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Abstract

We investigate the implications of noise in the equivalence query model. Besides
some results for general target and hypotheses classes, we prove bounds on the learning
complexity of d-dimensional rectangles (of size at most n?) in the case where only
rectangles are allowed as hypotheses. Our noise model assumes that a certain fraction
of the examples is noisy. We show that d-dimensional rectangles are learnable if and
only if the fraction of noisy examples is less than 1/(d+ 1), where learnable means that
the learner can learn the target by a finite number of examples. Besides this structural

result we present an algorithm which learns rectangles in poly(%) time using
1

O(%) examples if the fraction of noise  is less than 557 As a related result
we prove for the noise-free case that the number of examples necessary to learn is at

least Q(% logn), where the best known upper bound on the learning complexity is
O(d?logn).
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1 Introduction

In the following we will deal with a generalization of the equivalence query model which
introduces a notion of noise. The equivalence query model [Ang88, Lit88, MT92| assumes
that the learner has to identify a target 7" from a target class 7 over some domain X,
ie. T € T C 2%, where 2% denotes the powerset of X. Hence the learner has to learn a
classification of the elements in X and it knows in advance that only classifications from 7~
are possible.

The learner proceeds by proposing hypotheses Hy, Hs, ... C X. After each hypothesis
H, # T it receives a counterexample (CE), which is a misclassified point z, € H,AT :=
(H,\T)U (T \ Hy). CEs z, with z, € H, are called negative CEs since they do not belong
to the target, CEs z, ¢ H, are called positive CEs. A natural question is then how many
hypotheses the learner needs to identify the target.

Now consider the case that some of the CEs are noisy, i.e. some z, ¢ H,AT. This means
that the learner has correctly classified z, but is told that the classification is incorrect. Since
the learner can be fooled by noisy CEs, it is intuitively clear that the learner will not be able
to learn the target if the fraction of noisy CEs is too high. Therefore we are interested in
determining the maximal fraction of noisy CEs such that the learner can still learn, and we
are also interested in the number of questions the learner needs to learn, given that a certain
fraction will be noisy.

Definition 1.1 (Learning complexity) Let T C 2% be the target class and H C 2% the
set of allowed hypotheses. For each sequence of CEs x1,...,24, ¢ > 0, a learning algorithm
A has to produce a hypothesis Hyp1 = A(x1,...,24) € H. Ifr, 0 < r < 1, is the mazimal
fraction of noise then the mazrimal number of CEs is given as

LCA(T7H77‘)
= sup{Q > 0|3zy,...,2q: {1 <q¢<Q:2, & A(x1,...,2,1)AT} <rQ},
LC(T,H,r) = minsup LCA(T, H, ).
A TeT

Thus LC4(T,H,r) is the maximal number of CEs such that only a fraction r of them are
noisy, and LC(7,H,r) is the learning complexity of the optimal learning algorithm if it has
to learn the most difficult target. If LC(7,H,r) = oo then the target class 7 is not learnable
using hypotheses from # if the fraction of noise is r. Observe that r bounds the number
of noisy CEs only in respect to the total number of CEs. It is not necessarily true that
H1<p<gq:z, & H,AT}| <rqforall ¢ <Q.

Remark 1.2 From the above definition it follows trivially that, for any fired domain X,
LC(Ti,Hi,m1) < LC(T3, Ho, o) if Tt C To, Ho C Hy, r1 < 19. Furthermore LC(T,H,r) =
oo if T\'H # 0. Therefore we assume T C H.

In applying the above definitions we do a worst case analysis, worst case insofar as we
consider the most difficult target and a malicious environment. Learning from noisy CEs in
the PAC-learning model was among others investigated in [AL88, KL88|.
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2 The general case

For general target classes only few results are known. The most important considers the
case where arbitrary hypotheses are allowed. By the weighted majority algorithm [LW91]
and simple considerations one easily obtains

Theorem 2.1 For all target classes T with |T| > 2 and | X| < co we have for all0 < r < 1/2

< log | 7]
— log2+rlogr+ (1—r)log(l—r)’
LC(T,2%,1/2) = oo.

