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Abstract

Most known constructions of probabilistically checkable proofs (PCPs) either blow up the
proof size by a large polynomial, or have a high (though constant) query complexity. In this
paper we give a transformation with slightly-super-cubic blowup in proof size, with a low query
complexity. Specifically, the verifier probes the proof in 16 bits and rejects every proof of a false
assertion with probability arbitrarily close to %, while accepting corrects proofs of theorems
with probability one. The proof is obtained by revisiting known constructions and improving
numerous components therein. In the process we abstract a number of new modules that may
be of use in other PCP constructions.
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1 Introduction

Constructions of efficient probabilistically checkable proofs (PCP) have been the subject of active
research in the last ten years. Arora et al. [1] showed that it is possible to transform any proof into a
probabilistically checkable one of polynomial size, such that it is verifiable with a constant number of
queries. Valid proofs are accepted with probability one (this parameter is termed the completeness
of the proof), while any purported proof of an invalid assertion is rejected with probability 1/2
(this parameter is the soundness of the proof). Neither the proof size, nor the query complexity is
explicitly described there; however the latter is estimated to be around 106.

Subsequently much success has been achieved in improving the parameters of PCPs, constructing
highly efficient proof systems either in terms of their size or their query complexity. The best
result in terms of the former is a result of Polishchuk and Spielman [12]. They show how any
proof can be transformed into a probabilistically checkable proof with only a mild blowup in the
proof size, of n'*¢ for arbitrarily small € > 0 and that is checkable with only a constant number of
queries. This number of queries however is of the order of O(1/€?), with the constant hidden by
the big-Oh being some multiple of the query complexity of [1]. On the other hand, Hastad [9] has
constructed PCPs for arbitrary NP statements where the query complexity is a mere three bits (for
completeness almost 1 and soundness 1/2). However the blowup in the proof size of Hastad’s PCPs
has an exponent proportional to the query complexity of the PCP of [1]. Thus neither of these
“nearly-optimal” results provides simultaneous optimality of the two parameters. It is reasonable
to wonder if this inefficiency in the combination of the two parameters is inherent; and our paper
is motivated by this question.

We examine the size and query complexity of PCPs jointly and obtain a construction with rea-
sonable performance in both parameters. The only previous work that mentions the joint size vs.
query complexity of PCPs is a work of Friedl and Sudan [8], who indicate that NP has PCPs with
nearly quadratic size complexity and in which the verifier queries the proof for 165 bits. The main
technical ingredient in their proof was an improved analysis of the “low-degree test”. Subsequent
to this work, the analysis of low-degree tests has been substantially improved. Raz and Safra [13]
and Arora and Sudan [3] have given highly efficient analysis of different low-degree tests. Further-
more, techniques available for “proof composition” have improved, as also have the construction
for terminal “inner verifiers”. In particular, the work of Hastad [9], has significantly strengthened
the ability to analyze inner verifiers used at the final composition step of PCP constructions.

In view of these improvements, it is natural to expect the performance of PCP constructions to
improve. Our work confirms this expectation. However, our work exposes an enormous number
of complications in the natural path of improvement. We resolve most of these, with little loss in
performance and thereby obtain the following result: Satisfiability has a PCP verifier that makes
at most 16 oracle queries to a proof of size at most n3T°(1), where n is the size of the instance
of satisfiability. Satisfiable instances have proofs that are accepted with probability one, while
unsatisfiable instances are accepted with probability arbitrarily close to 1/2. (See Theorem 2.)

We also raise several technical questions whose positive resolution may lead to a PCP of nearly
quadratic size and query complexity of 6. Surprisingly, no non-trivial limitations are known on the
joint size 4+ query complexity of PCPs. In particular, it is open as to whether nearly linear sized
PCPs with query complexity of 3 exist for NP statements.



2 Overview

We first recall the standard definition of the class PCP, [r, q].

Definition 1 For functions r,q : Z* — Z™, a probabilistic oracle machine (or verifier) V is (r,q)-
restricted if on input x of length n, the verifier tosses at most r(n) random coins and queries an
oracle w for at most q(n) bits. A language L € PCP,4[r, q| if there ezists an (r,q)-restricted verifier
that satisfies the following properties on input x.

Completeness If x € L then there exists w such that V' on oracle access to w accepts with proba-
bility at least c.

Soundness If x & L then for every oracle w, the verifier V accepts with probability strictly less
than s.

While our principal interest is in the size of a PCP and not in the randomness, it is well-known
that the size of a probabilistically checkable proof (or more precisely, the number of distinct queries
to the oracle 7) is at most 27(™+49(") Thus the size is implicitly governed by the randomness and
query complexity of a PCP. The main result of this paper is the following.

Theorem 2 For every e, u > 0,

SAT € PCP [(3+¢€)logn,16].

Ls+u
Remark: Actually the constants € and p above can be replaced by some o(1) functions; but we
don’t derive them explicitly.

It follows from the parameters that the associated proof is of size at most O(n®*¢).

Cook [6] showed that any language in NTIME(¢(n)) could be reduced to SAT in O(t(n)logt(n))
time such that instances of size n are mapped to boolean formulae of size at most O(t(n)logt(n)).
Combining this with Theorem 2, we have that every language in NP has a PCP with at most a
slightly super-cubic blowup in proof size and a query complexity as low as 16 bits.

2.1 MIP and recursive proof composition

As pointed out earlier, the parameters we seek are such that no existing proof system achieves
them. Hence we work our way through the PCP construction of Arora et al. [1] and make every
step as efficient as possible. The key ingredient in their construction (as well as most subsequent
constructions) is the notion of recursive composition of proofs, a paradigm introduced by Arora
and Safra [2]. The paradigm of recursive composition is best described in terms of multi-prover
interactive proof systems (MIPs).

Definition 3 For integer p, and functions r,a : Z* — Z*, an MIP verifier V is (p,r,a)-restricted
if it interacts with p mutually-non-interacting provers mi,... ,m, in the following restricted manner.
On input = of length n, V picks a random r(n)-bit string R and generates p queries qi,... ,qp and
a circuit C of size at most a(n). The verifier then issues query g; to prover m;. The provers respond
with answers a1, ... ,ap each of length at most a(n) and the verifier accepts z iff C(a1,... ,ap) = 1.
Language L belongs to MIP, s[p,r,a] if there exists a (p,r,a)-restricted MIP verifier V such that
on input T:



Completeness If x € L then there exist m1,... ,m, such that V' accepts with probability at least c.

Soundness If x ¢ L then for every my,... ,m,, V accepts with probability less than s.

It is easy to see that MIP[p,r,a] is a subclass of PCP,[r,pa] and thus it is beneficial to show
that SAT is contained in MIP with nice parameters. However, much stronger benefits are obtained
if the containment has a small number of provers, even if the answer size complexity (a) is not
very small. This is because the verifier’s actions can usually be simulated by a much more efficient
verification procedure, one with much smaller answer size complexity, at the cost of a few more
provers. Results of this nature are termed proof composition lemmas; and the efficient simulators
of the MIP verification procedure are usually called “inner verification procedures”.

The next three lemmas divide the task of proving Theorem 2 into smaller subtasks. The first gives
a starting MIP for satisfiability, with 3 provers, but poly-logarithmic answer size. We next give
the composition lemma that is used in the intermediate stages. The final lemma gives our terminal
composition lemma — the one that reduces answer sizes from some slowly growing function to a
constant.

Lemma 4 For every e, > 0, SAT € MIP; ,[3, (3 + €) logn, poly log n].

Lemma 4 is proven in Section 3. This lemma is critical to bounding the proof size. This lemma
follows the proof of a similar one (the “parallelization” step) in [1]; however various aspects are
improved. We show how to incorporate advances made by Polishchuk and Spielman [12], and how
to take advantage of the low-degree test of Raz and Safra [13]. Most importantly, we show how to
save a quadratic blowup in this phase that would be incurred by a direct use of the parallelization
step in [1].

The first composition lemma we use is an off-the-shelf product due to [3]. Similar lemmas are
implicit in the works of Bellare et al. [5] and Raz and Safra [13].

Lemma 5 ([3]) For every € > 0 and p < oo, there ezist constants ci,ca,c3 such that for every
ra:Zt — 77,

MIPy [p,r,a] € MIP| a/¢p2[p + 3,7 + c1 log a, c2(log a) ).

The next lemma shows how to truncate the recursion. This lemma is proved in Section 4 using
a “Fourier-analysis” based proof, as in [9]. This is the first time that this style of analysis has
been applied to MIPs with more than 2 provers. All previous analyses seem to have focused on
composition with canonical 2-prover proof systems at the outer level. Our analysis reveals surprising
complications (see Section 4 for details) and forces us to use a large number (seven) of extra bits
to effect the truncation.

