
Hardness of Approximate Hypergraph Coloring

Venkatesan Guruswami
�

Johan Håstad
�

Madhu Sudan
���

August 25, 2000

Abstract

We introduce the notion of covering complexity of a probabilistic verifier. The covering complexity
of a verifier on a given input is the minimum number of proofs needed to “satisfy” the verifier on every
random string, i.e., on every random string, at least one of the given proofs must be accepted by the
verifier. The covering complexity of PCP verifiers offers a promising route to getting stronger inapprox-
imability results for some minimization problems, and in particular, (hyper)-graph coloring problems.
We present a PCP verifier for NP statements that queries only four bits and yet has a covering complexity
of one for true statements and a super-constant covering complexity for statements not in the language.
Moreover, the acceptance predicate of this verifier is a simple Not-all-Equal check on the four bits it
reads. This enables us to prove that for any constant � , it is NP-hard to color a 2-colorable 4-uniform
hypergraph using just � colors, and also yields a super-constant inapproximability result under a stronger
hardness assumption.

Keywords: Graph coloring, Hypergraph coloring, Hardness of approximations, PCP, covering PCP, Set
splitting.

�
Laboratory for Computer Science, MIT, 200 Technology Square, Cambridge, MA 02139. Email:�

venkat@theory.lcs.,madhu@ � mit.edu�
Department of Numerical Analysis and Computer Science, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

Email: johanh@nada.kth.se, supported in part by the Göran Gustafsson foundation.	
Supported in part by an MIT-NEC Research Initiation Award, a Sloan Foundation Fellowship and NSF Career Award CCR-

9875511.

1

Electronic Colloquium on Computational Complexity, Report No. 62 (2000)

ISSN 1433-8092

1 Introduction

In this paper we study a variant of the standard notion of a probabilistically checkable proof (PCP). In the
standard notion, the probabilistic verifier is provided restricted oracle access to a proof, is allowed some
probability of error, and the goal is to find a proof that maximizes the acceptance probability of the verifier
(on any given input). For integer valued functions � ����� and � ����� , the verifier is said to be

� ���	� � -restricted
if it tosses at most � ��
�� coins and queries the proof for at most � ��
�� bits, on inputs that are

bits long.

A language belongs to the class ��������� ��� ���	��� if an
� ���	� � -restricted verifier accepts the language with

completeness � and soundness � . I.e., for instances in the language there exist proofs that are accepted by
the verifier with probability at least � , while for instances not in the language no proof is accepted with
probability more than � .

In the variant we consider here, we allow multiple proofs, say �����! ! ! ��	�#" , to be provided to the verifier.
We require that for every random string used by the verifier, at least one of the proofs �%$ must be accepted
by the verifier. The goal now is to find the smallest set of proofs that satisfy this property and the cardinality
of this set is said to be the covering complexity of the verifier on this input. Analogous to the class PCP,
we may define the class &!����� ��� � � ���	��� to be the class of all languages for which there exist

� ���	� � -restricted
verifiers that satisfy the following conditions: (Completeness) If ')(* , the covering complexity of + on '
is at most ,.-�� . (Soundness) If '0/(1 then the covering complexity of + on ' is at least ,.-2� .

The class &!����� arises naturally in the study of certain minimization problems, and in particular in the
study of the approximability of graph coloring. Traditionally, however the class has not been focussed on
explicitly. Instead all previous (PCP based) results on graph coloring [20, 17, 10] have implicitly relied on
the obvious containment �����3� � � � ���	����45&!�����6� � � � ���	��� . Thus it sufficed to prove strong containments of NP
in PCP to get hardness result for graph coloring.

This approach was quite successful in proving strong (and in fact essentially tight) inapproximability of
graph coloring for general graphs [10], but for graphs whose chromatic number is a small constant, however,
the known hardness results are much weaker. For example, for 7 -colorable graphs the best known hardness
result only rules out coloring using 8 colors [17, 14]. This paper is motivated by the quest for strong (super-
constant) inapproximability for coloring graphs whose chromatic number is a small constant, and the kind
of PCP constructions that this question motivates. A necessary (but not sufficient condition) for such a result
is a containment of NP in &!����� �9� :<; �>= �@? �BADCFEG
�� �	��� for �IHKJ and constant � . However such a result can not
be obtained by passing through ����� , since it is known that if LM�N4O����� ��� � �@? �BADCFEG
�� �	��� then �QPN�!RTS%U
(and hence �*VXW � , � as well). Moreover, while the existence of “good” &!����� ’s is implied by a strong
hardness result for coloring (for example the hardness of � -coloring 7 -colorable graphs for every constant
�), such a result is not known to be true for ���6� ’s (see [14] for related discussions). In light of these facts,
in order to get the stronger inapproximability results for coloring, it may be better to study &!����� directly,
and we do so in this paper.

Our Results. Our main result is a containment of NP in the class &!�����M� � Y �@? �BAZCFE�
�� �982� , for every [\HOJ .
If the randomness is allowed to be slightly super-logarithmic, then the soundness can be reduced to some
explicit] � , � function. Technically, this result is of interest in that it overcomes the qualitative limitation
described above of passing through standard ����� s. Furthermore, our proof shows how to apply the (by
now) standard Fourier-analysis based techniques to the studying of covering complexity as well. Thus it
lays out the hope for applying such analysis to other &!����� ’s as well.

Unfortunately, the resulting &!����� fails to improve inapproximability of graph coloring. In part, this is
due to the rather fragile nature of covering complexity, which makes the utility of &!����� ’s to be closely tied
to the actual predicates used by the verifier in deciding its actions. In standard ����� s one can use gadgets to
transform the predicates used by the verifier, thus allowing one to transform hardness results among different
problems. In covering ����� s such transformations typically completely destroy the properties of the ����� .

2

For example, to design a covering ����� appropriate for use in hardness results for 7 -colorable graphs, the
verifier must be restricted to working with proofs that are strings from �.J ��,2�<R�� � and the verifiers actions are
only allowed to read two elements of the proof and verify they are unequal.

Keeping this finicky nature of covering ����� s in mind, we design a different verifier (whose query
complexity is also 8 bits), but whose acceptance predicate just checks if not all of the 8 bits read are equal,
and thus corresponds directly to coloring of 8 -uniform hypergraphs. Recall that a 8 -uniform hypergraph �
is given by a set of vertices + and a collection � of 8 -element subsets of + called hyperedges. (In a general
hypergraph there is no restriction on the number of vertices in any hyperedge.) A � -coloring is a map from
+ to the set � ,2�<R �! ! ! ������ such that in every edge at least two vertices are assigned distinct colors, i.e., no
edge is monochromatic. The goal here is to find the chromatic number of � , which is the smallest � such
that a � -coloring of the given hypergraph exists.

Hypergraph coloring has been studied in the literature from both the combinatorial and algorithmic an-
gle. In contrast with graphs, deciding if a given hypergraph is R -colorable is NP-hard, even for 7 -uniform
hypergraphs [19]. The property of hypergraph R -colorability, also called Property B, has been studied in the
extremal combinatorics literature for long and much work has been done on proving hypergraph families
R -colorable and the corresponding algorithmic questions [9, 5, 6, 21, 22, 25, 23]. It has also been studied
by computer scientists due to its connections to the graph coloring and satisfiability problems. Inspired in
part by the work of [16] on approximate graph coloring, several authors [1, 8, 18] have provided approxi-
mation algorithms for coloring R -colorable hypergraphs. The best known result for R -colorable 8 -uniform
hypergraphs is a polynomial time coloring algorithm that uses �? ��

	�����

colors [1, 8] where

is the num-
ber of vertices. No non-trivial hardness results seem to be known, and in fact it was not known prior to
our work if 7 -coloring a R -colorable 8 -uniform hypergraph is NP-hard. Our result yields a super-constant
lower bound on coloring R -colorable 8 -uniform hypergraphs: we prove that � -coloring such hypergraphs
is NP-hard for any constant � (Theorem 4.4), and moreover there exists a constant ���1H J such that, un-
less L#� 4���������� ��
�� ;�� �"!�� �"!�# = � , there is no polynomial time algorithm to color a R -colorable 8 -uniform
hypergraph using � � AZCFE�ADCFE�ADCFE
 colors (Theorem 4.5). A similar hardness result also holds for coloring
R -colorable � -uniform hypergraphs for any � P%$ by reduction from the case of 8 -uniform hypergraphs
(Theorem 4.6).