LC(T,2%,7)

Remark 2.2 Observe that —log2 < rlogr+ (1—7r)log(l—r)<0if0<r <1/2, rlogr+
(1—7r)log(1—7) = 0 ifr =0, rlogr+(1—7r)log(l—7r) ~ —log2+2(1/2—7r)? if r — 1/2.

Therefore, if arbitrary hypotheses are allowed, any target class can be learned if and only if
the fraction of noise is less then 1/2. A drawback of the weighted majority algorithm is the
fact that in general very complex hypotheses must be generated. First, the representation
of these hypotheses might be very complex (relative to the representation of elements in 7T,
especially if | 7| < 21X1); secondly, the computation time to calculate the hypotheses might
be infeasibly high. Furthermore it is often convenient to deal only with hypotheses from the
target class. Thus, following [MT92], we assume H = 7 and set

LC(T,r) == LC(T,T,r).

The next theorem gives the maximal tolerable fraction of noise if only the size of the target
class is known and the hypotheses must be from the target class.

Theorem 2.3 For all target classes T we have for all 0 < r < 1/|T| that

711
LC(T,r) < =T
Furthermore if T, = {{1},...,{n}} then
1

Corollary 2.4 For alln € N and r € [0,1] we have

{VT :|T| =n:[LC(T,r) < ]} & r < 1/n.



3 Rectangles

In this section we study the natural geometric class of d-dimensional rectangles ((BEHW89,
MT89, MT91, CM92)),

d
RE={[I{cisc; +1,...,¢f}:0<¢;,¢f <n—1},
i=1

n > 2,d > 1, where the rectangles are given by their “lower left” and “upper right” corners

¢ =(cr,...,¢5), ¢ = (cf,...,c}). This definition yields rectangles from the d-dimensional
lattice space {0,...,n — 1}¢ with sides parallel to the coordinate axis, and furthermore

0e R

Concerning the learning complexity of R¢ it is known that LC(R¢,0) = O(d?logn) [CM92]
and (by Theorem 2.1) LC(R%,1/2) = oo. As trivial lower bound one can obtain LC(RZ,0) =
Q(dlogn) [CM92]. For d =1 the learning problem of rectangles is closely related to binary
searching and there was previous research for example in [DGW92]. In the following we
present our own results which give new and better bounds.

Theorem 3.1 Ifn > d > 2 then

2

d
L d0)=0Q
C(R3,0) = Qo

logn).

If n < d then
LC(RE,0) = Q(dn).
Theorem 3.2 Ifr > 1/(d+ 1) then

LC(RY,r) = 0.

Theorem 3.3 Ifr <1/(d+ 1) and d > 2 then

dn

L d < ——m—.
ORT) < Tt

Theorem 3.4 There ezists an algorithm LR such that for allr < 1/(2d + 1)

d*logn
(1—-r(2d+1))?

LCLR(RgL, ’I‘) < O(

),

and LR runs in time O((l_i4(;2ﬂﬁ))2 log (1—(13(;?1%:11))2 ).

By Theorem 3.1 and [CM92] we have upper and lower bounds on LC(R,0) which are tight
up to a factor logd. By Theorems 3.2 and 3.3 we have for d > 2 that LC(RY,r) = oo if and
only if » > 1/(d +1). For d =1 and n > 3 one can prove that LC(R.,7) = oc if and only
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if r > 1/3 1. Theorem 3.4 gives a poly(dlogn) learning algorithm which is robust up to a
fraction of noise of 1/(2d + 1). Apparently there is a trade-off between learning complexity
and the maximal fraction of tolerable noise. E.g. the learning algorithm in [CM92] can be
modified to yield an algorithm with learning complexity O(d?logn) which is robust up the
a fraction of noise of 1/(16d?).