Lemma 6 For every e > 0 and p < oo, there exists a v > 0 such that for every r,a : Z* — Z7,

MIP; ,[p,r,a] C PCPI,%H[T +0O(2PY) ,p+ 7).



Proof of Theorem 2: The proof is straightforward given the above lemmas. We first apply
Lemma 4 to get a 3-prover MIP for SAT, then apply Lemma 5 twice to get a 6- and then a 9-prover
MIP for SAT. The answer size in the final stage is poly log loglog n. Applying Lemma 6 at this stage
we obtain a 16-query PCP for SAT; and the total randomness in all stages remains (3 + ¢) logn.

3 A randomness efficient MIP for SAT

In this section, we use the term “length-preserving reductions”, to refer to reductions in which the
length of the target instance of the reduction is nearly-linear (O(n!*€) for arbitrarily small €) in
the length of the source instance.

To prove membership in SAT, we first transform SAT into an algebraic problem. This transforma-
tion comes in two phases. First we transform it to an algebraic problem (that we call AP for lack
of a better name) in which the constraints can be enumerated compactly. Then we transform it to
a promise problem on polynomials, called Polynomial Constraint Satisfaction (PCS), with a large
associated gap. We then show how to provide an MIP verifier for the PCS problem.

Though most of these results are implicit in the literature, we find that abstracting them cleanly
significantly improves the exposition of PCPs. The first problem, AP, could be proved to be
NP-hard almost immediately, if one did not require length-preserving reductions. We show how
the results of Polishchuk and Spielman [12] imply a length preserving reduction from SAT to this
problem. We then reduce this problem to PCS. This step mimics the sum-check protocol of Lund
et al. [11]. The technical importance of this intermediate step is the fact that it does not refer
to “low-degree” tests in its analysis. Low-degree tests are primitives used to test if the function
described by a given oracle is close to some (unknown) multivariate polynomial of low-degree. Low-
degree tests have played a central role in the constructions of PCPs. Here we separate (to a large
extent) their role from other algebraic manipulations used to obtain PCPs/MIPs for SAT .

In the final step, we show how to translate the use of state-of-the-art low-degree tests, in particular
the test of Raz and Safra [13], in conjunction with the hardness of PCS to obtain a 3-prover MIP
for SAT. This part follows a proof of Arora et al. [1] (their parallelization step); however a direct
implementation would involve 6 log n randomness, or an n® blow up in the size of the proof. Part
of this is a cubic blow up due to the use of the low-degree test and we are unable to get around
this part. Direct use of the parallelization also results in a quadratic blowup of the resulting proof.
We save on this by creating a variant of the parallelization step of [1] that uses higher dimensional
varieties instead of 1-dimensional ones.

3.1 A compactly described algebraic NP-hard problem

Definition 7 For functions m,h : Zt — Z7, the problem AP, j has as its instances (1", H, T, 9, p1,

., pe) where: H is a field of size h(n), 1 : H" — H is a constant degree polynomial, T is an arbi-
trary function from H™ to H and the p;’s are linear maps from H™ to H™, for m = m(n). (T is
specified by a table of values, and p;’s by m x m matrices.) (1", H,T,,p1,... ,ps) € APy, p, if there
exists an assignment A : H™ — H such that for every x € H™, (T (x), A(p1(z)),... ,A(ps(x))) =
0.



The above problem is just a simple variant of standard constraint satisfaction problems, the only
difference being that its variables and constraints are now indexed by elements of H™. The only
algebra in the above problem is in the fact that the functions p;, which dictate which variables
participate in which constraint, are linear functions. The following statement, abstracted from
[12], gives the desired hardness of AP.

Lemma 8 There exists a constant ¢ such that for any pair of functions m,h : ZT — Z* satis-
fying h(n)™™=¢ > n and h(n)™™ = O(n't°(M), SAT reduces to APy, j, under length preserving
reductions.

Lemma 8 is a reformulation of the result proved in [12, 16] in a manner that is convenient for us
to work with. A proof of this lemma can be found in Appendix A. We note that Szegedy [18] has
given an alternate abstraction of the result of [12, 16]. His abstraction focuses on some different
aspects of the result of [12, 16] and does not suffice for our purposes.

3.2 Polynomial constraint satisfaction

We next present an instance of an algebraic constraint satisfaction problem. This differs from the
previous one in that its constraints are “wider”, the relationship between constraints and variables
that appear in it is arbitrary (and not linear), and the hardness is not established for arbitrary
assignment functions, but only for low-degree functions. All the above changes only make the
problem harder, so we ought to gain something — and we gain in the gap of the hardness. The
problem is shown to be hard even if the goal is only to separate satisfiable instances from instances
in which only e fraction of the constraints are satisfiable. We define this gap version of the problem
first.

Definition 9 For ¢ : Z* — R", and m,b,q : Z+ — Z™ the promise problem GapPCS,,,,, has
as instances (1", d, k,s,F; Cy,... ,C}), where d, k,s < b(n) are integers and F is a field of size q(n)
and Cj = (Aj;.’Egj), . ,:c,(cj)) is an algebraic constraint, given by an algebraic circuit A; of size s
on k inputs and mgj),... ,m,(cj) e I, for m = m(n). (1",d,k,s,F;Cq,... ,Cy) is a YES instance
if there ezists a polynomial p : ™ — F of degree at most d such that for every j € {1,... ,t}, the
constraint C; is satisfied by p, i.e., Aj(p(xgj)),... ,p(xg))) =0. (1", d,k,s,F;C1,...,Ct) is a NO
instance if for every polynomial p : ™ — F of degree at most d it is the case that at most €(n) - t
of the constraints C; are satisfied.

Lemma 10 There exist constants cq,co such that for every choice of functions €,m,b,q satisfy-
ing (b(n)/m(n))™™=e1 > n_ g(n)™" = O(nl""’(")) and g(n) > cob(n)/e(n), SAT reduces to
GapPCS, , ;, , under length preserving reductions.

(The problem AP, is used as an intermediate problem in the reduction. However we don’t
mention this in the lemma, since the choice of parameters m, h may confuse the statement further.)
A proof of Lemma, 10 can be found in Appendix B. This proof is inspired by the sum-check protocol
used in Lund et al. [11], which was also used in Babai et al. [4]. The specific steps in our proof
follow the proof in Sudan [17].



3.3 Low-degree tests

Using GapPCS it is easy to produce a simple probabilistically checkable proof for SAT. Given an
instance of SAT, reduce it to an instance Z of GapPCS ; and provide as proof the polynomial
p: F™ — T as a table of values. To verify correctness a verifier first “checks” that p is close to
some polynomial and then verifies that a random constraint C; is satisfied by p. Low-degree tests
are procedures designed to address the first part of this verification step — i.e., to verify that an
arbitrary function f : F™ — F is close to some (unknown) polynomial p of degree d.

Low-degree tests have been a subject of much research in the context of program checking and
PCPs. For our purposes, we need tests that have very low probability of error. Two such tests with
analyses are known, one due to Raz and Safra [13] and another due to Rubinfeld and Sudan [14]
(with low-error analysis by Arora and Sudan [3]) For our purposes the test of Raz and Safra is
more efficient. We describe their results first and then compare its utility with the result in [3].

A plane in F™ is a collection of points parametrized by two variables. Specifically, given a, b, c € F™
the plane pgp . = {@ap.c(t1,t2) = a + t1b + taclt1, to € F}. Several parameterizations are possible
for a given plane. We assume some canonical one is fixed for every plane, and thus the plane is
equivalent to the set of points it contains. The low-degree test uses the fact that for any polynomial
p : ™ — F of degree d, the function p, : F2 — F given by p,(t1,t2) = p(p(t1,t2)) is a bivariate
polynomial of degree d. The verifier tests this property for a function f by picking a random plane
through ™ and verifying that there ezists a bivariate polynomial that has good agreement with f
restricted to this plane. The verifier expects an auxiliary oracle fpjanes that gives such a bivariate
polynomial for every plane. This motivates the test below.

Low-Degree Test (Plane-Point Test)

Input: A function f : F* — F and an oracle fplanes, which for each plane in F™ gives a
bivariate degree d polynomial.

1. Choose a random point in the space x € F™.

2. Choose a random plane g passing through z in F™.

3. Query fplanes On g to obtain the polynomial hy,. Query f on z.

4. Accept iff the value of the polynomial h,, at z agrees with f(z).

It is clear that if f is a degree d polynomial, then there exists an oracle flanes such that the above
test accepts with probability 1. It is non-trivial to prove any converse and Raz and Safra give a
strikingly strong converse. Below we work their statement into a form that is convenient for us.

