-source.
We say that two random variables U,V on Q form a (k1, k2)-block source in A, if the distribution
(U(w),V(w)), where w is chosen according to P4 form a (ki, k2)-block source.

12An example is a source which flips a bit b and depending on the outcome decides weather to sample from a
distribution in which the first k£ bits are random and the remaining n — k bits are fixed, or from a k-wise independent
distribution.

12



Recall that the current setup is the following: We have a k-source X on {0,1}", and an explicit
(n, k,u,r,, p)-block extraction scheme B, (guaranteed from lemma 2 for some constant ). For
the remainder of this section we fix ¢ = log* n. (¢ is the amount of randomness needed in the second
block of a block source in the block source extractor of corollary 3). We are ready to state the main
lemma of this section.

Lemma 10 (Following [NT99]) There exist a partition of {0,1}" x {0,1}" into three sets BAD,
BLK, CON with the following properties:

1. Pr(BAD) < 2(p + 271
2. (B,X) is a ("YT—k —t,t)-block source in BLK.

3. B is a (k — 2t)-source in CON.

In the remainder of this section we use the technique of [NT99] to prove lemma 10. The idea is
to partition the elements into three sets according to their “weight”: The “small weight” elements
will form the set CON. Intuitively the small weight elements induce a source of high min-entropy.
The “medium-weight” elements will form the set BLK. Intuitively the medium weight elements
induce a source of medium min-entropy. Thus, they contain some (but not all!) of the min-entropy
of the initial source. The fraction of “large weight” elements is bounded by p, (the error parameter
of the block extraction scheme). These elements form the set BAD and can be ignored because of
their small fraction.

The following definition is motivated by the above intuition. (The partition of lemma 10 will
be a refinement of the following partition).

Definition 14 We partition {0,1}" x {0,1}* according to the “weight” of the elements.

LRG = {(z,y) | 2% < Pixy(B(X,Y)=B(z,y)) }
MED = {(z,y) | 2709 < Prxy(B(X,Y)=B(zy) <27+ }
SML = {(z,y) | PrX,Y(B(X,Y):B(:L',y)) SZ_(k_t) }

We will use the following lemma, to prove lemma 10.

Lemma 11 The sets LRG, MED and SM L have the following properties:
1. Pr(LRG) <2p
2. (B,X) is a (77k —log m,t)—block source in MED.
3. Bisa(k—(t+log m))—soume in SML.

(To be strictly formal, the probability space 2 in this lemma is {0,1}" x {0,1}" and the distribution
P is X x Uy. In part 2 of the lemma, X stands for the random wvariable X (z,y) = z).

Proof: To prove the first item of lemma 11 we show that in any block source the weight of the
“error” elements is proportional to the error.

Claim 1 Let V be p-close to a k-source. Define L = {v|Pry/(V =v) > 2=* =Y. It follows that
Pry (L) < 2p.
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Proof: Let V' be a k-source such that V and V' are p-close. We have that | Pry (L) —Pry+(L)| < p.
However, V' assigns small probability to all elements in L, whereas V assigns large probability to
these elements. This gives that Pry (L) — Pry/(L) > Pry/(L), Which means that Pry.(L) < p.
Using the first inequality we get that Pry (L) < 2p. °

The remaining two items follow by just calculating the appropriate conditional probabilities.
For a pair (z,y) in MED (or SML) we have an appropriate upper bound on the “weight” of
B(z,y) in the distribution B(X,Y). When we consider the distribution of B(X,Y) conditioned
on MED (or SML), we need to divide by the probability of MED (or SML). Thus, we “lose”
an amount of bits which is inversely proportional to the logarithm of the probability of M ED
(or SML). This argument immediately gives that B is a (% — log m)—source in MED,
and a (k — (¢t + log m))—soume in SML. To complete the proof we need to show that when
conditioned on M ED, the second block contains ¢ random bits. We know that the distribution
(B(X,Y), X) is a k-source, which means that every pair (b, z) has small probability, (at most 27%).
For pairs (z,y) € MED, we have a lower bound of 2=~ on the weight of b = B(x,y). This
means that the “second part” is responsible to bringing the probability of pairs (b, z) down to 27%.
Formally, we have that for (z,y) € MED.