There is also a natural maximization version of hypergraph R -coloring: color the vertices with two
colors so that a maximum number of hyperedges are non-monochromatic. For � -uniform hypergraphs, this
is clearly the same problem as Max � -Set Splitting. For � V 8 (the case we study here), a tight hardness
result of &F-('*),+ is known [15] — thus the problem is “approximation resistant” and a random R -coloring
is the best one can do. Obtaining a hardness for the minimization version as always turns out to be more
difficult. For �*V 7 , a tight hardness result is not known even for the maximization version (see [13]). In
fact, algorithms that do (much) better than a random R -coloring are known for this case [11], and thus the
problem is not “approximation resistant”. We believe this indicates that getting a strong inapproximability
for coloring 7 -uniform hypergraphs similar to our result here is likely to be even harder, and the same applies
for coloring 7 -colorable graphs as well.

2 Preliminaries

We establish some conventions about notation.
We represent boolean values by the set � ,2�.- ,/� with , standing for FALSE and - , for TRUE. This

representation has the nice feature that XOR just becomes multiplication. For any domain 0 , denote by 132
stands for the space of all boolean functions 4�560879� ,2�.- ,/� . For any set 0 , : 0;: denotes its cardinality.

We let
ADCFE ' denote the logarithm of the real number ' to the base 2.

3

2.1 Probabilistically checkable proofs (PCPs)

We first give a formal definition of a PCP.

Definition 1 Let � and � be real numbers such that , P � H � P J . A probabilistic polynomial time Turing
machine + is a verifier in a Probabilistically Checkable Proof (PCP) with soundness � and completeness �
for a language iff

� For ')(1 there exists oracle � such that
� ���F�@+�� � '��9� � V , � P � .

� For '0/(1 , for all � � � ���2�@+ � � '��9� � V , ��� � .
The main parameters of interest in a PCP are the number of random bits used by the verifier and the

number of bits it accesses in the proof.

Definition 2 For functions ���	� 5	��
 7��
 , a verifier + is
� ���	� � restricted if, on any input of length

, it

uses at most � ��
�� random bits and accesses at most � ��
�� symbols of � .

We can now define classes of languages based on PCPs.

Definition 3 (PCP) A language belongs to the class ����� ��� � � ���	�.� if there is an
� ���	� � -restricted verifier +

for with completeness � and soundness � .
Most of the time the symbols of � will be bits and whenever this is not the case, this is stated explicitly.

Next we have the definition of covering PCP.

Definition 4 (Covering PCP) A language belongs to the class &!����� ��� � � ���	��� if there is an
� ���	� � -restricted

verifier + such that on input ' : (i) if ' (then there is a set of at most ,.-�� proofs such that + accepts at
least one of them for any random choice it makes, and (ii) if ' -(, for any set of � proofs �����	���2�! ! ! ��	�#"
with ��� ,.-2� , there is random string for which + rejects every � $, ,������ � .

One usually requires “perfect completeness” (� V ,) when seeking PCP characterizations. It is clear from
the above definitions that �����T� � � � ���	��� 4 &!�����3� � � � ���	�.� and thus obtaining a PCP characterization for a
language class is at least as hard as obtaining a covering PCP characterization with similar parameters.

2.2 Covering PCPs and Graph Coloring

We now verify our intuition that “good” covering PCPs (i.e., those which have a large gap in covering
complexity between the completeness and soundness cases) are necessary for strong lower bounds on the
approximating the chromatic number. As usual, for a graph � , we denote by �

�
�
�

its chromatic number,
i.e., the minimum number of colors required in a proper coloring of � .

Proposition 2.1 Suppose for functions 4 ��� 5��
 7��
 , given a graph � on

vertices, it is NP-hard to
distinguish between the cases �

�
�
�
� 4 ��
�� and �

�
�
� P�� ��
�� . Then

LM� 45&!������� � �"!���;�# =! #"%$ � � � �"!%&!; # =' #"($ �@? �BAZCFEG
�� �<R��

4

Proof: Let the vertex set of � be + V ��� ����� �2�! ! ! ���� # � . The covering PCP will consist as proofs
� ���	���2�! ! ! ��	�M" which correspond to “cuts”

� �!�! ! ! �� � " of � , i.e., each �#$ will be

-bits long, with the�����
bit being , or J depending on which side of the cut

� $ contains ��	 . The verifier will simply pick two
vertices ��	 $ and ��	�
 at random such that they are adjacent in � , and then check if the

� ���� and
� ���
� bits differ

in any of the � proofs. The minimum number � of proofs required to satisfy the verifier for all its random
choices is clearly the cut cover number � � � of � , i.e., the minimum number of cuts that cover all edges of
� . It is easy to see that � � � V�� ADCFE � � � ���

, and therefore the claimed result follows. �
One can get a similar result for any base � , by letting the proofs be � -ary strings and the verifier read two

� -ary symbols from the proof. In light of this, we get the following.

Corollary 2.2 If there exists an +�H J such that it is NP-hard to

��

-color a 7 -colorable graph, then LM�K4
&!���6� � � ; � � �"!�� # = "($ �@? �BADCFEG
�� �<R�� where the covering PCP is over a ternary alphabet, and the verifier reads
two ternary symbols from the proof.

In light of the above Corollary, very powerful covering PCP characterizations of NP are necessary in or-
der to get strong hardness results for coloring graphs with small chromatic number. A result similar to
Proposition 2.1, with an identical proof, also holds for hypergraph coloring, and thus motivates us to look
for good covering ����� characterizations of L#� in order to prove hardness results for coloring R -colorable
hypergraphs.

Proposition 2.3 If there exists a function 4 5 �
 7 �
 such that 4 ��
�� -coloring a R -colorable � -uniform
hypergraph is NP-hard, then L#� 4 &!����� � � $� ������� ��! �@? �BADCFE�
�� �9��� . In particular, if � -coloring R -colorable � -
uniform hypergraphs is NP-hard for every constant � , then L#� 4 &!����� � � $" �@? �BADCFEG
�� �9��� for every constant
� P , .
2.3 Preliminaries on Long Code

We now describe a very redundant error-correcting code, called the long code. The long code was first used
by [7], and has been very useful in all ���6� constructions since.

The long code of an element ' in a domain 0 , denoted #%$'&)(� ' � , is simply the evaluations of all the
R+* 2 * boolean functions in 1 2 at ' . If , is the long code of - , then we denote by , � 4 � the coordinate of ,
corresponding to function 4 , so that , � 4 � V 4 � - � .
Folding of Long Codes: A Discussion. A function , 5 1�2 7 � ,2�.- ,/� is said to be folded if , � 4 � V
-., � - 4 � for all 4 (1 2 [7]. A codeword of the long code is clearly folded (since , � 4 � V 4 � - � V
- � - 4 � - �9� V -., � - 4 �). One can many times assume that the proofs which are purportedly long codes are
folded since for any , 5 1 2 7 � ,2�.- ,/� , one can define a new function ,0/ by: ,1/ � 4 � V2, � 4 � if 4 �43 � � VN,
and ,./ � 4 � V -1, � - 4 � if 4 �43 � � V - , , where

3 � is some fixed element of 0 , and now ,0/ is clearly folded.
Thus for several applications one can assume access to folded proofs, and this turns out to be essential

for several PCP constructions. Tight results for certain applications call for working without the folding
assumption though, a good example is set splitting [15]. Folding illustrates one of many natural things that
could go wrong in the analysis of covering soundness, since even though for our (first) &!���6� construction
(Theorem 3.5 of Section 3) we can assume the proof tables are folded, our analysis has to deal with tables
that are not folded. The discussion following Lemma 3.2 of Section 3 further brings out this point.

5

2.4 Discrete Fourier transforms

For any function , mapping � ,2�.- ,/� " into the real number we have the corresponding Fourier coefficients�,�� V R S "���� , � ' ��� � � ' �
where

3 (;�.J ��,/� " and
� � � ' � V
	 	�� ������ '+	 . We have the Fourier inversion formula given by

, � ' � V � �
�,�� � � � ' �

and Plancherel’s equality that states that

� �
�, �� V R S " � � , � ' � �

In the case when , is a Boolean function the latter sum is clearly 1. When dealing with (a supposed)
long code it is important to remember that 1�2 is just � ,2�.- ,/� 2 and thus we are in the correct set-up. The
property of such a function being folded is easily seen to be equivalent to

�,�� V J for all
3

with cardinality
of � � 5 3 	#VN,/� even. In particular this is true for

3 VKJ 2 .

3 PCP Construction I

In this section, for any constant � , we describe a (covering) PCP construction that uses logarithmic ran-
domness, makes 8 queries (and reads 8 bits from these locations), has perfect completeness and covering
soundness at most ,.-(� . By allowing slightly super-logarithmic randomness, we can even achieve an] � , �
covering soundness, for some explicit] � , � function.