First some more notation. Let LDT/>/planes () denote the outcome of the above test on oracle
access to f and fplanes- Let f,g: ™ — I have agreement ¢ if Pryepn [f(z) = g(z)] = 6.

Theorem 11 There exist constants cg,cy such that for every positive real 8, integers m,d and field
F satisfying |F| > cod(m /), the following holds: Fiz f :F™ — T and fplanes- Let {P1,... , P} be
the set of all m-variate polynomials of degree d that have agreement at least §/2 with the function
f:F* > F. Then

al;’;‘)[f(w) ¢ {Pi(z),... ,P(z)} and LDT/ranes (2 o) = accept] < 6.



Remarks:

1. The actual theorem statement of Raz and Safra differs in a few aspects. The main difference
being that the exact bound on the agreement probability described is different; and the fact
that the claim may only say that if the low-degree test passes with probability greater than ¢,
then there exists some polynomial that agrees with f in some fraction of the points. A proof
of the above theorem from the statement of Raz and Safra can be found in Appendix C.

2. The cubic blowup in our proof size occurs from the oracle fpjanes Which has size cubic in the
size of the oracle f. A possible way to make the proof shorter would be to use an oracle for
f restricted only to lines. (i.e., an analogous line-point test to the above test) The analysis
of [3] does apply to such a test. However they require the field size to be (at least) a fourth
power of the degree; and this results in a blowup in the proof to (at least) an eighth power.
Note that the above theorem only needs a linear relationship between the degree and the field
size.

3.4 Putting them together

As pointed out earlier a simple PCP for GapPCS can be constructed based on the low-degree test
above. A proof would be an oracle f representing the polynomial and the auxiliary oracle fpianes-
The verifier performs a low-degree test on f and then picks a random constraint C; and verifies
that Cj is satisfied by the assignment f. But the naive implementation would make k queries to the
oracle f and this is too many queries. The same problem was faced by Arora et al. [1] who solved it
by running a curve through the k points and then asking a new oracle fcyrves to return the value of
f restricted to this curve. This solution cuts down the number of queries to 3, but the analysis of
correctness works only if |F| > kd. In our case, this would impose an additional quadratic blowup
in the proof size and we would like to avoid this. We do so by picking r-dimensional varieties
(algebraic surfaces) that pass through the given k points. This cuts down the degree to rk/r.
However some additional complications arise: The variety needs to pass through many random
points, but not at the expense of too much randomness. We deal with these issues below.

A variety V : F© — F™ is a collection of m functions, V = (V1,...,Vp), Vi : FF — F. A
variety is of degree D if all the functions Vi,... ,V,, are polynomials of degree D. For a variety
V and function f : F™ — F, the restriction of f to V is the function f|y : F* — F given by
flv(ai,-..,a,) = f(V(a1,... ,a,)). Note that the restriction of a degree d polynomial p : F"* — F
to an r-dimensional variety V of degree D is an r-variate polynomial of degree Dd.

Let S C F be of cardinality k'/7. Let z1,... , z; be some canonical ordering of the points in S”. Let
Vé?;)cl,... , - ' — ™ denote a canonical variety of degree r[S| that satisfies Vé?il,---,zk (z;) = z; for

every i € {1,... ,k}. Let Zg : F" — F be the function given by Zg(y1,... ,y,) = [Ii_; [Toes(vi—a);
ie. Zs(z;) =0. Let a = (ay,... ,ap) € F™. Let Vg()l be the variety (@1 Zs, ... ,anZs). We will let

VS.a,a1,... o D€ the variety Vg,)il,... - +V§fl- Note that if o is chosen at random, Vs o 4, ... 2, (2i) = @;
for z; € 8™ and Vs,a4,.,... 2, (2) is distributed uniformly over ™™ if z € (F — S)". These varieties
will replace the role of the curves of [1]. We note that Dinur et al. also use higher dimensional
varieties in the proof of PCP-related theorems [7]. (They call these structures manifolds instead of

varieties.) Their use of varieties is for purposes quite different from ours.



We are now ready to describe the MIP verifier for GapPCS, ,,  ,. (Henceforth, we shall assume that
t, the number of constraints in GapPCS, ,, ; , instance is at most ¢*™. In fact, for our reduction
from SAT (Lemma 10), ¢ is exactly equal to ¢™.)

MIP Verifier/ /vianes: fvaricties (17 d, k, 5, F; C1, ... , Cy).
Notation: r is a parameter to be specified. Let S C F be such that |S| = k'/.

1. Pick a,b,c € F™ and z € (F — S)" at random.

2. Let p = pgpe. Use b,c to compute j € {1,... ,t} at random (i.e., j is fixed given b, ¢,
but is distributed uniformly when b and ¢ are random.) Compute « such that V(z) = a
for V=V, & _o-

0Ty e Ty

3. Query f(a), fplanes(ﬂo) and fvarieties(v)- Let g = fplanes(@) and h = fyarieties (V)

4. Accept if all the conditions below are true:

(a) g and f agree at a.
(b) h and f agree at a.
(c) A; accepts the inputs h(z1),...,h(2).

Complexity: Clearly the verifier V' makes exactly 3 queries. Also, exactly 3m log ¢+ r log g random
bits are used by the verifier. The answer sizes are no more than O((drk/™ 4 r)" log q) bits.

Now to prove the correctness of the verifier. Clearly, if the input instance is a YES instance then
there exists a polynomial P of degree d that satisfies all the constraints of the input instance.
Choosing f = P and constructing fplanes and fyarieties to be restrictions of P to the respective
planes and varieties, we notice that the MIP verifier accepts with probability one. We now bound
the soundness of the verifier.

Claim 12 Let § be any constant that satisfies the conditions of Theorem 11 and § > 2\/% Then
the soundness of the MIP Verifier is at most
de  drked

S+ —+—r
§ §(g—kr)

Proof: Let Pi,..., P be all the polynomials of degree d that have agreement at least 6/2 with
f. (Note [ <4/§ since § > 24/d/q.) Now suppose, the MIP Verifier had accepted a NO instance,
then one of the following events must have taken place.

Event 1: f(a) ¢ {Pi(a),...,P(a)} and LDT//plenes (g, ) = accept.
We have from Theorem 11, that Event 1 could have happened with probability at most 4.

Event 2: 3i € {1,...,1}, such that constraint C} is satisfiable with respect to polynomial P;. (i.e.,
4;(Pi(a), .., Pi(a]))) = 0).
As the input instance is a NO instance of GapPCS, ,,, ; ,, this events happens with probability
at most le < 4¢/é.



Event 3: Vi , Pjly # h, but the value of h at a is contained in {P;(a),... ,P(a)}.
To see this part, we reinterpret the randomness of the MIP verifier. First pick b,¢c,a € F™.
From this we generate the constraint C'; and this defines the variety V = VS NRONENGR Now
yydg

sy L

we pick z € (F — S)" at random and this defines a = V(z). We can bound the probability of
the event in consideration after we have chosen V), as purely a function of the random variable
z as follows. Fix any ¢ and V such that P;|y # h. Note that the value of h at a equals h(z) (by
definition. of a, z and V). Further P;(a) = P;|y(z). But z is chosen at random from (F—S)".
By the Schwartz’s lemma (Lemma 28), the probability of agreement on this domain is at
most rk'/"d/(|F| — |S]). Using the union bound over the i’s we get that this event happens

with probability at most Irk'/"d/(|F| — |S|) < 4rk+d/d(q — k+).

We thus have that the probability of one of the above events occurring is at most § + 4¢/d +
drkrd/6(q — kv).

We would be done if we show that if none of the three events occur, then the MIP verifier rejects.
Suppose none of the three events took place. In other words, all the following happened

e f(a) € {P.(a),...,Pya)} or LDT//eienes(q, o) = reject. We could as well assume that f(a) €
{P1(a),... ,P(a)} for in the other case (i.e., LDT rejects), the verifier rejects.

o Vi, 4;(Pi(1?, ..., Pi(z7) £ 0.
e Ji, P;ly = h or the value of h at a is not contained in {P;(a),... ,P(a)}.

If h at a is not one of P;(a),...,P(a), then the MIP verifier rejects as f(a) € {P1(a),... ,P(a)}.
So, if the MIP verifier had accepted, it should be the case that 3i, P;jly = h. But as Vi,

A (Pi( gj),... ,Pi(mgcj)) # 0, the verifier is bound to reject in this case too. Thus, if none of
the the three events occurred, then the verifier should have rejected. |

We can now complete the construction of a 3-prover MIP for SAT and give the proof of Lemma 4.