If n = 2 then R is the class of conjunctions of d (negated) variables. Adopting Theorem

4.3.4 from [Lit89] one gets LC(RE,r) < % if r < 1/(4d + 1) where C ~ 11.

4 The algorithm LR (Proof of Theorem 3.4)

In this section we present a fast algorithm which is a substantial modification of the weighted
majority algorithm [LW91]. The predictions of the next hypothesis for the 2d coordinates
of the corners of the rectangle are calculated independently from each other. All possible
values are weighted accordingly to the previous seen CEs. The next prediction is chosen such
that the sums of weights corresponding to values less than and greater than the prediction
are roughly proportional to 1 and 2d (This holds for the “upper right” coordinates. Greater
and less must be interchanged for the “lower left” coordinates.). After receiving the next
CE those weights which correspond to inconsistent coordinate values are multiplied by some
6,0< <1,

Formally denote the weights by
w;ﬂ(q)7w:;€(Q)7 7;:]‘7'"7d7 k:07"'7n_]‘7 q217
set ) .
Wi (q) = > wy(9), Wit(g) = > wii(a),
k=0 k=0
and let

H(q) = 1:[1{hZ(Q), . hi ()},

z(q) = (21(q), - - -, za(q)),
be the ¢g-th hypothesis and the ¢-th CE.

Algorithm LR:

Initialization
eForalli=1,...,d, k=0,...,n—1set wy(1):=1, wi(1) := 1.
e Let 0 <r < 1/(2d+ 1) be the maximal fraction of noise. Set

. 1—r(2d+1)
T 2d+1

!The difference between d = 1 and d > 2 is that for d = 1 it is more difficult to find a first point inside
the rectangle (interval) than to determine the length of the sides, which is more difficult for d > 2.

f8:=1-q.
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Calculation of H(q)
e Select h; (q), hi (q) such that

= Wi (q) =

> wilg) < 1 < > wy(q)
k=h; () k=h; (@)
hf(a)-1 W+(q) hi(a)

*(g) < — < *(q).
Update of weights

o Ifz(q) ¢ (
or z;(q) >
If 2;(q) < (q) then set wy (¢ + 1) := pwy(q) for all k = h,; (¢),...,n — 1.
If z;(q) > h; (q) then set wy (¢ + 1) := Bw;i(q) for all k =0,...,h (q).

o If x(q) € H(q), i.e. z(q) is a negative CE, then for all i = 1,...,d do
wi(g+1) := pw;(q) for all k =0,...,h; (q),
wik(qg+ 1) = pw;(q) for all k = h (q),...,n— 1.

e All other weights remain unchanged.

,i.e. z(q) is a positive CE, then choose one i such that z;(¢) < h; (q)

Observe that in the case of a positive CE the algorithm blames exactly one coordinate and
updates the weights associated with not consistent values. In the case of a negative CE the
hypothesis is too large. Since the algorithm does not know in which direction the rectangle
should be shrunken, it “blames” all the coordinates as was done in [CM92], however the
“punishment” is substantially different than theirs.

Remark 4.1 Observe that the algorithm has to know an upper bound on the fraction of
noise to calculate the update parameter 3.

Remark 4.2 Using a balanced binary tree the hypothesis H(q) and the updates of the weights
can be calculated in O(dlogq) time. Thus the entire algorithm takes

d*logn d?logn
@i+ T =rd+ )P

time, for fized r < 1/(2d + 1).

To establish Theorem 3.4 we will prove

Lemma 4.3 Ifr < 1/(2d+ 1) then

4d(2d + 1)?logn

LCr(RE,7) < 1—r2d+1))2

(4.1)



4.1 Analysis and proof of Lemma 4.3

Let J
T=1[{, -t
i=1

be the target and z(1),...,z(Q) a sequence of CEs such that the number of noisy CEs is
less than or equal to rQ). We have to prove that () is bounded by the right hand side of
(4.1). This is done by calculating lower and upper bounds on the weights.