The PCP construction is based on the one in [15] for proving a tight hardness result for 8 -Set Splitting.
Our analysis, however, is different, and proves that no � proofs can together satisfy all the predicates tested
by the PCP verifier. (In contrast the analysis in [15] would prove that this PCP has perfect completeness
and soundness 7 -�8) + , for +QHNJ as small as desired. The perfect completeness implies perfect covering
completeness, but the soundness analysis has to be different in our case.) We provide below a high-level
description of the PCP construction; this is not meant to be complete, but should give some sense of the
ideas used in the construction.

3.1 Preliminaries on Proof Composition

Our PCP constructions (also) follow the paradigm of proof composition, by composing an “outer verifier”
with an “inner verifier”. In its most modern and easy to apply form, one starts with an outer proof system
which is a 2-Prover 1-Round proof system (2P1R) construction for NP.

Label Cover. We abstract the 2P1R by a graph-theoretic optimization problem called LABEL COVER. The
specific version of LABEL COVER we refer to is the maximization version ������� A � C�� �������! discussed in
[2] (see [2] for related versions and the history of this problem). A ������� A � C�� ��� ���! instance "$# consists
of a bipartite graph � V � + ��% �'& � with vertex set +)(*% and edge set & , “label sets” ,+��	.- which
represent the possible labels that can be given to vertices in + ��% respectively, and projection functions/10 � 2 5 - 7 + for each � (*+ and 3 (4% such that

� � �53 � (6& . The optimization problem we consider
is to assign a label

�F� � � (0 (resp.
�F� 3 � (-) to each � (+ (resp. 3 (7%) such that the fraction of

edges 8 V � � /B�53./ � with
�F� � / � V / 0:9 � 2 9 �;�F� 31/ �9� (call such an edge “satisfied”) is maximized. The optimum

6

value of a � ��� � A � C � ��� ���! instance "$# , denoted $ ��� � "�# � , is the maximum fraction of “satisfied” edges in
any label assignment. In the language of � ��� � A � C � ��� ���! , the PCP theorem [4, 3] together with the parallel
repetition theorem of Raz [24] yields the theorem below. The reduction is standard and since essentially all
details can be found in Section 10.4.1 of [2], we do not give the proof.

Theorem 3.1 There exist absolute constants � � �:8 � H5J such that for any � , J ��� � , , there is a polynomial
time transformation mapping instances � of SAT to instances "$# V � + ��% �'&6�	 + �	 - � � /10 � 2 : � � �53 � (& � �
of ����� � A � C�� ��� ���! such that

(i) : + :�� :�% :%�
	��
 � �"!� "%$ where

is the size of the SAT instance � .

(ii) : + :�� : - :(��� S��
 .
(iii) If � is satisfiable then $ ��� � "$# � V , , while if � is not satisfiable then $ ��� � "$# � ��� .

(iv) The projection functions are “smooth”, i.e., map large subsets of their domain to large subsets of their
range. More specifically, there is an absolute constant � , J�� � � , , such that for each 3 (*% and
every � 45 - , ���0������ ; 2 = � : / 0 � 2 � � � : P : � : � � P ,�- : � : S � (1)

where � � 3 � V ��� (*+ : � � �53 � (6& � .

Remark: Conditions (i) to (iii) are standard for ������� A � C�� ��� ���! . We require Condition (iv) for some
technical aspects which arise in the proof, and that this condition can also be met follows from Lemma 6.9
of [15].

Constructing a “Composed” PCP. Note that the above Theorem implies a PCP where the proof is simply
the labels of all vertices in + ��% of the � ��� � A � C � ��� ���! instance and the verifier picks an edge 8#V � � �53 � (& at random and checks if the labels of � and 3 are “consistent”, i.e., /�0 � 2 �;� � 3 �9� V � � � � . By the proper-
ties guaranteed in the Theorem, this PCP uses ? �BADCFE
IAZCFE �TS � � randomness, has perfect completeness and
soundness at most � . While the soundness is excellent, the number of bits it reads from the proof in total
(from the two “locations” it queries) is large (? �BADCFE � S � �). In order to improve the query complexity, one
“composes” this “outer” verification with an “inner” verification procedure. The inner verifier is given as
input a projection function / 5 - 7 + , and has oracle access to purported encodings, via the encoding
function ����� of some error-correcting code, of two labels - (+ and � (- , and its aim is to check
that / � � � V - (with “good” accuracy) by making very few queries to ��� � � - � and ����� � � � . The inner ver-
ifiers we use have a slightly different character: they are given input two projections / � and / � and have
oracle access to purported encodings ����� � � � and ����� � � � of two labels ���	� (- , and the aim is to test
whether / � � � � V / � � � � . This interesting feature was part of and necessary for Håstad’s construction for set
splitting [15], and our PCPs also inherit this feature.

In our final PCP system, the proof is expected to be the encodings of the labels
�F� 3 � of all vertices3 (% using the encoding ��� � . For efficient constructions the code used is the long code of [7], i.e.,

������!#"%$V # $ &)(. We denote the portion of the (overall) proof that corresponds to 3 by # � � 3 � , and in a
“correct” proof # � � 3 � would just be # $ &)(�;� � 3 �9� (the notation # � stands for “long proof”).

The construction of a PCP now reduces to the construction of a good inner verifier that given a pair of
strings & �(' which are purportedly long codes, and projection functions / � and / � , checks if these strings are
the long codes of two “consistent” strings � and � whose respective projections agree (i.e., / � � � � V / � � � �).
Given such an inner verifier) * , one can get a “composed verifier” + + �5�-, using standard techniques as
follows (given formula � the verifier first computes the � ��� � A � C�� ������! instance "�# in polynomial time and
then proceeds with the verification):

7

1. Pick � (*+ at random and 3 �53 / (� � � � at random

2. Run the inner verifier with input / 0 � 2 and / 0 � 2 9 and oracle access to # � � 3 � and # � � 3 / � .
3. Accept iff the inner verifier) * accepts

We denote by + + �5�-, �) * � the composed verifier obtained using inner verifier) * . The (usual) soundness
analysis of the composed PCP proceeds by saying that if there is a proof that causes the verifier + + �5�-, to
accept with large, say

� �) + � , probability, where � is the soundness we are aiming for, then this proof can
be “decoded” into labels for +*(% that “satisfy” more than a fraction � of the edges in the � ��� � A � C�� �������!
instance, and by Theorem 3.1 therefore the the original formula � was satisfiable. In our case, we would
like to make a similar argument and say that if at most � proofs together satisfy all tests of + + �5�-, , then these
proofs can be “decoded” into labels for + (% that satisfy more than � fraction of edges of "$# .

3.2 The Inner Verifier

We now delve into the specification of our first “inner verifier”, which we call Basic-IV4. This inner verifier
is essentially the same as the one for 8 -set splitting in [15], but has a different acceptance predicate. Recall
the inner verifier is given input two projections functions / � � / � 5 .- 7 + and has oracle access to two
tables & �(' 5 1 ��� 7 � ,2�.- ,/� , and aims to check that & (resp. ') is the long code of � (resp. �) which
satisfy / � � � � V / � � � � .

Inner Verifier Basic-IV4
� � �� (/ ��� / �)

Choose uniformly at random 4)(1 ��� , � � � 	 � (1 � �
Choose at random � / � 	 / (1 ��� such that
 �3() - ,���

� � / � � � V , � V�� and
���

� 	 / � � � V , � V��
Set � � V - �T� � 4� / ��� � / � ; 	 � V - 	 � � - 4� / ��� 	 / � .
Accept iff

� & � � � � /V & � � � �9��� � ' � 	 � � /V ' � 	 � �9�
For a technical reason, as in [15], the final inner verifier needs to run the above inner verifier for the bias

parameter � chosen at random from an appropriate set of values. The specific distribution we use is the one
used by Håstad [15] (the constant � used in its specification is the constant from Equation (1)).