Proof (of Lemma 4): Choose § = % Let cg,c; be the constants that appear in Theo-
rem 11. Choose ¢/ = /2 where ¢ is the soundness of the MIP, we wish to prove. Choose
e = min{dp/12,¢'/3(9 + c1)}. Let n be the size of the SAT instance. Let m = elogn/loglogn,
b = (logn)* < and ¢ = (logn)?™“*+¢. Note that this choice of parameters satisfies the re-
quirements of Lemma 10. Hence, SAT reduces to GapPCS,,,;, under length preserving re-
ductions. Combining this reduction with the MIP verifier for GapPCS, we have a MIP verifier
for SAT. Also § satisfies the requirements of Claim 12. Thus, this MIP verifier has sound-

ness as given by Claim 12. Setting r = %, we can easily check that for sufficiently large n,

drkrd/6(q — kr) < 8rk+d/qds < p/3. We thus have that the soundness of the MIP verifier is
at most d + 4e/6 + p/3 < p. The randomness used is exactly 3mlogq + rlogq which with the
present choice of parameters is (3+¢’) logn+ polylogn < (3+¢) logn. The answer sizes are clearly
polylogn. Thus, SAT € MIPL%JFH[(?) + ¢) logn, poly log n). I

4 Constant query inner verifier for MIPs

In this section we give a constant query “inner verifier” for a p-prover interactive proof system. An
inner verifier is a subroutine designed to simplify the task of an MIP verifier. Say an MIP verifier



Vout, on input = and random string R, generated queries qi,... ,g, and a linear sized circuit C. In
the standard protocol the verifier would send query ¢; to prover II; and receive some answer a;.
The verifier accepts if C(ay,... ,ap) = —1. (In this section, we will assume all Boolean functions
map to {+1,—1} with —1 representing the logical true.) An inner verifier reduces the answer
size complexity of this protocol by accessing oracles Ai,... , A, supposedly encoding the responses
ai,...,ap, and an auxiliary oracle B; and probabilistically verifying that the A;’s really correspond
to some commitment to strings a,... ,a, that satisfy the circuit C. The hope is to get the inner
verifier to do all this with very few queries to the oracles Ai,..., A, and B and we do so with one
(bit) query each to the A;’s and seven queries to B.

Before describing our proof, we discuss one natural approach which turns out not to work. This ap-
proach would be to iterate the 3-query protocol of Hastad [9] p times, once for every i € {1,... ,p},
using the ith iteration to verify consistency between the oracle B and the oracles A;, and in the
process verifying that the oracle B encodes some tuple a1, ... ,a, that satisfies C. Such a protocol
takes 3p queries (which is higher than the bound of p + 7 that we achieve), but its soundness turns
out to be close to 1. (For the reader familiar with the details of [9], the following example may be
illuminating: Consider the case when p = 3, the a;’s are 1-bit each, and C accepts if at least one
of the a;’s is 1. Let A;’s encode the bit 0 (and thus the inner verifier should not accept with too
high a probability). Let B be the function with a Fourier coefficient of 1 on the set {011,101,110}.
If the inner verifiers are tuned so that the completeness is 1 — ¢, then the associated acceptance
probability on the above configuration tends to 1 as € — 0.)

We now return to the description of our inner verifier. We start with some standard notation. Let
A = {+1,-1}* and B = {(a1,...,ap)|C(a1,... ,ap) = —1}. Let m; be the projection function
m; : B — A which maps (ai,...,ap) to a;. By abuse of notation, for § C B, let m;(5) denote
{mi(z)|z € B}. Queries to the oracle A; will be functions f : A — {+1,—1}. Queries to the oracle
B will be functions g : B — {+1,—1}. The inner verifier expects the oracles to provide the long
codes of the strings a1,... ,ap, i.e., A;(f) = f(a;) and B(g) = g(ai,... ,ap). Of course, we can not
assume these properties; they need to be verified explicitly by the inner verifier. We will assume
however that the tables are “folded”, i.e., A;(f) = —A;(—f) and B(g) = —B(—g) for every i, f, g.
(This is implemented by issuing only one of the queries f or —f for every f and inferring the other
value, if needed by complementing it.) We are now ready to specify the inner verifier.

Ai,...,Ap,B
Vinner 179> (.A,B,ﬂ'l,... ,ﬂ'p).

1. For each each i € {1,... ,p}, choose f; : A — {+1,—1} at random.
2. Choose f,g1,92,h1,he : B— {4+1,—1} at random and independently.
3. Let g = f (g1 A g2) (ILfiom;)) and h = f (k1 A ho) (ILf; 0 m;)).
4. Read the following bits from the oracles A1,... ,4,, B

yi = Ai(fi) , foreach i € {1,... ,p}.

w = B(f).

5. Accept iff

wHyi = (u1 Aug)zr = (v1 A va)zo

10



It is clear that if a1, ... ,a, are such that C(a1,... ,ap) = —1 and for every ¢ and f, A;(f) = f(a;)
and for every g, B(g) = g(a1,-..,ap), then the inner verifier accepts with probability one. The
following lemma gives a soundness condition for the inner verifier, by showing that if the acceptance
probability of the inner verifier is sufficiently high then the oracles Ai,..., A, are non-trivially
close to the encoding of strings a1, ... , ap that satisfy C(a1,... ,ap) = —1. The proof uses, by now
standard, Fourier analysis.

Note that the oracle A; can be viewed as a function mapping the set {A — {41, —1}} to the reals.
Let the inner product of two oracles A and A’ be (4, A') = 2~ > A(N)A(f). For a C A, let
Xa(f) = Ilaeq f(a). Then the xo’s give an orthonormal basis for the space of oracles A. This
allows us to express A( ) =3, AaXal(-), where A, = (A, xa) are the Fourier coefficients of A. In
what follows, we let AZ o« denote the ot Fourier coefficient of the table A;. Similarly one can define
a basis for the space of oracles B and the Fourier coefficients of any one oracle.

Our next lemma lays out the precise soundness condition in terms of the Fourier coefficients of the
oracles Ay,...,A4,.

Claim 13 For every € > O there exists a 6 > 0 such that if VinnerAl""’AP’B(A, B,m1,...,mp) accepts
with probability at least L 5 + ¢, then there exist ay,... ,ap, € A such that C(ay,... ,ay) = —1 and

|Az,{a¢}| > 0 for every i E {1,...,p}.

Proof: Let d be some constant (to be decided later.) Assume that there do not exist ay,... ,a, €
A such that C(a1,...,ap) = —1 and |fi,-7{ai}| > ¢ for every i € {1,...,p}. On restating this
assumption, we get that for every 8 C B such that |3| = 1, there exists a i € {1,... ,p} such that
|Ai,m(ﬁ)| < §. To prove the lemma, it is sufficient if we show that for every choice of € there exists
a particular choice of §, such that this assumption implies that the acceptance probability of Vipner
is less than % + €.

The acceptance condition of the verifier Vipner can be given by the following expression.

1 P p
ACC = 1 (1 + w(uy A ug)z; Hyz) (1 + w(vy Ave)ze H yz)

Thus, the acceptance probability of Vinner is given by Ef, f .4, g0.h1,hs [ACC] which can be shown by
standard Fourier analysis techniques to be at most

, (L+9)° 11 +7)"
1+1 ZBﬁ<HI L i 1]

Where ’)’ﬁ = Zﬁ’gﬂ |Bﬂl‘.

With a simple analysis, the above expression can be shown less than % + % (see Appendix D for
a proof of this statement). Assuming this result for the present, we have that the acceptance
probability is less than % + g. Thus choosing § = 2¢, we have that the acceptance probability of
Vinner 18 less than % + ¢, which is what we wanted to prove.

There is a natural way to compose a p-prover MIP verifier V¢ with an inner verifier such as Viype,
above so as to preserve perfect completeness. The number of queries issued by the composed verifier

11



is exactly that of the inner verifier. The randomness is the sum of the randomness. The analysis
of the soundness of such a verifier is also standard and in particular shows that if the composed
verifier accepts with probability % + 2¢, then there exist provers Ily, ... ,II, such that V,, accepts
them with probability at least e - §%P, where ¢ is from Claim 13 above. Thus we get a proof of
Lemma 6.

5 Scope for Further Improvements

The following are a few approaches which would further reduce the size-query complexity in the
construction of PCPs described in this paper.

1. An improved low-error analysis of the low-degree test of Rubinfeld and Sudan [14] in the case
when the field size is linear in the degree of the polynomial. (It is to be noted that the current
best analysis [3] requires the field size to be at least a fourth power of the degree.) Such an
analysis would reduce the proof blowup to nearly quadratic.