We denote the number of positive and negative, correct and noisy CEs by

PY = |{1<q¢<Q:x(¢q) & H(q),z(q) € T},
P™ = |{1<¢<Q:x(q) ¢ H(q),z(q) ¢ T},
N9 = H1<q<Q:z(q) € H(g),z(q) ¢ T},
N® = |{1<q<Q:z(q) € H(q),z(q) € T},

and set

We calculate the effect of CE z(q) on W(q).

e If z(q) is a positive CE then assume without loss of generality z;(q) < h; (¢). Thus by
the choice of h; (¢)

Wilg+1) < Wi(gl—1/@2d+1)]+ W7 (q)/(2d+1)
< Wilglt = (1=06)/(2d+1)]

and hence W(g+1) < W(g)[(1—(1—p)/(2d+1)].
e If z(g) is a negative CE then

2d
2d+1

for all i and analogously for W;* (g +1). Hence W(g+ 1) < W(q)[1 — 5255 (1 — ).

Wilg+1) <W; (gt (1—=0)]

Thus
2d

s (L= B

W@Q+1) < n*[1-(1-p5)/(2d+1)]" -[1-

Now we calculate lower bounds on the weights of the target coordinates w’, (q), w;(q).
Let Z l

and let us calculate the variation of Wr(q).



o If (q) is a correct positive CE then z;(q) < h; (¢) implies ¢; < h; (q) and therefore
Wr(qg+1) = Wr(q).

(
e If z(q) is a noisy positive CE then Wz (¢ + 1) > Wr(q).
(

e If z(q) is a correct negative CE then there is one coordinate such that h; (¢) < z;(¢) <
t; or t7 < x;i(q) < hi(q). Thus Wr(q+1) > 522 *Wiy(q).

e If z(g) is a noisy negative CE then Wy (g + 1) > %Wy (q).

Putting things together we get
BrOHEEDNG RN <@ 41) < W(Q+1)
2d

< n¥l- (1= f)/d+ ) (1 - (- HF.

Since —x — 22 —23/3 —2*/2 <log(1 —z) < —x — 2%2/2 — 23/3if 0 < 2 < 1/3 we have

0 < —[P™ 4+ (2d—1)N© 4+ 2dN™]log 8+ 2dlogn + Plog[l — (1 — 3)/(2d + 1)]
2d

2dN log[l — —— (1 —
+2dN log| 2d+1( B)]
< [P™ 4+ (2d = 1)N© + 2dN®™] - [a + o?/2 + & /3 + a*/2] + 2dlogn
2d 2d 5 o 2d 3
+P[=a/(2d+ 1]+ 2N[- o= —a = ()%0%/2 = (=)' [3]
2
< 2dlogn+a[P™ + (2d — 1)N9 4+ 2dN™ — P/(2d + 1) — Q;Cj_ 1N]

2 3

o’ @ m_ 84"
+2[P + (2d —1)N'9 + 2dN (2d+1)2N]

ol 16d*

—[P™ 4+ (2d = 1)N© 4+ 2dN™W - —— __N
+5 [P™ + (2d = YN +2d S

4
+%[ P™ 4+ (2d — 1)N© + 2dN™)

< 2dlogn +a[-Q/(2d + 1) + P™ + N™]

o 4d?

Y _0/© 1)+ P@ L N L p/(9 N+ ——N
+[-Q/(2d+1) + P® 4+ N + /(d+)+(2d+1)2 ]
+“_3[_Q/(2d+1)+P<">+N<")+P/(2d+1)+87d3N]

3 (2d + 1)

4
+%[ P™ 4 (2d — 1)N© + 24N ™)

< 2dlogn+al-1/(2d+ 1) +r|Q

o? 4d? o? 8d° at

—[0+P/2d+1)+ ————N]+ —[0+ P/(2d+ 1) + ————=N] + —[2d
50+ P/Qd+1) + gy N 4+ [0+ P/(2d + 1) + s N + {240

242 1 8d3 d
< 2dlogn —a?Q[l — —— — -
< ogn — Q| 2d+ 1) maX{3(2d+ 1)2 3(2d + 1)4} (2d + 1)2]
< 2dlogn — o?Q/2



which gives
Q < 4d(2d +1)%logn/[1 — r(2d + 1)]2

5 A sharp bound on the maximal tolerable fraction of
noise

5.1 Proof of Theorem 3.2

We give an adversary strategy for the subclass of rectangles R4 (0) given by
d
RE(0) = {J{0,...,¢f}:0< ¢f <n—1}.
i=1

This is the class of rectangles with lower left corner ¢ = 0 = (0,...,0). Since this is
additional information for the learner we have?