Inner Verifier IV4
� � �� (/ ��� / �)

Set � V���,.-�� �
, + � V�� � and + $ V +

�� �$ S � for ,�������� .
Choose �1(��+ ���! ! ! .��+���� uniformly at random.
Run Basic-IV4

� � �� � / ��� / � � .
Note that the inner verifier above has perfect completeness. Indeed when & �(' are long codes of ���	�

where / � � � � V / � � � � V - (say), then for each 4 (1 ��� , if 4 � - � V , then & � � � � V � � � � � while & � � � � V
& � - � � � 4� / ��� � / �9� V -�T� � � � and so these are not equal, and similarly for the case when 4 � - � V - , .
3.3 Covering Soundness analysis

Let � � � � be the indicator random variable for the rejection of a particular proof � V � # � � 3 � 5 3 (%�� by
the composed verifier + + �5�-, � IV4 � � (henceforth + � � � �). The probability that + � � � � rejects � taken over its
random choices is clearly the expectation�0 � 2 � 2 9 � � � �!� & $ � � $ � &
 � �
 � � � � � � V � �"! ,) & � � � � & � � � �

R # ! ,) ' � 	 � � ' � 	 � �
R #%$ (2)

8

Here & �(' are shorthand for # � � 3 � and # � � 3 / � respectively and will equal # $'& (�;�F� 3 �9� and # $'& (�;�F� 3 / �9�
respectively in a “correct” proof. We wish to say that no � proofs can together satisfy all the tests which
+ � � � � performs. Now, if � " � � � is the indicator random variable for the rejection of a set of � proofs
� # � $ � 3 � 5�3 (%�� , , � � � � , by the verifier +<� � � � , then the overall probability that + � � � � rejects all
these � proofs, taken over its random choices, is exactly�0 � 2 � 2 9 � � � �!� & $ � � $ � &
 � � " � � � � V ,

8 "�� ��� "�
$ ���

� ,) &M$ � � � � &M$ � � � �9�!� ,) '�$ � 	 � � '�$ � 	 � �9����� (3)

We will now argue (see Lemma 3.2 below) that if this rejection probability is much smaller than 8 S " , then
there is a way to obtain labels

�F�
	 �
for

	 (+ (% by “decoding” � � such that more than � fraction of the
edges

� �%�53 � are satisfied by this labeling, i.e.,
� � � � V / 0 � 2 �;� � 3 �9� . Together with Theorem 3.1, this implies

that the rejection probability (from Equation (3)) for any set of � proofs for a false claim of satisfiability (of
�), can be made arbitrarily close to � " , and in particular is non-zero, and thus the covering soundness of the
composed verifier is less than ,.-(� .

Lemma 3.2 There is an absolute constant - / H J such that for every integer � P , , every + , J � + � 8 S " ,
and all � �,+�-(' , if

� � � " � � � � � � " - + , then $ ��� � "$# � H R S ��� 9� "%$.
Before presenting the formal proof of Lemma 3.2, we first highlight the basic approach. The power of

arithmetizing the rejection probability for a set of � proofs as in Equation (3) is that one can expand out the
product and analyze the overall expectation as a sum of expectations of terms of the form &�� � � � � &�� � � � � ,
'�� � 	 � � '�� � 	 � � or &�� � � � � &�� � � � � '�� � 	 � � '�� � 	 � � , for � ��� 4 � ,2�<R �! ! ! 2����� where &��OV 	 $ � � &M$ and
'�� V 	 $ � � '�$, and analyze the terms individually. We can now imagine two new proofs �& V &�� and
�' V ' � which are exclusive-ors of subsets of the � given proofs. (Note that even if our original & $ ’s

are assumed to be folded, this is no longer true for the tables �& and �' , and thus we need to perform our
analysis with tables that are not folded. This is why we started with IV4 which can be analyzed without
folding [15].) Now one can apply existing techniques from [15] to analyze terms involving the tables �& and
�' and show that �& � � � � �& � � � � and �' � 	 � � �' � 	 � � cannot be too negative, and similarly if the expectation of
�& � � � � �& � � � � �' � 	 � � �' � 	 � � is too much below zero, then in fact $ ��� � "�# � is quite large. In short, at a high

level, we are saying that if there exist � proofs such that the verifier accepts at least one of them with good
probability, then some exclusive-or of these proofs is also accepted by the verifier with good probability,
and we know this cannot happen by the soundness analysis of [15] for the case of a single proof. This is
formalized in the following two Lemmas.

Lemma 3.3 ([15]) For every � H5J and for all & 5 1 ��� 7 � ,2�.- ,/� , and all 3 (%�� � 0���� ; 2 = � �!� &!� & 9 � & � � � � & � � � � � P - 8 � �
where the distribution of � ��4 ��� ����� � is the same as the one in IV4 � .

This lemma is Lemma 7.9 in [15] combined with calculation in the first half of Lemma 7.14 in the same
paper. Similarly the next lemma follows from Lemma 7.12 of the same paper and a similar calculation.

Lemma 3.4 ([15]) For every � H J and all proof tables � & 2 � and � ' 2 � (indexed by 3N(%) where each
& 2 �(' 2 5(1 ��� 79� ,2�.- ,/� , we have

� � & 2 � �T� � & 2 � � � � ' 2 9 � 	 � � ' 2 9 � 	 � � � is at least

- &�� - $ ��� � "�# � R ��� � "($! �
where the expectation is taken over � ��� �53 �53 / ��4 ��� ����� �2� 	 ��� 	 � , and where the distribution of ����4 ��� ����� �2� 	 ��� 	 �
is the same as the one in IV4 � .

9

Proof of Lemma 3.2: The proof is actually simple given Lemmas 3.3 and 3.4. We pick a � H J that
satisfies � � �� . By Equation (3), if

� � � " � � � � � 8 S " - + , then there exist subsets � ��� � � of � ,2�<R �! ! ! ������ ,����(� ��/V �
, such that � � &�� $ � � � � &�� $ � � � � ' ��
 � 	 � � ' ��
 � 	 � � ��� - + (4)

where &�� $ (resp. ' �
) denotes � 	 � � $ & 	 (resp. � 	 � ��
#').
Suppose one of ��� , � � is empty, say � � V �

. Lemma 3.3 applied to &�� $ (which is a function mapping
1 � � 7 � ,2�.- ,/�), gives

� � & � $ � � � � & � $ � � � � � P -38 � which together with Equation (4) above yields �)H � ,
a contradiction since � � +�-(' .

Now suppose both ��� and � � are non-empty. Now we apply Lemma 3.4 to & � $ and ' �
 to get that

the expectation in Equation (4) is at least - &�� - $ ��� � "�# � R ��� � "%$!
. Together with Equation (4) this yields

(using + P ' �)
$ ��� � "$# � H � R S � � � "%$! H R S � � 9 "%$

for some absolute constant - / H5J . �
We are now ready to state and prove the main Theorem of this section.

Theorem 3.5 For every constant � , LM� 4 &!����� � � $" � AZCFE �982� .
Proof: The theorem follows from Lemma 3.2 and Theorem 3.1. Let + V �

�
� 8 S " and � V +�-(' , and pick

�*H J small enough so that R S � � 9� "%$ H � . By Lemma 3.2 we have
� � � " � � � � � � " -,+ V �

��� " implies
$ ��� � "$# � H � . Consider the PCP with verifier + + �5�-, � IV4 � � . Using Theorem 3.1, we get that if the input
formula � is not satisfiable, the verifier + + �5�-, � IV4 � � rejects any � proofs with probability at least �

��� " .
Since it clearly has perfect completeness and makes only 8 queries, the claimed result follows. �
Remark on tightness of the analysis: In fact, Lemma 3.2 can be used to show that for any +1HOJ , there
exists a (covering) PCP verifier that makes 8 queries, has perfect completeness and which rejects any set of
� proofs with probability at least � " - + . Note that this analysis is in fact tight for the verifier + + �5�-, � IV4

�
since a random set of � proofs is accepted with probability ,�- 8 S " .

4 PCP Construction II and Hardness of Hypergraph Coloring

In the previous section we gave a PCP construction which made only 8 queries into the proof and had
covering soundness smaller than any desired constant. This is already interesting in that it highlights the
power of taking the covering soundness approach (since as remarked in the Introduction one cannot achieve
arbitrarily low soundness using classical PCPs with perfect completeness that make some fixed constant
number of queries). We next turn to applying this to get a strong inapproximability result for hypergraph
coloring.