2. Converting the PCP of Hastad [9] into an inner verifier for p-prover MIPs and thus showing
that for every § > 0 and p there exists € > 0 and ¢ such that

MIP; ([p,r,a] C PCPl_J,% [r 4+ cloga,p + 3.

This would reduce the query complexity of the small PCPs constructed in this paper to 6
bits.
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Hardness of AP problem

The proof of Lemma 8 is along the lines of [12, 16]. In the following two subsections, we (re)present
the machinery required to prove the lemma and finally provide a proof of the lemma, in Section A.3.

A.1 De Bruijn Graph Coloring Problem

Definition 14 The de Bruijn graph B, is a directed graph on 2™ vertices in which each vertex is
represented by a n-bit binary string. The vertex represented by (x1,... ,x,) has edges pointing to
the vertices represented by (zo,... ,Tn,21) and (zo,... , Ty, 1 ® 1), where a® b denotes the sum of
a and b modulo 2.

13



We then define a wrapped de Bruijn graph to be the product of a de Bruijn graph and a cycle.

Definition 15 The wrapped de Bruijn graph By is a directed graph on bn - 2™ vertices in which
each vertez is represented by a pair consisting of an n-bit binary string and a number modulo 5n.
The vertex represented by ((z1,... ,Ty),a) has edges pointing to the vertices ((z2,... ,%n,x1),a+1)
and ((z2,... ,Zn,x1 ® 1),a+ 1), where the addition a + 1 is performed modulo 5n.

Similarly, one can define the extended de Bruijn graph (on (5n 4+ 1) - 2™ vertices) to be the product
of the de Bruijn graph (on 2" vertices) and a line graph (on 5n + 1 vertices). For ease of notation,
let us define for any vertex v, g1(v) and p2(v) to be the two neighbors of v in the wrapped de
Bruijn graph. [12, 16] show how to reduce SAT to the following coloring problem on the wrapped
de Bruijn graph using standard packet routing techniques (see [10]).

Definition 16 The problem DE-BRULIN-GRAPH-COLOR has as its instances (B, T) where By, is a
wrapped de Bruijn graph on 5n - 2™ vertices and T : V(B,) — C1 is a coloring of the vertices of By,
(T is specified by a table of values). (B,,T) € DE-BRULIN-GRAPH-COLOR if there exists another
coloring A : V(By,) — Co such that for all vertices v € V(By,),

o(T'(v), A(v), Ae1(v)), A(e2(v))) = 0

where C1, Cy are two sets of colors independent of n and ¢ : C1 xC3 — Z7 is a function independent
of n.

Similar to length-preserving reductions, we can define the term “length-efficient reductions”, to
refer to reductions in which the length of the target instance of the reduction is at most an extra
logarithmic factor off the length of the source instance (i.e., O(nlogn)). [12, 16] prove the following
statement regarding the hardness of the above problem.

Proposition 17 ([12, 16]) SAT reduces to DE-BRUIIN-GRAPH-COLOR under length-efficient re-
ductions.

A.2 Algebraic Description of De Bruijn Graphs
In this section, we shall give a very simple algebraic description of the de Bruijn graphs.

Definition 18 A Galois graph Gy, is a directed graph on 2™ wvertices in which each vertez is node
is identified with an element of GF(2"). Let a be a generator' of GF(2"). The vertex represented
by v € GF(2"™) has edges pointing to the vertices represented by ary and ay + 1.

Claim 19 The Galois graph G, is isomorphic to the de Bruijn graph B,.

A generator of GF(2") is an element o € GF(2") such that " ~' =1 and af # 1 for any 1 < k < 2" — 1. Every
element in GF(2") can be represented by a unique polynomial in « of degree at most n — 1 with coefficients from

{0,1}.

14



Proof: Recall the standard definition of GF(2"). Let p(a) = o" + 1™ L + ...+ ¢y 1 + ¢, be
any irreducible monic polynomial over GF(2) of degree n. Then GF(2") can be identified with
GF(2)[a]/(p(a)). Addition and multiplication in GF(2™) are simple, they are performed exactly
similar to polynomial addition and multiplication and the result is then reduced modulo p(«).

We shall show that G, and B,, are isomorphic by exhibiting an isomorphism ¢ : V(B,) — V(Gy),
between the vertices of the two graphs, as follows:

n—1
G(by.-. ,bp) =a" by +a" E(by +chy) + ...+ (bn + Z Cibn—1)>
i—1

To verify that this is an isomorphism, we need to check that (u,v) € E(B,) <= (¢(u),d(v)) €
E(G,). Note that in the graph By, the edges from the vertex (by, ... ,b,) are pointed towards the
vertices (be,...,bn,b1) and (ba,... , by, b1 @ 1); while in G, the edges from

n—1
(b(bl, o ,bn) — anflbl + Oé'nfl(b2 + Cbl) + ...+ (bn + Z Cibn—1)>
=1

are towards the vertices

n—1
o (an1b1 +a" 2(by+ch) + ...+ (bn +> cibn_1)>>
i=1
n—1
= bi(cd" T epat ) +a (a"‘Q(b2 +cb)+...+ (bn + Z Cibn1)>)
i1

n—1
= "yt a" Py feibs) ...t (bn +> Cibn—i> + cnb
i=1
and

n—1

an71b2 + an72(b3 + Clbg) +...+t«a (bn + Z Cibn—z’> +eb1 +1

=1

which we can easily check to be ¢(ba,... ,bs,b1) and ¢(ba,... by, b1 © 1) (not necessarily in that
order). |

Claim 20 Let m divide n and a be a generator of GF(2"/m). Then the graph on

GF(2"™) x GF(2"/™) x ... x GF(2M™)

~ J
~~

m times
in which the vertex represented by (o1,... ,0m,) has edges pointing to the vertices represented by
(02, yom,ao1) and (o9,... ,0m,a01 + 1)

18 1isomorphic to the de Bruijn graph B,.
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Proof: By Claim 19, the given graph is isomorphic to the graph on binary strings of length n in
which the vertex

(bry- - ybaba gy, ybon, o bgnotyn g, 5 by)

has edges pointing to the vertices given by

(b2 f1seeeybon s bmenyn 1, by ba, . b by)

and
(b%—kla"' 7b2%1"' 7b(m—1)%+1a"' 7bn7b2a"' 7b%7b1 @1)

Shuffling the order of b;’s, we observe that this graph is isomorphic to the graph in which the vertex
represented by

(blab%-f-l"" ’b(m—l)%—t—lab?ab%—}—%"' ab(m—l)%—f—Za"' s by bamy - - - ab’n)

has edges pointed towards the vertices

(b%—l—l, ce ,b(m—l)%—l—la be, b%+2a ce ab(m—l)%—l—Za ooy bmybom, .. 5 b, bl)

and
(b%—kla s 7b(m—1)%+1ab27 b%—k?a s 7b(m—1)%+27 oy bmybomy s b, 01 O 1)

which is identical to the de Bruijn graph. |

Using the above result, we can now give a simple algebraic description of the extended de Bruijn
graphs.

Proposition 21 Let m divide n and  be a generator of H = GF(2"/™). Let C = {1,a,... ,a*"}
andC' = {1,a,... ,a®""'}. Then the extended de Bruijn graph on (5n+1)-2" vertices is isomorphic
to the graph on H™ X C in which each vertez in (x1,... ,Tm,y) € H™ XC' has edges pointed towards
the vertices

(22, s T, QT1, QY)

and
(2. s Tm,az1 + 1, ay)

For ease of notation, if v € H™ x C, then let g1(v) and g2(v) denote the two neighbors of v. Or
even more generally, for any v € H™*!, define

Ql(xla--' 7$may) = (‘T27"' 7$Tnaaxlaay) (1)
92(5517--' ;xmay) = (an-" y Tm, L1 -I-l,ay) (2)
A.3 Proof of Lemma 8
Instead of showing that SAT is reducible to AP,,;, we shall show that SAT is reducible under

length preserving reductions to another problem AP’y, ;. It would then follow from the definition
of AP and AP’ that SAT is reducible to AP, , under length preserving reductions.
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Definition 22 For functions m,h : ZT — Z™, the problem AP'y, j, has as its instances (1", H, T, 1, p1,
., ps,p) where: H is a field of size h(n), 1 : H' — H is a constant degree polynomial, T is an

arbitrary function from H™ ' to H, the p;’s are linear maps from H™ to H™ ' and p: H™ — H is

a linear map for m = m(n). (T is specified by a table of values, p;’s by m x (m — 1) matrices and p

by a m x 1 matriz.) (1", H,T,,p1,... ,p) € AP’ ), if there exists an assignment A : H™ 1 5 H

such that for every x € H™, (T (p1(x)), A(p1(x)),... , A(ps(x)), p(z)) = 0.