<2t

. _ B(s . Prxy(X =z,B(X,Y) = B(z,y))
PrX =2B(X,Y) = Blz,y)) = Prx.y(B(X,Y) = B(z,y))

All this happens in the initial (unconditioned) probability space. Still conditioning on M ED does
not change the ratio between the two probabilities in the above fraction, since both are multiplied
by the same factor. This completes the proof. °

Lemma 10 follows by slightly changing the above partition. The sets LRG, M ED and SML are
almost the partition we want. We only need to avoid the setup in which the sets MED or SML
are too small, since in this case the effect of conditioning is too costly. Still, if one of the sets is
small we can safely add it to the “bad” elements and ignore it. This is the intuition behind the
following partition, which partitions {0,1}" x {0,1}" into three sets:

1. The set BAD will contain all (z,y) € LRG. It will also contain all (z,y) € SML if
Pr(SML) < 27, and all (z,y) € MED if Pr(MED) < 2~.

2. Theset BLK, (which corresponds to the set M ED) contains all (z,y) € MED if Pr(MED) >
27¢,

3. The set CON, (which corresponds to the set SM L) contains all (z,y) € SML if Pr(SML) >
27¢,

lemma 10 immediately follows from lemma 11.

5 Constructing condensers

Condensers are a generalization of extractors. They are functions which use few random bits to
“condense” an arbitrary random source. In this section we define and construct condensers. In 5.1
we use lemma, 10 recursively to construct few distributions such that one of them is a block source.
In 5.2 we show that in such a case applying block source extractors to the “candidate” distributions
results in a condenser.
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5.1 Getting a block source

In this subsection we implement the idea presented in the introduction. Namely, that running the
block extraction scheme recursively, will eventually produce a block source. (The intuition is that
in every failure we condense the source, and this will no longer be possible once the source’s length
drops below k).

To run this scheme, we will need to use “fresh” random bits for each instantiation of the block
extraction scheme. We use [ to denote the number of iterations, and assume that the construction
process is given [ uniformly chosen elements in {0,1}" for running block extraction schemes. The
exact recursive construction is given in the following definition.

Definition 15 For 0 < i < [, (where | will be fized later), we recursively define a sequence of
functions, B; : {0,1}" x ({0,1}*)! — {0,1}+, in the following manner:

e By(z;y1---y) = .

e Fori >0, Bi(xz;y1,---,y) = B(Bi—1(x;y1,--,y1),yi). (We chose to be a bit informal and
ignore the fact that different blocks have different lengths and therefore different u’s. Certainly
the first block is the longest and therefore the most costly).

It is easy to see that B; does not depend on yiy1,---,y;, and that all these computations can be
done in polynomial time.

Following the intuition in the introduction, we want to argue that there exists a small [ and an
1 <4 <l such that (B;(X;-), B;—1(X;-)) is a block source. This is essentially the case, yet formally
we will have to partition the space {0,1}" x ({0,1}%)! into I + 1 subsets in an analogous way to
lemma 10.

Lemma 12 There ezists a partition of {0,1}" x ({0,1}*)! into I + 1 sets: BLK;,---,BLK; and
BAD with the following property:

1. Pr(BAD) <2l(p+27%)
2. (B, Bi—1) is a (K',t)-block source in BLK;, (where k' > M}
3. 1 = 0O(log,(n/k))

The remainder of this section is devoted to proving lemma 12. We start by recursively defining
the appropriate sets BAD, BLK,CON.

Definition 16 For 0 < i <, we recursively define sets BAD;, BLK;, CON; C {0,1}" x ({0,1}%)¢,
and integers k;.
We define BADy = BLKy = ), CONy = {0,1}" x ({0,1}*)!, and ko = k. For i > 0, suppose
BAD;_1,BLK; 1,CON;_1 have already been defined, and B;_1 is a k;_1-source in CON;_1.
Lemma 10 gives a partitioning of B;_1(CON;_1) x {0,1}* into three sets, BAD,BLK,CON.
We now “pull these sets back to the original probability space” and view them as subsets of {0,1}" x
({0,1}*)!. Define:

1. BAD; = {(z;y1,- -+, y)|(Bi—1 (@591, - -+ 1), i) € BAD}

2. BLKZ = {($;yla"' ayl)|(B’i—1('T;yla"' ayl)ayi) € BLK}

15



8. CON; = {(z;y1, -+, y)|(Bi—1 (=591, - -+, w1),yi) € CON}

Note that this is a partition of CON;_1. We set k; = k;—1 — 2t. Let | be the first integer such
that 7 < ki, (we will prove that such an i ewists).