The predicate tested by the inner verifier IV4� is & � '���� ��� �53 � V � ' /V��
��� �

� /V 3 � , and to get a
hardness result for hypergraph coloring, we require the predicate to be L
	 � � ' ��� ��� �53 � which is true unless
all of '���� ��� �53 are equal. Note that L
	 � � ' ��� ��� �53 � is true whenever & � ' ��� ��� �53 � is true, so one natural
approach is to simply replace the predicate & tested by IV4 � by L
	 � without losing perfect completeness.
The challenge of course is to prove that the covering soundness does not suffer in this process, and this
is exactly what we accomplish, though the proof gets much more complicated. Let us call the new inner
verifier, obtained by changing the predicate tested by IV4� , as IV-NAE4 � (we hide the dependence on �
when no confusion can arise).

10

4.1 Soundness Analysis: Intuition

Note that for a particular random choice of functions
� 4 ��� ����� �2� 	 ��� 	 � � the inner verifier rejects all � proofs

�. � $ � 3 � 5 3 (%�� exactly when & $ � � � � V &M$ � � � � V '�$ � 	 � � V '�$ � 	 � � for every � , , � � � � . As in
Lemma 3.2, we wish to argue that if the probability of this (rejection) happening is small then there is an
assignment of labels to the vertices in "$# that satisfy a “good” fraction of its edges.

It is possible to arithmetize the probability that the verifier + + �5�-, � IV-NAE4
�

rejects all � proofs (over
its random coin tosses) similar to expression (3) in the analysis of the previous section. In the case of (3)
we were able to “bound” all the terms that arose from expanding out the product. The arithmetization of the
L
	 � predicate is a little more complicated, and a tight analysis in the spirit of the previous section seems
difficult and there are terms in the expansion of the arithmetization which we are unable to bound or argue
about directly.

Instead we take a “two-step” approach. We know from the analysis of the previous section that the
probability that & $ � � � � V & $ � � � � holds for all � , ,���� � � , simultaneously, is (roughly) R S " , and similarly
for '�$ � 	 � � and '�$ � 	 � � . We now wish to say that we will in addition also have & $ � �T� � V '�$ � 	 � � for every �
with reasonably large probability, so that the verifier with L
	 � predicate will also reject all � proofs with
good probability. To prove this, note that & and ' are really only different names for the same “tables”
and the distinction is only that

�
� ����� � � is chosen differently from

� 	 ��� 	 � � (once � ��4 are picked). For a
fixed �%��4 , denote by � 0 � � the distribution of the R � bits � & $ � � � � � &M$ � � � � � "$ ��� (� ,2�.- ,/� � " given that the
verifier IV-NAE4� picked �%��4 . (The distribution � 0 � � is governed by the random choices of 3 (% , the
“bias parameter” � , and � � ��� � (1 � � as in verifier IV4� . The distribution thus depends on the parameter� though we hide this for notational convenience.) It is also easy to check that once � ��4 is picked, the
distribution of the bits � '�$ � 	 � � �('�$ � 	 � � � "$ ��� (� ,2�.- ,/� � " that the verifier reads is exactly � 0 � S � . Hence,
if the distributions � 0 � � and � 0 � S � are nearly the same, then & $ � �T� � V &M$ � � � � V '�$ � 	 � � V '�$ � 	 � � holds
for all � with good probability (this is shown in Lemma 4.7), and therefore the verifier rejects with good
probability as well. We will also show that if there is a significant difference between the distributions
� 0 � � and � 0 � S � , then there is a way to “decode” this difference between the distributions into labels for the
vertices of the � ��� � A � C � ���:���! instance "$# that satisfy a good fraction of edges (this is Lemma 4.8). In
either situation we get the desired result.

4.2 The actual soundness analysis

We now proceed to the formal analysis. We need a few definitions. For each fixed
� � ��4 � (here �*(+ and

4*(1 ��� as usual), we will use the distribution � 0 � � on � ,2�.- ,/� � " defined above. Define

� ! " $V ���� V �
� �!��� �2�! ! ! .��� � " � (� ,2�.- ,/� � " 5 � ��V � � � � 	 V � � �!�!� � � � " S � V � � " �

Note that the action of the verifier + + �5�-, � IV-NAE4 � � in question given � proofs can be viewed as picking
� (+ and 4 (1 � � at random, and then picking '��9' / randomly and independently from � ,2�.- ,/� � "
according to the distributions � 0 � � and � 0 � S � respectively, and finally rejecting if and only if all � proofs
are “wrong”, i.e., if '��9' / (�

and ')V ' / . Thus the probability that the verifier + + �5�-, � IV-NAE4 � � rejects
a set of � proofs �. � $ � 3 � 5 3 (% � "$ ��� is precisely

� �0 � �!� � � � 9 � '1VK' / � ' (� � . The lemma below is similar

in spirit to Lemma 3.2 and states that if the verifier rejects some set of � proofs with low probability, then in
fact $ ��� � "�# � is quite high. The Lemma is proved in Section 4.4.

Lemma 4.1 There is an absolute constant ��/ H5J such that for every integer �QP , and all sufficiently small�)H J , if
���0 � � � � �����	� � � � 9 �
���	� " � � ' V ' / � '1(� ��� R S ; "
� = , then $ ��� � "$# � H R S ���

9
 "
.

11

Theorem 4.2 For every constant � , L#� 4 &!����� � � $" � ADCFE �982� , where moreover the predicate verified by the

PCP upon reading bits '���� ��� �53 is L
	 � � ' ��� ��� �53 � .
Proof: Similar to the proof of Theorem 3.5 (using Lemma 4.1 in place of Lemma 3.2). �

4.3 Hardness results for hypergraph coloring

Since the predicate used by the ����� of Theorem 4.2 is that of 8 -set splitting, we get the following Corollary.

Corollary 4.3 For every constant � P R , given an instance of 8 -set splitting, it is NP-hard to distinguish
between the case when there is a partition of the universe that splits all the 8 -sets, and when for every set of
� partitions there is at least one 8 -set which is is not split by any of the � partitions.

The above hardness can be naturally translated into a hardness result for coloring 8 -uniform hypergraphs,
and this gives us our main result:

Theorem 4.4 (Main Theorem) For any constant � P R , it is NP-hard to color a R -colorable 8 -uniform
hypergraph using � colors.

Proof: Follows from the above Corollary since a 8 -set splitting instance can be naturally identified with
a 8 -uniform hypergraph whose hyperedges are the 8 -sets, and it is easy to see that the minimum number of
partitions � needed to split all 8 -sets equals � ADE � � where � is the minimum number of colors to color the
hypergraph such that no hyperedge is monochromatic. �
Theorem 4.5 Assume LM� /4,������� � ��
 � ; � �"! � �"!6# = � . Then there exists an absolute constant �.� H5J such that
there is no polynomial time algorithm that can color a R -colorable 8 -uniform hypergraph using � � ADCFE�ADCFE�ADCFEG

colors, where

is the number of vertices in the hypergraph.

Proof: This follows since the covering soundness of the PCP in Theorem 4.2 can be made an explicit] � , �
function. Indeed, to have a covering soundness of ,.- ADCFE � ��
�� , combining Lemma 4.1 with Theorem 3.1,
the proof size we need is

 � ; � �"!� "%$ = R � " � � $! where � V R S � � ��� � ��! !
. We can thus have

�� ;�� �"!6� �"! # = size
proofs by letting � S � V �BADCFEG
�� � ; �>= and �

��
�� V ? �BAZCFE�ADCFEGAZCFEG
�� . Similarly to Theorem 4.4, this implies
�
��
��

-coloring a R -colorable 8 -uniform hypergraph is hard unless L#� 4,��������� ��
 � ;�� �"!�� �"!�# = � . �
We now show that a hardness result similar to Theorem 4.4 also holds for R -colorable � -uniform hypergraphs
for any �QP $.

Theorem 4.6 Let � P $ be an integer. For any constant
� P R , it is NP-hard to color a R -colorable

� -uniform hypergraph using
�

colors.

Proof: The proof works by reducing from the case of 8 -uniform hypergraphs, and the claimed hardness
then follows using Theorem 4.4.