Proposition 23 For any pair of functions m,h : Zt — Z7T satisfying h(n)m(")*2 > n and
h(n)m(”) =0 (nH'"(l)), SAT reduces to AP'y, j, under length preserving reductions.

Proof: Let ¢ be any instance of SAT of size n. By Proposition 17, we have that ¢ can be reduced
to an instance (B,,T') of DE-BRUIIN-GRAPH-COLOR. . As the reduction is perfect length-efficient,
we have that 5n/ - 2 = O(nlogn) or N ~ n where N = 2. Let m and h be any two functions
satisfying the requisites of Proposition 23. Let m'(n) = m(n) — 2. Let « be a generator of the field
GF(2"/™). Now as h(n)™™=2 > n_there exists a field H of size h(n) such that the field GF(2"/™")
can be embedded in H. Now, as seen from Section A.2, we can view the graph B, as a graph on
H™ and the graph B,, as a graph on H™ x C where C = {1,q,... ,0™}. AsC C GF(2"/™) C H,
we can further view B,, as a graph on H™ T, where the neighborhood functions g1, g2 are as defined
in (1) and (2). We can also view the set of colors C; and C5 as embedded in the field H. With
such an embedding, we can consider the map T : V(B,/) — C; as amap T : H™ ! — H.

Consider the following choice of linear transformations p; : H™ — H™ *! (recall m' = m — 2) For
any (Z,y,z) € H™ where 2 € H™ ,y,z € H

[ ]
)
i

Also define p : H™ — H such that pg : (Z,y, z) — 2. Note each of the p;’s are linear transformations.
Now consider the polynomials defined as follows:

e 1 : H* — H satisfying 901|Cl><6'23 = (. i.e., the restriction of ¢; on the subset C; x C3 of the
domain is the same as the function ¢ in the definition of DE-BRUIIN-GRAPH-COLOR .

e o : H? — H such that @s(a,b) =0 iff a = b. (i.e., 3 checks if its two inputs are equal.)
e 3: H — H satistying ps|c, = 0. (i.e., p3 evaluates to true if its input belongs to the set C)

e o, : H — H satisfying 4|, = 0. (i.e., @4 evaluates to true if its input belongs to the set C1)

It can easily be seen that the ¢;’s can be defined such that they are all of constant degree where
the degree depends only on the cardinality of the sets C; and Cbs.
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Now consider the polynomial 4 : H — H defined as follows

p1(a,b,c,d)  ift=1,
QDQ(eaf) lft:2a
P(a,b,c,d,e, f,t) =< @3(b) ift =3,
904(0’) ift= 45
arbitrary otherwise.

It can easily be checked that 7 is also a constant degree polynomial. By construction of v, we

have that ¢(T'(p1(2)), A(p1(2)), A(p2(2)), A(p3(2)), A(pa(2)), Alps(2)), p(2)) = 0,Vz € H™ iff the
corresponding instance (B,,T) € DE-BRUIJN-GRAPH-COLOR , which happens iff ¢ € SAT. Note

(1) 1 checks if the condition ¢ is satisfied by vertices of the graph.

(2) 2 checks if the first and last column of the extended graph is the same (and hence the graph
can be viewed as a wrapped graph).

(3) Finally, 3 and ¢4 checks iff the colors assigned by the function A and T are indeed valid
colors. (i.e., T'(v) € Cy and A(v) € Cs.)

We have thus shown that (17, H,T,%,p1,...,p5,p) € AP'p ), <= ¢ € SAT. Moreover all the
reductions mentioned are length preserving (since A™ = O (n1+°(”))). Thus, proved. |

B Proof of Lemma 10

We shall prove the hardness of GapPCS, , , , using another related problem Polynomial Evolution
(PE) as an intermediary problem between AP and GapPCS. In Section B.1, we describe the
problem Polynomial Evolution and analyze its hardness. In Section B.2, we prove Lemma, 10.

B.1 Polynomial Evolution

Definition 24 A polynomial construction rule R over a field F on m variables is a circuit which

takes an oracle for a polynomial p : ™ — F and returns a new polynomial q : " — F, defined by
A
q = RP(z).

Polynomial Evolution involves checking whether there exists a polynomial p : F* — F such that
when a given sequence of construction rules are composed on this polynomial, the resulting poly-
nomial is identically zero. More formally,

Definition 25 For functionsb,m,q : Z+ — Z7, the problem PE, ;, , has as instances (1*,d,F; Ry, ...

where d < b(n) are integers, F is a finite field of size q(n) and the R;’s are polynomial construction
rules over F on m variables. (1",d,F; Ry,... ,R;) € PE, ;4 if there exists a polynomial py : F™* — F
of degree at most d such that the sequence of polynomials p; defined by p; & RPi-1 for i =1...1
satisfies py = 0 (i.e., p; is identically zero.)
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If ¢™ is polynomial in the description of the instance, then clearly PE,, ; , € NP. We shall prove
the following statement regarding the hardness of PE,, p ..

Lemma 26 There exists a constant ¢ € Z™ such that for functions m,h,q : ZT — ZT satisfying
g > cmh and q™ = O(nHo(l)), AP, i, reduces to PEy, mp 4 under length-preserving reductions.

Let (1", H,T,v,p1, ... ,pe) be an instance of AP,, ;. Let F be a field of size g(n) where g satisfies
the requirements of Lemma 26 such that H C F. Let ¢ be the degree of the polynomial : H” — H.
(Recall that by definition of AP, 5, ¢ is a constant.)

Any assignment S : H™ — H can be interpolated to obtain a polynomial S:F" - F of degree at
most |H| in each variable (and hence a total degree of at most m|H|) such that S|gm = S. (ie.,
the restriction of S to H™ coincides with the function S.) Conversely, any polynomial S:F" 5 F
can be interpreted as an assignment from H™ to [ by considering the function restricted to the
sub-domain H™.

Based on the instance (1", H, T, v, p1, - -. , ps), we will construct a sequence of (m + 1) polynomial
construction rules which transform a polynomial py to the zero polynomial iff the assignment
given by A = pg|pgm satisfies the instance (1", H,T, v, p1, ... ,pg). The first rule takes as input a
polynomial p, : F* — F of degree mh and outputs a polynomial p; : I — F of degree ¢cmh which
is 0 on H™ iff the corresponding assignment po|gm satisfies the instance (1", H, T, v, p1, --- , ps)-
The remaining m rules follow the sum-check protocol of Lund, Fortnow, Karloff and Nisan [11] and
“amplify” the zero-set of the polynomial p; so that the resulting polynomials are zero on larger and
larger sets. The final polynomial p,, 11 : F" — F will be identically zero iff the original polynomial
p1 was zero on H™ and hence, iff (17, H,T,,p1, ... ,ps) € AP p.

The first polynomial construction rule R; encodes the polynomial 1) : H” — H of constant degree
¢, the function 7' : H™ — H and the linear transformations p; : H™ — H. Let T :F" — F be
interpolation of T' such that the restriction coincides with the function 7. Also let @5 :F S F
be the extension of the polynomial 1 to the domain F™. (i.e., If ¢p : H™ — H is given by
V(X1 Ty) = Zail,___,imm’f ...xim then 1& : ™ — T is the same polynomial ¥ (z1,... ,Ty) =
Do ai,.. ,imm’f ...zim.) Note 1) is also of degree c. Also let p; : F™ — F™ represent the extension of
the linear transformation p; : H™ — H™ to the domain F™ (i.e., if p; is the linear map given by
Z+— AZ where T € H™ and A is a m X m matrix with elements from H, then g; is the linear map
given by = — AZ where T € F™) The rule R; is defined as follows:

Pz, mm) & (T (@, mm),po(B1( 1, 8m)); - po(Be (@, s Tm)))
When py = A for some assignment A : H™ — H, then for (z1,... ,2,) € H™,

p1(@1, - Tm) = Y(T(z1,-.. ,2m), Alpr(z1, - s 2Zm)), - s Alps (215 - -+, Tm)))

Thus, p1|gm = 0 iff the polynomial py represents an assignment A that satisfies the instance
(1™ H,T,4,p1, ... ,ps). Note that if py is a polynomial of degree mh, then p; is a polynomial of
degree at most cmh where ¢ is the degree of the polynomial 1.