LC(RA(0),7) < LC(RL, 7).
Fori=1,...,d let

e(i):(&l 5ia), 6 = 1 if 2=

2Ly = V2 Y 1] 0 if Z # ] ’

be the i-th base vector and let
e =(1,...,1).

Now the CEs are constructed as

e®) if V4 . e
x(q):{ ) ifVvie{l,...,d} € H(q)

e for some e') ¢ H(q) otherwise.
Clearly e € H(q) for alli = 1,...,d implies e(”) € H(q) and therefore e() is a negative CE
where e, i =1,...,d are positive CEs.

To prove theorem 3.2 the following lemma is sufficient.

Lemma 5.1 Assume the CEs are chosen as above. Then

Vg >03T(q) € RE0): {1 <p < q:a(p) ¢ HP)AT (@)} < —

d+1
Proof. Fori=0,...,d letn'(q) = {1 <p < q:x(p) =eP}|. Choose somei € {0,...,d}
with n°(q) < q/(d+1) and set for all j =1,...,d
1 if ¢=0
tT = i
7@ { 1—el) if i#0
Then T(q) is consistent with all CEs x(p) # e® and the lemma follows. O

2This is not completely trivial since in general 7; C 72 does not imply LC(7;,r) < LC(73,7) because the
learner’s hypotheses are also restricted to 71. But clearly LC(71,73,r) < LC(72,72,7) holds which in our
case gives the statement since a “clever” learner will always include 0 in its hypotheses (otherwise it would
receive 0 as a CE).



5.2 Proof of Theorem 3.3

In this section we present a conservative algorithm which is able to tolerate any fraction
of noise less than 1/(d + 1). The update of the coordinates h; (¢), hi (g) of the algorithm’s
hypothesis depends on the last CE z(¢) and the “median” of the positive CEs. Each coor-
dinate is modified by at most 1. Let P (q), P™(q), N (q), N™(q), P(q), N(q) be the
number of positive and negative, correct and noisy CEs up the ¢-th CE as defined in section
4.1. Then the median m(q) = (m1(q), - .., ma(q)) must satisfy

H{1<p<q:z(p) € H(q),r:(p) <mi(q)}| > P(g)/2,

{1<p<q:z(p) € H(q),r:(p) > mi(q)}| > P(q)/2

for all i = 1,...,d. Among the m(q) satisfying this condition the algorithm may choose
arbitrarily. Intuitively the above condition says that the median is somewhere in the middle
of the positive CEs, and therefore that even if some of them are noisy, m(g) should be part
of the target. Hence the median can be used to decide in which directions the hypothesis
should be shrunken if a negative CE is received (instead of “shrinking” in all 2d possible
directions as is done by the update rule of algorithm LR).

Algorithm OPT:
Initialization

e Foralli=1,...,dset h; (1) :=1,hf(q) :=0.
Update

e If 2(q) & H(q) then choose one 7 such that x;(q) < h; (¢) or h (q) < z;(q).
If 2;(q) < h; (q) then set h; (¢+1):=h; (¢) — 1
else (thus z;(q) > h(q)) set b (¢ + 1) := hf (q) + 1.
o If z(q) € H(q) then for alli=1,...,d do:
If z;(q) < mi(q) then h; (¢+1) :=h; (q) +1
else (thus z(q) > mi(q)) b (g +1) :=h(q) — 1.

e All other coordinates remain unchanged.