Using lemma 10 we get that:

Lemma 13 The following holds for all 0 < i <.
1. Pr(BAD;) < 2(p +27%).
2. (B;,Bj_1) is a (% —t,t)-block source in BLK;.
3. B; is a kij-source in CON;.

Thesets BAD;,---,BAD;; BLK1,---,BLK;_1 and CON form a partition of {0, 1}" x ({0, 1}*)".
The following lemma shows that [ cannot be too large, and when the process stops the set CON,
is empty.

Lemma 14 The process described above stops after | = O(log,(n/k)) steps, and CON; = ().

Proof: After I = ©(log,(n/k)) steps, the length of the I’th block is n/r! < k/2. In the last applica-
tion of lemma. 11, the set of small weight elements, SM L has probability at most 2k/2=(ki—t) < 90—t

When this happens, the set CON is by definition the empty set, and therefore in the last iteration
CON, = 0. °

Lemma, 12 follows by Defining BAD = U,<;<;BAD;.

5.2 Condensers

A condenser is a generalization of an extractor. Rather than requiring that it outputs a distribution
that is close to uniform it is only required to improve the entropy rate.

Definition 17 A (k, k', €)-condenser is a function Con : {0,1}" x {0,1}¢ — {0,1}", such that for
every k-source X of length n, the distribution Con(X,Uy) is e-close to a k'-source, and k' /n' > k/n.
Note that an extractor is a special case of a condenser, when n' = k'.

Had we been able to construct a single block source, we could have used the block source
extractor of corollary 3 to get an extractor. Having several candidates, we can run block source
extractors on all of them, (using the same seed) and obtain a condenser.

Definition 18 We define a function Con : {0,1}" x {0, 1}4+00egn) _y 10 1} Qiven inputs = €
{0,1}" and y € {0,1}4+0008n) " Con interprets its second argument as | strings y1,-- -,y € {0, 1}
and an additional string s of length O(logn). For 0 < i < [ it computes b; = Bi(z;y1,---,y1),
(where Bj; is taken from definition 15), and o; = BE(b;,b;i—1,s), (where BE is the block source
extractor of corollary 3 taking m = k'). The final output is (01,---,0;), (which makes n' = Ik').

Intuitively, it is always case that one of the 0;’s is close to uniform. Formally, it is straightforward
to see that The distribution (o1,---,0;) is (£ + 2(p + 27%))-close to a k'-source. Let us compare
the entropy rates of this source and the initial source. The new source has min-entropy k&’ which is
approximately k and length approximately k-log %, whereas the initial source had lengthn = k- 2.

This means that Con indeed improves the entropy rate and is a (k, k¥, p)-condenser.
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Remark 2 Actually, the distribution (o1,---,0;) is a source of a special kind called a “somewhere
random source” by Ta-Shma in [TS96]. In [TS96] it was shown that extracting randomness from
such sources is easier using special extractors which are called “somewhere random mergers”. At
this point we could have used Ta-Shma’s “somewhere random mergers”, to extract the randomness
from (o1,---,0;). Instead, we use different methods which are more efficient and exploit the fact
that 1 is relatively small.

We will fix p and r to get two condensers with specific parameters. For both of them we fix
p = log=3n. For the first one we choose r = 2. This gives that the condenser maintains a constant
fraction of the initial randomness.

Lemma 15 For every k, there exists an explicit (k, Q(k), 1/ log? n)-condenser
Con : {0’ 1}n % {0’ 1}O(log % loglog n+logn) N {0’ 1}O(k log %)

For the second condenser we choose r = 2logn. This reduces the number of recursive calls and
decreases the number of random bits spent.

Lemma 16 For every k, there exists an explicit (k,Q(logn), 1/log? n)-condenser Con : {0,1}" x
{0,13°08™ — {0,1}5.

Again, we encounter the tradeoff between the length of the seed and the amount of randomness
in the output. The first condenser loses only a constant fraction of the randomness, but spends
more then O(logn) random bits, whereas the second spends only O(logn) random bits, but is able
to maintain only a smaller fraction of the randomness.

6 Constructing extractors

In this section we use the condensers constructed in the previous section to prove the two main
theorems, (theorems 1,2).