Now to the remaining rules. It is to be noted that only rule R; actually depends on the instance,
the other rules are generic rules which follow the sum-check protocol in [11]. As mentioned earlier,
these rules make the zero-set of the polynomials larger and larger.
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For starters, let us first work on a univariate polynomial, p : F — F. Let H = {h1,... ,h g} be an
enumeration of the elements in H. Consider the construction rule that works as follows:

|H|

q(r) £ p(hj)r?
j=1

Clearly, if p(h) = 0 for all h € H, then ¢ = 0 on F. Conversely, if 3h € H,p(h) # 0, then ¢ is a
non-zero polynomial and hence is not identically zero.

Now, for multivariate polynomials, we shall mimic the above construction. Consider the sequence

of polynomials construction rules defined as follows. For : = 1,... ,m, rule R;;; works as follows:
|H| _
_ _ A _ _
Rip1:pipi |7 i — 2 — | = Zpi (é— T —hj 2 —E) ]
1—1 variables m—1 variables Jj=1

By the same reasoning as in the univariate case, we have that

Pit1|Fixgm-i =0 <= pilpi-1gm-i+1 =0

Thus, ppt1 = 0 iff pi|gm. But p1|gm = 0 iff po|gm satisfies (1", H, T, 4, p1, -..,pe). Thus, the
rules we have constructed satisfy

(1n’mha]F;R1a"' 7Rm+1) € PEm,mh,q — (1n7H7Ta¢ap1a"' 7p6) € APm,h

It can easily be checked that the reduction is length preserving. Thus, Lemma 26 is proved.

We can in fact prove a stronger statement regarding the hardness of the PE instance, we have
created.

Proposition 27 Suppose, we have an instance (1",d,F; Ry,... ,Rmt1) of PEy mp g constructed
from an instance (1", H,T,1,p1, ... ,ps) of AP, as mentioned above.
o [Completeness] If (1", H,T,,p1, ... ,pe) € APy, 1, then there exists a polynomial py : F™ —

F of degree at most mh such that the sequence of polynomials constructed by applying the
rules Ry,... ,Rp+1 (i-e., p; = RPi= fori=1...m+ 1) satisfy ppm+1 = 0. Moreover, each of
the polynomials p1,... ,pm+1 are of degree at most cmh.

e [Soundness] If there exist polynomials pg : ™ — F of degree at most mh and polynomials

P1y--- ,Pm+1 Of degree at most cmh each, such that
. + 1)mh .
Pr [pi(z) = -] > CEDTR
Lr [pi(Z) ] p i m +
_ (c+ 1)mh
P — AL A
EEIFE” [pm-f-l(w) 0] q

then; (1n’H7T7'Lpap17 7p6) € APm,h'

For the proof of this proposition, we shall need Schwartz’s Lemma.
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Lemma 28 (Schwartz Lemma [15]) For any finite field F, if p,q : ™ — F are two distinct
polynomials of degree at most d each, then

L [p(z) = q(7)] < ]

Proof (of Proposition 27):

The proof for the Completeness part of the proposition directly follows from the manner in which
the rules are constructed.

For the soundness part, we note that the rule R; increases the degree of the polynomial by at most
a factor of ¢ and each of the other rules R; has the effect of changing the degree with respect to
the (i — 1)** variable to at most h and not increasing the degree with respect to any of the other
variables. This implies that each of the polynomials Rf “=! have degree at most (c + 1)mh. By
Schwartz’s Lemma, it now follows that p; = R for i = 1,... ,m + 1 and py,+1 = 0. But this
implies that po|gm satisfies (1", H,T,, p1, ... ,ps). Thus, proved. |

B.2 Hardness of Gap PCS

We first reduce AP to GapPCS

Lemma 29 There exists a constant ¢ such that for all functions q,m,h,b,e : ZT — Z% satisfy-
ing q(n) > b(n)/e(n) and b(n) > 2cm(n)h(n) , APy s reduces to GapPCS, 11, under length
preserving reductions.

Proof: Let (1", H,T,4,p1, -..,ps) be any instance of AP, ;. Using the reduction in the proof of

Lemma 26, obtain the instance (1*,d,F; Ry, ... , R;+1). We shall build an instance (17, d, k, s,F; Cy, . ..

of GapPCS, 11,4 as specified below.

Let ¢ be the same constant that appears in Lemma 26. Let py be the polynomial of degree at
most mh that occurs in the proof of the statement “(1”,d,F;Ry,... ,Ry41) € PEy,”. Also
let p1,...,pm+1 be the polynomials defined by the rules Ry,...,Rpy41 (ie, p; = RY™"). Note
pi’s are of degree at most cmh. We first bundle together the polynomials pyg,... ,pm+1 into a
single polynomial p : F**1 — F. Let {fo,...,f;—1} be an enumeration of the elements in F. Let
F,={fo,---,fm+1}. Foreachi=0,... ,m+1, let §; : F — I be the unique polynomial of degree

at most m+ 1 satisfying
1 .f nl]')' -_— ’.
6i (.’17) = { ! !

0 if ifz€ Fpyi—f;

Polynomial p : F**! — F is defined as follows: For (v,Z) € F"*! where v € F and 7 € F",

m+1
p(v,%) =Y 6i(v)pi(%)
i=0
Since each of the polynomials py, ... ,pm+1 is of degree at most cmh, the polynomial p is of degree

at most cmh +m < 2emh < b.
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For each = € ™, construct constraint C, as follows:
m+1
Co = (pmi1(2) = 0)A N\ (pile) = BY ()
=1
(This constraint is to be thought of as a constraint on the single polynomial p.)

The circuit associated with each constraint C, checks the polynomial p at k ~ (m +2)(h+1) <b
points and has size s which is of the same order as k. Since p is of degree d which is at most b,
we have constructed an instance (1%, d, k, s,F; Cy,... ,Cy) of GapPCS, 11,4 where d, k, s < b and
t = ¢™. It follows from Proposition 27, that this instance (1",d,k,s,F;Cy,... ,C}) satisfies the
following lemma.

Proposition 30 Suppose, we have an instance (1",d,k,s,F;Cy,... ,Cy) of GapPCS, 11,4 cON-
structed from an instance (1°, H,T,v,p1, ... ,ps) of APp, » as mentioned above.

o [Completeness] If (17, H, T, ), p1, ... , p) € APy, 1, then there exists a polynomial p : Frtl
F of degree at most d such that p satisfies all the constraints C; (i.e., A; (p(:vgz), ... ,p(w%)) =0)

o [Soundness] If there exist polynomial p : "1 — T of degree at most d which satisfies at least
€ fraction of the constraints, then (1", H,T,1,p1, ... ,ps) € APy p.

The completeness part of this proposition is clear by construction. For the soundness part, it is to
be noted that if at least (c + 1)mh/q fraction of the constraints are satisfied, then the soundness
condition in Proposition 27 implies that (1", H,T,,p1, ... ,ps) € APy, . The only observation
to be made is that € > b/q > 2cmh/q > (¢ + 1)mh/q.

This proposition completes the proof of the lemma.

Lemma 10 now follows from Lemma 8 and Lemma 29.

C Reduction of Theorem 11 from Raz and Safra

The statement of Raz and Safra [13] regarding the Plane-point low-degree test is as follows:

Theorem 31 ([13]) There ezist constants cy,c1,co,c3 such that for every positive real §, integers
m,d and field F satisfying |F| > cod(m/6)“", the following holds: Let f : F™ — F be any function.
If there exists an oracle fylanes satisfying Pry, o[LDT/Jetanes (1, 0) = accept] > 6, then there exists a
polynomial p : ™ — T of degree at most d such that p and f agree on at least §°*/c3 fraction of
the points.

The above theorem statement of Raz and Safra [13] relates the probability of a function f passing
the low degree test with the agreement of f with some polynomial of low degree. The form of the
statement which will be most convenient for us to work with is one which states that the probability
of the low degree test passing on points at which f does not agree with any of the polynomials
it has high agreement with is very low. By now transformations between these two forms of the
low-degree test are standard (cf. [13, 3]). Below we follow the standard steps which go through a
sequence of stronger forms culminating in Theorem 11.
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Lemma 32 Let ¢y, c1,c9,c3 be the constants that appear in Theorem 31. For every positive real
d, integers m,d and field F satisfying |F| > cod(m/§)!, the following holds: Fiz f : F™ — F and
Jplanes- Let {Pi,..., P} be the set of all m-variate polynomials of degree d that have agreement at
least 62 [2¢c3 with the function f : F™ — F. Then

f;[f(m) ¢ {Py(z),... ,P(x)} and LDT//vianes (1, o) = accept] < 4.