Let
�

be a 8 -uniform hypergraph with vertex set + . Suppose that � V 8 �) � where , � � �X8 .
Construct a � -uniform hypergraph

� / as follows. The vertex set of
� / is + ; �>= (+ ; �	= (�!�!� (+ ; ���
 �>= where

the sets + ; 	 = are independent copies of + . On each + ; 	 = , take a collection 1 ; 	 = of 8 -element subsets of + ; 	 =
that correspond to the hyperedges in

�
. A hyperedge of

� / (which is a
� 8 �) � � -element subset of � 	 + ; 	 =)

is now given by the union of �38 -sets belonging to � different 1 ; 	 = ’s, together with � vertices picked from a
8 -set belonging to yet another 1 ; 	 = . More formally, for every set of

� �)5, � distinct indices
� ��� � �2�! ! ! �� � �
 � ,

every choice of elements 8�	�� (1 ; 	�� = for � V ,2�! ! ! ��<�) , , and every � -element subset 4�	�	�
 $ of 8 	�	�
 $, there is
a hyperedge

� 8 	 $ (�!�!� (8 	 	 (4 	�	�
 $
�

in
� / .

12

If
�

is R -colorable then clearly any R -coloring of it induces a R -coloring of
� / , and hence

� / is R -
colorable as well.

Suppose
�

is not
�
-colorable and that we are given an

�
-coloring of

� / . Since
�

is not
�
-colorable, each

1 ; 	 = , for ,�� � � � �) , , must contain a monochromatic set � 	 . By the pigeonhole principle, there must be
a color � such that

� ��) , � different � 	 ’s have color � . The hyperedge of
� / constructed from those

� ��)K, �
sets is then clearly monochromatic (all its vertices have color �) and we conclude that

� / is not
�
-colorable.

Since the reduction runs in polynomial time when � and
�

are constants the proof is complete. �

4.4 Proof of Lemma 4.1

The Proof: The proof comprises of several intermediate steps. We will not be concerned with getting the
best possible bounds in an attempt not to obscure the proof. Lemma 4.1 follows from the following two
lemmas. The first one (Lemma 4.7) states that if the distributions � 0 � � and � 0 � S � are close to each other,
then the probability that the verifier rejects all � proofs (i.e.,

���
� ' V ' / �X' (� �) is large. The proof

of this Lemma is quite standard and follows since ' �9' / drawn according to � 0 � � and � 0 � S � are equal with
large probability if the distributions are close to each other, and we know that

���� �
���	� � � ' (� � is large from

the analysis of the previous section. The second crucial Lemma, which is key to the proof, shows that a
noticeable difference between the distributions � 0 � � and � 0 � S � can be used to define good labels for the
LabelCover instance "$# , and thus $ ��� � "$# � must be large in this case.

Lemma 4.7 For every integer �*P , , and for all � � R S ; "
 = , if
���0 � �!� � �
��� � � � � 9 ����� � " � � ' V ' / � '0(� � �

R S ; "
� = (recall that the distributions � 0 � � and � 0 � S � depend upon �), then�0 � � � �
� ��� � � S ���
 " : � 0 � � � � � - � 0 � S � � � � : � H R S ; "
�� = (5)

Lemma 4.8 There are absolute constants � / �:8 / H J such that for every + H J , every integer �5P , and

every � H5J , if
�0 � � ��� � �	� � � S ���
 " : � 0 � � � � � - � 0 � S � � � � :�� H,+ , then $ ��� � "�# � H � +�RTS � " � � 9 RTS ��
 9 "($.

Lemma 4.1 now follows since combining Lemma 4.8 with the Condition (5), we get

$ ��� � "$# � H R S � ; " = R S ��� �
 " ! �
and this clearly implies that $ ��� � "$# � H R S ���

9
 "
for some absolute constant � / H5J . � (Lemma 4.1)

Proof of Lemma 4.7: Let us suppose that the above Condition (5) does not hold, and we will arrive at a
contradiction. To this end, we will first prove that, by choosing � � R S ; "
 = , we can assume�0 � � � �� ��� � 0 � � � ' � ��P 7

8 R S
"

(6)

Indeed the above expectation is simply
�0 � 2�� � � �!� & $ � &
 � �� " 	 "$ ��� � ,)�& $ � � � � & $ � � � �9� � where & $ is a shorthand

for the encoding # � $ � 3 � in the � ��� proof for ,�� ��� � , and the distributions of � ��4 ��� �!��� � are as in the inner
verifier IV4� . By Lemma 3.3, this expectation is at least R S " � , - � R " -K, � 8 � � P RTS " -08 �0P 	 RTS " since� � R S ; "
 = .

Now, call a pair
� �%��4 � “good” if both of the following conditions are met:

13

� �
� � � � 0 � � � ' � P R S ; "
 �>= (i.e., &M$ � � � � V &M$ � � � � for all � with good probability), and

� � � ��� � � S ���
 " : � 0 � � � � � - � 0 � S � � � � :%� R S 	 ; "
 �>= (i.e., the distributions � 0 � � and � 0 � S � are “close”).

One can show, using Equation (6), a simple averaging argument and the union bound, that if Condition (5)
is not met, then ���0 � � �The pair

� �%��4 � is good � P ,
'
� R S " (7)

Now focus on a “good” pair
� �%��4 � . For such a pair we prove that

����
�
� 9 � ' V ' / �I'1(� � is large (where ' and

' / are strings in � ,2�.- ,/� � " picked independently according to distributions � 0 � � and � 0 � S � respectively),
and together with (7) this will contradict the hypothesis of the Lemma. Indeed, for any good pair

� � ��4 � ,����
�
� 9 � ' V ' / � ')(� � V �� � � � 0 � � � ' � � 0 � S � � ' �

which by the second condition of goodness is at least �
� ��� � 0 � � � ' � � � 0 � � � ' � - RTS 	 ; "
 �>= � , and using

Cauchy-Schwartz and the first condition of goodness, this is at least � "

 � "
 $!
* � * - RTS 	 ; "
 �>= V RTS 	 ; "
 �>= (note

that : � : V R ").
Thus R S ; "
� = P

���0 � �!� � � � 9 � ' V ' / �0' (� �QP
���0 � � � � ��4 good �

����
�
� 9 � ' V ' / �0' (� : � � ��4 � good �QP

R S " S 	�� R S 	 ; "
 �>= V R S ; "
�� = , a contradiction. Thus Condition (5) holds, as desired. � (Lemma 4.7)

Proof of Lemma 4.8: We are given that�0 � � � �
� ��� � � S ���
 " : � 0 � � � � � - � 0 � S � � � � :���H,+

Now consider the Fourier expansion of � 0 � � as � 0 � � � � � V � � ��� � � ���
 " �� 0 � �!� � � � � � � , and similarly for the
function � 0 � S � . Then using the above condition + is less than

+�� �0 � � � �
� ��� � � S ���
 " : �

� ��� � � ���
 "
� �� 0 � � � � -

�� 0 � S � � � ��� � � � � : � � R � " �0 � � � � � :
�� 0 � � � � -

�� 0 � S � � � : � �
and this implies that there exists an

3 (�.J ��,/� � " such that�0 � � � :
�� 0 � �!� � -

�� 0 � S �!� � : � H +
R " (8)

We will use any (fixed) such
3

to define “proof tables” , 0 ��0 2 ��� 2 for every � (*+ and 3 (% where
, 0 5�1 � � 7 � ,2�.- ,/� and 0 2 ��� 2 5 1 ��� 7 � ,2�.- ,/� . For any � (+ , the table , V , 0 (we will omit
the subscript � in the sequel though it should be treated as implicit) is defined as follows: For 4K(1 � � ,
, � 4 � V���� E	� � �� 0 � � � � -

�� 0 � S �!� � � where ��� E	� � ' � is the sign function that takes value , if ' HNJ and - , if
' � J . Note that clearly , � 4 � V -., � - 4 � 1; so that the , -table is folded.

To define 0 2 ��� 2 , first, set
3 � (�.J ��,/� " (resp.

3
�)(�.J ��,/� ") to be the projection of

3
on the odd

coordinates � ,2�<7 �! ! ! ��<R � -O,/� (resp. even coordinates ��R �98 �! ! ! ��<R ���). (Here
3 � and

3
� “correspond”

to the &M$ � �T� � and &M$ � � � � coordinates respectively.) For any �O(1 ��� , we define 0 �
�
� V90 2 � � � V

1When
� �	� � � ��
� �	� " � � � , we assume that ������� is defined to be �����
 � for some fixed �
���� � , so that ������� �� ��� � ���
holds even in this case.

14

	 $ � � $; $Z= ��� &#$ � � � and similarly � �
�
� V � 2 � � � V 	 $;� �
 ; $D=;��� &M$ � � � , where &M$ stands for # � $ � 3 � . We will

omit the subscript on 0)��� for notational convenience, and it should always be treated as implicit. The key
property satisfies by these tables is captured by the following two Claims about the properties of the tables
, ��01��� defined above whose proofs we defer to the end of this section.