For theorem 1 we use the condenser of lemma 15 repeatedly (with fresh seeds) to condense the
source until we achieve constant entropy rate. (This is guaranteed to happen after no more than
log* n iterations). For constant entropy rate, Zuckerman’s extractor, ([Zuc97] see table 2), uses
the optimal seed length to extract a constant fraction. This procedure loses some randomness in
the iteration process, and results an extractor which extracts a sub-constant fraction of the initial
randomness. We then use [WZ99] to increase this fraction to an arbitrary constant.

Proof: (of theorem 1) Tt is easy to check that given a (k, k', €)-condenser Con; : {0,1}" x {0,1}% —
{0,1}" and a (k', k", €)-condenser Con, : {0,1}" x {0,1}% — {0,1}"", composing the condensers
produces a (k, k", € + €' )-condenser Con : {0,1}"* x {0,1}4t% — {0,1}"".

Let us denote the entropy rate of a source by R(X) = k/n. The condenser of lemma 15 produces
a source X' with R(X') = ©(1/log(1/R(X))), (or in other words R~ }(X') = O(log(R1(X)))).
Thus, after log* R~1(X) < log*n iterations the entropy rate becomes constant. Once the ratio is
constant Zuckerman’s extractor ([Zuc97], see table 1), can be used to extract a constant fraction
(say half) of the randomness. The problem with this procedure is that our condenser loses a
constant fraction of the randomness in every iteration. Thus, after log* n iterations we can extract
only k/200°8" %) random bits from the source, and produce an extractor which extracts a 1/20°8" )
fraction of the initial randomness. To get to a constant fraction we use the method of Wigderson and
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Zuckerman, [WZ99].1> We use at most logn-loglog n random bits for every of the log* n iterations.
Implementing the technique of Wigderson and Zuckerman multiplies this amount by 20(eg"n),
Thus, the total number of random bits is logn - loglogn - log* n - 20098 ) = O(logn - (log logn)?)
as required. °

Remark 3 The condenser of lemma 15 uses only O(logn) random bits when k = Q(5oz771ozm057) -

Thus, for this case we get an extractor that uses only O(logn - 20 (log” ")) random bits. We can use
our technique in a more sophisticated way to bring this down to O(logn - (log* n)?). This is still
slightly larger than the optimal seed length.

In the case of theorem 2 we are shooting for the optimal seed length and cannot afford the
condenser of lemma 15 or repeated condensing. Instead we use the condenser of lemma 16 inter-
preting it as a block extraction scheme. Viewed this way the condenser extracts a block B of length
k/2, therefore the distribution (B, X) forms a block source, since B is too short to “steal” all the
randomness from X. (This intuition is formalized in the next lemma). All that is left is to use the
block source extractor of corollary 3.

Lemma 17 Let Con be the condenser of lemma 16. If X is a k-source then the distribution
Con(X,Uo(iogn)), X) is O(1/ log® n)-close to an (Q(k/logn),log*n)-block source.

Proof: For this proof we view Con as a (n, k, O(logn), 2n/k, Q(1/logn), 1/ log® n)-block extraction
scheme. Con is a very good block extraction scheme in the sense that the length of the block is
only k/2. Intuitively, this means that X must contain randomness which is not in B, and therefore
(B, X) is a block source. Formally, we consider the partition of X x {0,1}°0°6") into three sets
defined in definition 14, (recall that ¢ = log*n). The set SM L corresponds with pairs (z, y) which go
to strings b € {0,1}*/? with weight smaller than 2~ (=" Thus, Pr(SML) < 2¥/2~(=1) < 1/1og? n.
We have that both the sets SML and LRG have small probability, which in turn means (using
lemma 11) that Pr(MED) > 1 — 3/log? n. Lemma 11 also guarantees that (Con(X, Uo(iogn))> X)
is a (Q(k/logn),log" n)-block source in MED. o

Proof: (of theorem 2) Given a k-source, we use lemma 17 to get a distribution that is close to a
block-source and use the block-source extractor of corollary 3. °

Remark 4 The output length in theorem 2, (and corollary 2) can be improved to k/log®n, (k/log® k).
This is done by choosing r = loga/Qn instead of r = 2logn in lemma 16. This will make the con-
denser maintain a larger fraction of the initial randomness while still using the optimal seed length.
The proof of theorem 2 will now fail, since we used the fact that the condenser has output smaller
than k. However, at this point the source becomes so condensed that standard techniques can be
used to construct a block source while loosing only another loga/2 n fraction of the randomness.