Proof: Suppose, Pr, ,[f(z) & {Pi(z),...,P(z)} and LDT//vienes (1, ) = accept] > 6. Let S C
F™ be the set of all points in F'* at which f does not agree with any of P;,... , P,.. Then by our
hypothesis, f|s passes the low-degree test (Plane-point test) with probability at least §. We can
now extend f|s to a function g : ™ — F on the entire domain F™ by setting the value of g at
points not in S randomly. As g passes the test low degree test with probability at least §, by
Theorem 31, we have that there exists a polynomial P : " — F of degree at most d that agrees
with g on at least §°?/c3 fraction of the points in . The points of agreement of P with g must
be concentrated in S as the value of g at points in F® — §' is random. Note the a random function
has agreement approximately 1/|F| with every degree d polynomial. Thus, P agrees with f|s on
at least g%ﬂF’”\ points in S§. As f is different from each of P;,... , P, in S, this polynomial P must
be different from P;,...,F,. Thus, we have a polynomial other than Pi,... , P, that agrees with
f on §°?/2¢3 fraction of points in F™. But this is a contradiction as {P;,... , P} is the set of all
polynomial that have at least 6“2 /2c3 agreement with f. |

Now, for some more notation. Fix f : ' — [ and an oracle fplanes- Let the success probability
of a point € F™ be defined as the fraction of planes g passing through z such that the value of
the polynomial fjanes() at x agrees with f(z). The success probability of a plane p is defined to
be the fraction of points = on the plane p such that fpianes(g) at = agrees with f(z). Note, by this
definition

Eyemn | Success probability of ] = E__ 1. [ Success probability of p ] = Pr[LDT//stenes = accept ]
p— plane o

We are now ready to prove the next stronger form of Theorem 31.

Lemma 33 There exist constants c,c’ such that for every positive real §, integers m,d and field
F satisfying |F| > cd(m/é)cl, the following holds: Let f : ™ — T be any function. If there exists
a oracle fplanes Satisfying Prw,p[LDTf Joianes (1, 0) = accept] > 4, then there exists a polynomial
p:F™ — F of degree at most d such that p and f agree on at least 36/4 fraction of the points.

Proof: Let p be a random plane. Since Ep_ plane [ Success probability of | > 4, it follows by
an averaging argument that with probability at least §/8, the success probability of p is at least
76/8. In other words, if for a random plane p, E(p) denotes the event that there exists a bivariate
polynomial g, : F* — F of degree at most d that agrees with f on at least 7§/8 fraction of the

points on g, then

PR > § @
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Let cp, 1, c2, c3 be the constants that appear in Theorem 31. Let P;,... , P, be all the polynomials

ca
of degree at most d that agree with f on at least % (%) fraction of the points of . Note that

[ < des ((25—8)62. Define p1, ..., p; such that p; = Pryepn [P;(z) = f(x)] (i-e., agreement of P; and
f). If we show that there exists an 4 such that p; > 36/4, we would be done. We will assume the
contrary and obtain a contradiction to (3).

Suppose for all i =1,... I, p; < 36/4. Let p be any plane such that the event E(p) occurs. Then,
the bivariate polynomial g, that is described in the event E(gp) should satisfy one of the following.

Case (i) gp € {Pilp,---,Plp}- (i-e., go is not the restriction of any of the P;’s to the plane g.)

Case (i%) go € {Pi|p,--- , P} (i-e., g, is the restriction of one of the P;’s to the plane .
P P P P

In case (i), we have that g is a plane whose success probability is at least 7§/8 and moreover, on
at least 7§/8 — Id/|F| fraction of the points on p, the polynomial g, agrees with f but not with
any of P, ... , . By Lemma 32, if |F| > cod(20m/§2)¢!, then at most §2/20 fraction of the points
in ™™ are such that f does not agree with P,... , P, but the low degree test passes at that point.
Thus, by an averaging argument it follows that

Pr[ Case (i) occurs | <
2

If |F| > 222552 +1c3d/36%+L ) then |F| > 40ld/35 and the above probability is less than §/16.
Thus, if F is chosen in such a manner, the probability of case(i) happening is less than §/16.

In case (i1), for i = 1,... ,l, define the random variable ~y; to denote the fraction of points on the
random plane p at which P; agrees with f. We have that for each ¢, E,[y;] = p;. An application
of Chebyshev’s inequality tells us that for each 1 =1,... ,1,

) 64pi
Prlvi—pi>-| < 5—x
As we have by our assumption that p; < 36/4, we have that

64p; _ 2221850y
(52|F|2 — |F‘252C2+1

Pr [Eli,'n > 7—5:| <I[x
P 8

If we choose T such that |[F| > 2¢2765¢2/2, /¢5/5%%1 then the above probability is less than §/16.
Note that the probability on the LHS is an upper bound on the Pr,[ Case (ii) occurs ]. Thus, case
(ii) happens with probability less than §/16.

Let ¢, ¢’ be sufficiently large constants such that |F| > cd(m/8)¢ implies the three inequalities
F| > cod(20m/62)e1, |F| > 22¢2455c2+ ey /35¢2+ and |F| > 2¢2+652/2 /c5/62+1. In this case we
have that Pr,[E(p)] = Pry[ Case (i) | + Pr,[ Case (i) | < /16 4+ /16 = 6/8. This contradicts (3).
Hence, there does exist a ¢ such that p; > 3§/4. Thus, for this ¢, the polynomial P; and f agree on
at least 30/4 fraction of the points in F™. |

Theorem 11 is obtained from Lemma 33 by mimicking the proof of Lemma 32 from Theorem 31.
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D Bounding the acceptance probability

In this section, we shall show that the following expression

1 (1+5)? 1(1+7ﬂ)4
Z+ ZBﬁ (H' Zm(ﬂ)‘ 218| Z 4181 (4)

is no more than 2 3 +1 5, Where g = > gca |B,31| Recall that the above expression is an upper bound
for the acceptance probability of Vinper, that we had proved in Claim 13.

Define m = 3524 Bﬂ, m3 = D|5/=3 Bﬁ and 75 = > 55 Bﬂ. (Note n1 + 13 + 15 = 1.) With these
definitions, (4) can be shown to be less than

1 1 VI=01 + V301
- + —[27715+77( * 771+ m)* +—77}
4 4 32
(1+v/m)* (1+\/1—771+\/377)
+ 4[’71 6 "™ 256 +4_6

This expression is of the form A;(n1) + n3A2(n1) + Cns where A1, A2 are the appropriate functions
and C a constant. For a fixed 1y, if A2(n1) < C, then (4) is at most A;(n1) +C(1—n1) and otherwise
(4) is at most A1(n1) + (1 —n1)A2(m1). We shall show that both these expressions are at most 1 + %.
The first of these expressions is

1 (1+m)* 25 5
1T 1[27715+771T+ 2T (I—m)

This expression for 77; < 1 can be easily checked to be no more than % + %. The other expression is

1 (1+m)*
Pt e
L lom [(1+\/1—771+\/3771)2+(1+\/1—m+\/3m)4]
4 8 256

To show that the above expression is at most % + g for 0 < <1, it is sufficeient if we show that
for 0 <n <1,

1+ ym)* - ((1+\/1—771+\/W)2 (1+\/1—771+\/W)4)
m) g +

T 256

is at most 1. For 9 < 1, we have that /1T —n; < 1—1;:/2. Using this fact, the above expression
is at most

m——y

1+ m)* 2-T+3m)? -5 +3n)*
16 (1_”1)( 8 + 256 )

For convenience, let us call the above expression u(n1).
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Define p'(n1) = p((1 —n1)?). Note p' is a polynomial of degree 10 in n;. In fact u'(n1) = pi(m) +

pa(m), where puq and po are as defined below.

4631 255 18407 497 5 567 305 5

pi(m) = 1+ <—M+% 3)m+(m—EE 3)771+ (_@JFE 3)%
+(%+§1—; 3>rﬁ+ —12(;)—21—;% 3)77{’

p2(m) = (—%-I—;TZ\/?_)) n + (%—53% 3) ni + (—%-F%\/g) n
+ (ﬁ - 5%\/§> - ﬁ?ﬁo

We can easily check that pa(n1) < 0 for all 7 > 0. Thus it suffices, if we show that pi(n;) <1 for
all 0 < n; < 1. Consider the function x(7:1) = (p1(m) —1)/m1. x is a polynomial of degree 4 in 7;
with a negative leading coefficient. It can easily be checked that the polynomial x(z) has no real
roots. Hence x(n1) < 0 for all n;. Thus, pu1(n;) <1 for all 0 < 7;. This completes the proof of the

statement that the expression in (4) is less than % + 5.
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