Claim 1: �0 � 2�� � � �!� & $ � &
 � , � 4 � 0 �
�T� � � �

� �
� �*V R � " S � �0 � � � :

�� 0 � � � � -
�� 0 � S � � � : � where the distribution of� ��4 ��� � ��� � is the same as the one used by the inner verifier IV4.

Claim 2: For every
� H J , and every � H J , if

�0 � 2 � � � �!� & $ � &
 � , � 4 � 0 �
� � � � �

� �
� � H �

then there is a constant

� depending only on
�

and � , with � V � � ; �>= RTS � � � "%$!
, such that $ ��� � "�# � H�� .2

Combining the result of Claim 1 with Equation (8) we get�0 � 2�� � � �!� & $ � &
 � , � 4 � 0 �
�T� � � �

� �
� � H,+�R S ; � "
 �>= � (9)

and the proof of Lemma 4.8 is now complete using Claim 2 together with the above Equation (9). � (Lemma 4.8)

Proof of Claim 1: Observe that for each fixed
� � ��4 � , �� � 2 � & $ � &
 � 0 �

� � � � �
� �
� � VKR � " �� 0 � �!� � . Indeed

�� � 2 � & $ � &
 � 0 �
�T� � � �

� �
� � V �� � 2�� & $ � &
 � �

$ � � $; $Z= ��� &M$
�
�T� � �

$ ���
 ; $Z= ��� &M$
�
� �
� �

V �
� �	� � � S ���
 "

� � � � � &M$ � � � � &M$ � � � �9� "$ ��� V � � � �
$;� � �;��� �F$��

V �
� �	� � � S ���
 " �

0 � � � � ��� � � � �
V R � " �� 0 � � � �

Now�0 � 2�� � � � � & $ � &
 � , � 4 � 0 �
� � � � �

� �
� � V ,

R
! �0 � 2 � � � �!� & $ � &
 � , � 4 � 0 �

� � � � �
� �
� � - �0 � 2�� � � S � � & $ � &
 � , � 4 � 0 �

� � � � �
� �
� � #

V R � "
R

� �0 � � � ��� E	� � �� 0 � � � � -
�� 0 � S � � � � �� 0 � �!� � �

- �0 � � � ��� E	��� �� 0 � � � � -
�� 0 � S � � � � �� 0 � S � � � � �

V R � " S � �0 � � � : �� 0 � �!� � -
�� 0 � S � � � : �

where in the first step we used that , � 4 � V -., � - 4 � . The “ - 4 ” in the subscript to � indicates that we are
assuming that - 4 ��� �!��� � was picked in the test and the second step then follows from the above calculation
with 4 replaced by - 4 . � (Claim 1)

We next move on to the proof of Claim 2. We begin by stating a simple lemma which follows easily from
the “smoothness” Condition (1) of the projection functions.

2Recall that the parameter � governs the distribution of � .

15

Lemma 4.9 For any 0)��� 5 1 ��� 7 � ,2�.- ,/� , any � , J � � � , , and any 3 (% ,�0�� � ; 2 = � �� � * � * ���
:
�

0 � �� � : � , - � � * � �	� � ; � = * � � �����

provided � P
� �
	 � � � � .

Proof: By linearity of expectation, we have�0�� � ; 2 = � �� � * � * ���
:
�

0 � �� � : � , - � � * � �	� � ; � = * � � � V �� � * � * ���
:
�

0 � �� � : �0 ��� ; 2 = � � ,�- � � * � � � � ; � = * � � �
� �� � * � * ���

:
�

0 � �� � :
� � ,�- � � * � * � � �) : � : S � �

�
� ,�- � �
��) ���8

� �
where in the first inequality we used the “smoothness” condition (1) and in the second one we used � � P ��	
and the Cauchy-Schwartz inequality � � :

�
0 � �� � :�� � � � �

0 �� � � � � � � � �
� �� � � � � � , . �

Proof of Claim 2: The proof follows along the lines of the proof of Lemma 6.10 in [15]. Recall that �
is picked uniformly at random from ��+ �.�! ! ! ���+��"� where � V � � S ��� , + ��V � � and +�	 V8+

�� �	 S � for every
�
,

, � � � � . Clearly there exists a
�
, , � � � � such that

�0 � 2 � �!� & $ � &
 � ,
� 4 � 0 �

� � � � �
� �
� : � V�+ 	 ��H �

. In the

rest of the proof, we fix � to equal this + 	 . Note that �QV +�	 P,+�� P R S ��� � "($!
.

We begin by expressing , � 4 � ��0 �
� � � and � �

� �
�

using their Fourier expansion as , � 4 � V � ��� � � �,�� � � � 4 �
where

� � � 4 � V 	 � � � 4 � � � , and similarly for 0 �
� � � and � �

� �
�
. For each fixed �%�53 , the given expectation

is just (writing / as shorthand for / 0 � 2)

�
� � � $ � �

�,�� �0 �
$
�

� �
 �� � & $ � & 9 � � - , � * �
 * � � � 4 ��� � $ � �
 � � � ��� �
 � 4� / � � / � �
Since � � is picked uniformly and independently at random, the inner expectation is 0 unless ����V � � V �

(say). Since 4 is also picked uniformly and independently at random, for all terms with
3�� / � � � /V �

,
the inner expectation equals zero, and thus we can discard those terms, and only worry about terms with3 4 / � � � . For ' (/ � � � , denote by �

�
the set � � (� 5 / � � � VN'�� . Once �%�53 are fixed, our expression

thus simplifies to�
�!� & $ � &

�
, � 4 � 0 �

�T� � � �
� �
� � V �� � ��� � ; � =

�,�� �0 � �� � � - , � * � * ��!� & 9 � � � � 4 ��� � � 4� / � � / � �
V �������� �

�
!
�,�� �0 � �� � � - , � * � * �� � � � ,R) - � R � -5, � * ��� *

R
�

�� � � ; � =�� � � ,R)
� R � - , � * ��� *

R
�

V � ������ �
�
!
�, � �0 � �� � �� � � � � - , � * � � *

R -
� ,�-0R � � * � � *

R
�

16

�� � � ; � =�� � �
� - , � * ��� *

R)
� ,�-0R � � * ��� *

R
�

(10)

Define
	 �43 � � � to be the quantity�� � � � � - , � * � � *

R -
� , -0R � � * � � *

R
� �� � � ; � =�� � �

� - , � * � � *
R)

� ,�- R � � * � � *
R

�
It is not difficult to see that

�
��� � ; � =

	 � �43 � � � V �� � � ; � =
�� � � - , � * ��� *

R -
� , -0R � � * ��� *

R
� �) � � - , � * ��� *

R)
� ,�- R � � * ��� *

R
� ����

�
� , - � � * � ; � = * (11)

The last step follows from the fact that if : - :�� : � :�� , -�� and : - :�),: � :FV , , then - �) � � � � , - � � . It is also
easy to see that �

��� � ; � =
: 	 �43 � � � :TVN,2 (12)

Using this with Equation (10), we have, for each fixed �%�53 ,

�
� � & $ � &

�
, � 4 � 0 �

� � � � �
� �
� � � � ������ �

�
!

:
�

0 � �� � :
�

:
�,���: : 	 �43 � � � : �

� �� � * � * ���
:
�

0 � �� � :
� �
��� � ; � =

�, �� � � � � � �
��� � ; � =

	 � �43 � � � � � � �)

) ���� � ��� 	�
��� � �
�
! �
��� � � 	������ :

�
0 � �� � : :

�,�� : : 	 �43 � � � :�)

) ���� � ��� 	�

��� � �

�
! �
� �� � � ������� :

�
0 � �� � : :

�,�� : : 	 �43 � � � :

� �� � * � * ���
:
�

0 � �� � :
� �
��� � ; � =

	 � �43 � � � � � � �)
�
8

�� � * � * � � :
�

0 � �� � :)

) 8 � ���� � ��� 	�

��� � �

�
! �
���� � � �������

�, �� :
�

0 � �� � : (using Equation 12))

� �� � * � * ���
:
�

0 � �� � : � ,�- � � * � ; � = * � �)
�
8) 8 � ���� � ��� 	�
����� �

�
!
�, �� :

�
0 � �� � : (13)

where the last step follows using (11). We now take expectations over the projection � �53 (recall that the
“bias” � is fixed throughout the analysis). Using Lemma 4.9 we conclude�2 � 0 � �� � * � * ���

:
�

0 � �� � : � , - � � * � ; � = * � � � � �
8 � (14)

17

provided � P
� � ���� � � � � . Since �1P RTS ��� � "%$!