13Wigderson and Zuckerman suggested to repeatedly extract randomness from the source, (using fresh seeds), until
one extracts the desired fraction. This gives that if m = k/p then m could be increased to (1 — @)k, (where a is an
arbitrary constant), at the cost of multiplying d by O(p). (An exact formulation of the Wigderson and Zuckerman
technique can be found for example in [Nis96, NT99]).
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7 Achieving small error

The statement of theorems 1,2 is for constant error e. The analysis provided in this paper gives a
slightly better result and allows to replace the requirement that € be a constant with e = 1/(logn)°
for any constant c¢. Still, our technique does not give good dependence of the seed length on the
error'*. We get better dependence on e using the error reduction transformation of [RRV99a,
which transforms an extractor with large, (say constant) error into an extractor with arbitrary
small error, while losing only a little bit in the other parameters. More precisely, after undergoing
the transformation, a factor of O(logm(loglogm)®™M) + log(1/e)) is added to d, and the fraction
extracted decreases by a constant. The latter loss makes no difference from our point of view since
we are only able to extract constant fractions. The first loss isn’t significant in the case of theorem 1,
since the seed size is already larger than the optimal one by a multiplicative polyloglog(n) factor.
However, it completely spoils theorem 2 and makes it inferior to theorem 1. Here is theorem 1
rephrased using the error reduction transformation of [RRV99a]:

Theorem 6 (theorem 1 rephrased for non-constant €) For every n,k and € > exp((log*n)_%),

there are ezxplicit (k,e)-extractors Ext : {0,1}" x {0, 1}0(1°g"'(loglog”)O(l)+1°g(1/€)) — {0,1}(0-2)k,
where a > 0 is an arbitrary constant.

8 Strong Extractors

It is sometimes helpful to have a stronger variant of extractors, called a strong extractor. A (non-
strong) extractor is guaranteed to extract randomness from random sources on an average seed,
whereas strong extractors are guaranteed to extract randomness from random sources for most
seeds.

Definition 19 A (k,€)-extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ is strong if for every k-source
X, the distribution (Ext(X,Uyg) o Uy) (obtained by concatenating the seed to the output of the
extractor) is e-close to a Up 4.

It is interesting to note that the concept of strong-extractors preceded that of non-strong ex-
tractors, and the strong version was the one which was defined in the seminal paper of [NZ96].
Several extractors constructions, (with examples being [T'S96, ISW00] and the constructions of this
paper) are non-strong or difficult to analyze.

The following theorem shows that every non-strong extractor can be transformed into a strong
one with essentially the same parameters.

Theorem 7 Any explicit (k,e)-estractor Ext : {0,1}" x {0,1}¢ — {0,1}™ can be transformed
into an explicit strong (k,O(\/€))-estractor Ext' : {0,1}" x {0,1}9@) — {0,1}™ 421 yhere
A =2log(1/e) + O(1).

Note that the output length of Ezt’ is smaller than that of Ext by d+A+1 bits. To some extent
this is unavoidable: Any general transformation (one that works for any non-strong extractor) must

4 Although the block extraction scheme of lemma 2 has the required dependence on the error p, there are two
problems. The first is that we run the block extraction scheme roughly logn times, (which makes the error the
multiplication of the two factors). The second is that because we use Chebychev’s inequality our block extraction
scheme works only when p = 1/k°M.
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pay a penalty of losing d — O(1) bits in the output length of Ext'.!5 Intuitively, this is because Ext
may include the seed in its output whereas Fxt' cannot. More precisely, let Ext be a non-strong
extractor with optimal output length: m = k + d — 2log(1/e) — O(1), (such extractors exist by a
non-constructive argument [RTS97]). Then the output length of Ext’, (as of any strong extractor
with the same parameters) is bounded by k& — 2log(1/¢) — O(1) = m —d + O(1), [RTS97].

The above intuition also gives a hint for the construction. The output of Ext may contain d
bits of randomness which “belong” to the seed. Still, it contains roughly m — d bits which do not
depend on the seed. Thus, fixing the seed, the output of Ezt is a random source of length m which
contains roughly m — d random bits. We can now use another extractor to extract this randomness
and “dismantle” the correlation between the seed and output. The extractor we need is one that
works well when the source lacks only a very small amount of randomness. Such a construction
was given by [GWIT7].

Theorem 8 [GWY7] There are explicit strong (k, €)-extractors GW : {0,1}"x{0,1}0(n—k+log(1/e)) _,
{0,1}*=2 For A = O(n — k + log(1/e€))

We therefore get the following simple definition of Exzt': Let GW : {0,1}™ x {0,1}°(4) —
{0,1}m=4=A=1 be an (m — d — 1, ¢)-extractor guaranteed by theorem 8.

Ext'(z; (y,2)) = GW (Exzt(z,vy), 2)

The actual proof that Ext’ has the desired properties is slightly more complicated than the above
presentation. This is mainly because the above presentation ignores the error of Ext.

Remark 5 The result of Goldreich and Wigderson has been improved in both parameters. In
[RRV99b], it was shown how to bring A down to 2log(1/€) + O(1). This result is optimal except
for the exact constant “hidden” in the O-notation. The statement of theorem 7 already uses this
stronger version.

In [RVW00] it was shown that this improvement can be achieved even while reducing the seed
length to polylog(n — k) + O(log(1/€)). Using this result the seed of Ext’ will be decreased to just
d + polylog(d) = O(log(1/¢)).

Proof: (of theorem 7) Fix a k-source X on {0,1}". For a source element x and a seed y € {0,1}¢
we define the weight of (z,y), denoted w(z,y) in the following way.

w(z,y) = Py (Bat(X,Y) = Bat(z,y))

That is the weight of the string which is obtained by the extractor when running on x and y. The
target distribution of an extractor is e-close to uniform, therefore the fraction of “heavy” elements
is small.

Claim 1 Pryy(w(X,Y) > 2-(m=1D) < 2¢.

Proof: Consider the set A = {Ext(z,y)| w(z,y) > 27(™ D}, Let us denote Prxy(A) by Pxy
and Pry,, (A) by Py. From the definition of extractors we have that |Pxy — Py| < e. From the
definition of A we have that Pxy — Py > 2Py. The claim follows. °

Call a seed y € {0,1}% bad if Prx(w(X,y) > 2=™=Y) > /2e. The following claim follows
immediately from Markov’s inequality.

'5The additional A +O(1) bits lost by our transformation can be avoided by applying the “entropy-loss reduction”
of [RRV99b] after Ext’ is constructed.
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Claim 2 The fraction of bad seeds is at most /2e.

The following claim shows that running the extractor with a good seed produces a source which
lacks very few random bits.

Claim 3 For a good seed y, Ext(X,y) is v/2e-close to an (m — d — 1)-source.

Proof: For a good y we know that at least a 1 — +/2¢ fraction of the z’s are “light”, (meaning that
w(z,y) < 2-M=1). For a light ,

Pr(Bat(X,y) = Bat(z,y)) = Pr(Bet(X,Y) = Eat(z,y)|Y =y) < w;”i’f’ < g7(md=y

On any fixed y, Ext' runs GW on the source Ext(X,y) using a fresh seed z. Thus, for a good
y, Ext’ extracts m —d — A — 1 bits. The following claim follows immediately from claim 3 and the
fact that GW is a strong extractor.

Claim 4 For a good seed y, (Ext' (X;(y, Z)) o Z) is (2v/€ + €)-close to uniform.

To complete the proof we will need the following standard facts:

Fact 2 If P and Q are e-close then for every function f, f(P) and f(Q) are e-close.

Fact 3 Let X,Q be distributions over dorzmins X, Q respectively. Suppose that for every x € X
there is a distribution Py over the domain Q) such that Py and Q are e-close. Then the distributions
(Px,X) and (Q,X) are e-close.

Consider the uniform distribution over good seeds which we denote by Y'. By claim 4 and fact 3
we get that (Ext'(X; (Y, Z)) o Z) oY is 2¢/e + e-close to (Up—g—a—10Upqy) o Y'. Claim 2 gives
that Y, (that is the uniform distribution over d bit strings) and Y’ are 2y/e-close. We can now use
fact 2 to replace Y' by Y and get that (Ezt'(X; (Y, Z)) o (Y, Z)) is O(y/€)-close to uniform. o
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