, this implies we can work with � V � S � ; �>= R ��� � "%$!
.

Combining (13) and (14), together with the hypothesis of the Lemma that
� � , � 4 � 0 �

�T� � � �
� �
� �MH �

, we
get �0 � 2 � ���� � ��� 	�
��� � �

�
!
�, �� :

�
0 � �� � : ��H �

8
� �
R V

� �
' (15)

Note that Condition (15) above forces the Fourier spectrum of , ��01��� to have (somewhat) large support
on low-weight coefficients (corresponding to small : 3 :�� : � :), and this will enable us to define “good” labels
for vertices in +
(4% and prove the claimed lower bound on $ ��� � "�# � . We now describe a probabilistic
procedure to define labels which satisfies a good fraction of edges in the instance "�# in expectation, and this
will give a lower bound on $ ��� � "$# � .

We define
� � � � () + for a vertex � (*+ as follows. Let , V , 0 and pick a set

3 45 + with probability�, �� . By Plancherel’s identity this is a valid probability distribution. Then pick an element -Q(3
at random

and set
�F� � � V - . An important point here is that

�,�� V J since , � 4 � V�-., � - 4 � for all 4 (+ [15], and
thus we never get “stuck” by picking

3 V �
.

Next, we define
� � 3 � (- for 3 (% as follows. Let 0 V 0 2 and � V � 2 . Pick a set �K4N -

with probability proportional to :
�

0 � �� � : . Note that � � :
�

0 � �� � : �
�
� � �

0 �� � � � � �
� � �

� �� � � � � V , by

Cauchy-Schwartz, so that a set � is picked with probability at least :
�

0 � �� � : . If � V �
, set

� � 3 � to be some
fixed element � �#().- , else set

� � 3 � equal to a random element of � .
Let � 0 � 2 be a random variable which takes on value , when the edge

� �%�53 � (� is satisfied by the
above randomized experiment, i.e., � 0 � 2 V , if

�F� � � V /10 � 2 �;�F� 3 �9� , and equals J otherwise. The expected
fraction of satisfied edges is

�0 � 2 � � 0 � 2 � is at least

�0 � 2 � � ��� ������ �	� � �
�
!���
	

�, �� :
�

0 � �� � : ,: 3 :
,

: � : � P �0 � 2 � ���� � ��� 	�
��� � � � � �
�
!
�, �� :

�
0 � �� � : ,� � �

H
� �

'�� � (using Equation (15)),

where the first step above is valid since
�,�� V J and thus any term with non-zero

�, � with
3 4 / 0 � 2 � � �

also satisfies
3�� /!0 � 2 � � � /V �

.3 Recalling that we picked � V � S � ; �>= R ��� � "($!
, we have also $ ��� � "�# � H� � ; �>= R S � � � "($!

(with slightly larger constant in the ? -notation), and the claim follows. � (Claim 2)

5 Concluding Remarks

We gave a 8 -query ����� verifier for languages in LM� with] � , � covering soundness and whose acceptance
predicate was

� ' /V �
���Q�

�1/V 3 � . In order to obtain our hardness result for hypergraph coloring, we needed
to tailor the acceptance predicate of the PCP to correspond exactly to the one for hypergraph coloring (i.e.,
L
	 � � ' ��� ��� �53 �), and then analyze the covering soundness of the resulting PCP. This is necessary to obtain
hardness results for minimization problems using this approach. Gadgets, which are useful in transforming
PCPs in the usual setting, are useless here. Indeed, say we “implement” a constraint 4 using several other
constraints ���! ! ! ��� � , and two proofs � � and � � suffice to satisfy all the �$. The constraints � and �
for example might be satisfied by two different proofs, and thus one cannot conclude that one of � � and

3This is only place in the analysis where we use the fact that � is folded.

18

� � indeed satisfies the original constraint 4 . Thus the standard approach of reduction between various
constraint families completely breaks down. As a concrete example, suppose we reduce L 	 � � '���� ��� �53 �
into 4-SAT clauses

� ' � � � � � 3 � and
���' ���� ���� ���3 � . We know, by our main result Theorem 4.4, that

the L
	 � constraints (of even an instance that is satisfiable by a single assignment) are NP-hard to satisfy
using any constant number of assignments, where as any 4-SAT instance is trivially satisfiable using just
two assignments, namely any assignment and its complement!

References

[1] N. Alon, P. Kelsen, S. Mahajan and H. Ramesh. Coloring R -colorable hypergraphs with a sublinear
number of colors. Nordic Journal of Computing, 3 (1996), pp. 425-439.

[2] S. Arora and C. Lund. Hardness of Approximations. In Approximation Algorithms for NP-hard Prob-
lems, (Dorit Hochbaum, ed.), PWS, 1996.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approx-
imation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in Proceedings of
FOCS’92.

[4] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the
ACM, 45(1):70–122, 1998. Preliminary version in Proceedings of FOCS’92.

[5] J. Beck. On 7 -chromatic hypergraphs. Discrete Mathematics, 24 (1978), pp. 127-137.

[6] J. Beck. An algorithmic approach to the Lovász Local Lemma. Random Structures and Algorithms, 2
(1991), pp. 343-365.

[7] M. Bellare, O. Goldreich and M. Sudan. Free bits, PCP’s and non-approximability – towards tight
results. SIAM Journal on Computing, 27(3):804-915, 1998. Preliminary version in Proc. of FOCS’95.

[8] H. Chen and A. Frieze. Coloring bipartite hypergraphs. Proc. of 5th IPCO, 1996, pp. 345-358.

[9] P. Erdös. On a combinatorial problem I. Nordisk Mat. Tidskrift, 11 (1963), pp. 5-10.

[10] U. Feige and J. Kilian. Zero-knowledge and the chromatic number. In Proceedings of the 11th Annual
Conference on Computational Complexity, 1996.

[11] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and satisfia-
bility problems using semidefinite programming. Journal of the ACM, 42:1115-1145, 1995.

[12] V. Guruswami. Query-efficient Checking of Proofs and Improved PCP Characterizations of NP. S.M
Thesis, MIT, May 1999.

[13] V. Guruswami. The Approximability of set splitting problems and satisfiability problems with no mixed
clauses. Proc. of the 3rd Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX 2000), to appear.

[14] V. Guruswami and S. Khanna. On the hardness of 8 -coloring a 7 -colorable graph. Proc. of Complexity
2000, pp. 188-197.

[15] J. Håstad. Some optimal inapproximability results. Technical Report TR97-37, Electronic Colloquium
on Computational Complexity, 1997. Preliminary version in Proc. of STOC’97.

19

[16] D. R. Karger, R. Motwani and M. Sudan. Approximate graph coloring using semidefinite program-
ming. Journal of the ACM, 45 (1998), pp. 246-265.

[17] S. Khanna, N. Linial and S. Safra. On the hardness of approximating the chromatic number. In
Proceedings of the 2nd Israel Symposium on Theory and Computing Systems, ISTCS, pp. 250-260,
IEEE Computer Society Press, 1993.

[18] M. Krivelevich and B. Sudakov. Approximate coloring of uniform hypergraphs. Proc. of European
Symposium on Algorithms, 1998.

[19] L. Lovász. Coverings and colorings of hypergraphs. Proc. 4th Southeastern Conf. on Combinatorics,
Graph Theory, and Computing, pp. 3-12, Utilitas Mathematica Publishing, Winnipeg, 1973.

[20] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of
the ACM, 41:960-981, 1994.

[21] C. McDiarmid. A random recoloring method for graphs and hypergraphs. Combinatorics, Probability
and Computing, 2 (1993), pp. 363-365.

[22] C. McDiarmid. Hypergraph coloring and the Lovász Local Lemma. Discrete Mathematics, 167/168
(1997), pp. 481-486.

[23] J. Radhakrishnan and A. Srinivasan. Improved bounds and algorithms for hypergraph two-coloring.
Proc. of 7 � ���

FOCS, (1998), pp. 684-693.

[24] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, 1998. Preliminary
version in Proc. of STOC’95.

[25] J. H. Spencer. Coloring

-sets red and blue. J. Combinatorial Theory, Series A, 30 (1981), pp. 112-113.

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