Remark 5.2 After a positive CE the hypothesis is enlarged by 1 in exactly one direction,
and after a negative CE the hypothesis is reduced by 1 in d directions. To decide whether
the upper or the lower coordinate should be modified, the algorithm uses the median of the
positive CEs. Observe that the algorithm LR does not use the median because for algorithm
LR we were not able to prove something like Proposition 5.7 below. Therefore the fraction
of noise must be less than 1/(2d + 1) for algorithm LR but must be only less than 1/(d + 1)
for algorithm OPT.
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Remark 5.3 Observe that algorithm OPT does not have to know a bound on the fraction
of noise.

To establish Theorem 3.3 we prove

Lemma 5.4 Ifd > 2 andr <1/(d+ 1) then LCopr(RE,r) < 1_;2’;“).

5.3 Analysis and proof of Lemma 5.4

Let T be the target and z(1),...,2(Q) a sequence of CEs such that [{1 < ¢ < Q :z(q) &
H(q)AT}| < rQ. It is easy to see that the update rules of the algorithm are meaningful
provided that m(q) is an element of the target T, but there is some problem if m(q) ¢ T.
Therefore we distinguish between two learning phases. During the first phase m(q) will
occasionally not be in 7', during the second phase we will always have m(q) € T. Note that
the algorithm does not know whether it is in phase 1 or 2. This is only recognized by an
external observer. Let

Qr=max{1 <¢<Q:m(q) ¢T}, Q2=0Q— Q1.

If m(g) € T for all ¢ we set Q; = 0. Let P19 = P@(Q,), P™ = p™(Q,), N =
N(C)(Q1)7 l(n) = N(n)(Ql): Pl = Pl(C) + Pln)a Nl = NI(C) + Nl(n)a PZ(C) = P(C)(Q) - PI(C) 3
P = P(Q) — PV, NY = NO(Q) = N7, Ng” = NW(Q) = NV, P, = P + 17,
Ny = N + N{M.

Now we bound @); and ()5 in respect to the number of noisy CEs in the first and second
learning phase, respectively.

Proposition 5.5 N; < P/d.

Proof. If z(q) is a negative CE then clearly H(q) # (0. Furthermore a negative CE reduces

the sum Y% [k (q) — hi (q)] by d and a positive CE enlarges it by 1. Since Y%, [h (1) —

h; (1)] = —d and H(q) # 0 implies that the sum is not negative, it follows that 0 < —d+P(q—

1) —dN(q—1) if x(q) is a negative CE. Hence N(q) = N(¢—1)+1 < P(¢—1)/d = P(q)/d.
O

Proposition 5.6 P9 < p™,

Proof. If more than a half of the positive CEs have been correct then m(Q1) would be an
element of the target. O

Proposition 5.7 P\ + N™ > Q,/(d+ 1) for d > 2.

Proof. By Propositions 5.5 and 5.6 we have @Q; < Pi+N; < (14+1/d)P; < 2(1+1/d)P1(") <
(d+ l)Pl(n). Observe that Proposition 5.7 does not hold for d = 1. O
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Proposition 5.8

Qs < dn+ (d+ 1)(P™ + N{™).

Proof. Remember that the median is element of the target. We observe how the following
sum varies depending on the CEs:

¢(a) = Zl max{0, £ — h (q)} + ;maX{O, hi (q) =t }-

e Since a correct positive CE reduces the distance of one coordinate we have ((q + 1) =

¢(g) — 1.
e For a noisy positive CE we have ((q¢+ 1) < ((q).

o A correct negative CE corrects one noisy positive CE and enlarges at most d — 1 dis-
tances. Thus ((¢+1) < ((¢)+d— 1.

e For a noisy negative CE we have ((q+ 1) < ((q) + d.

Since ((Q1) < dn we get 0 < ((Q2+ 1) < dn — P + (d — 1)NS? + dNS™.  Furthermore
NQ(C) < PQ(n) since a correct negative CE always corrects a noisy positive CE. Thus

Q2
= P+ P+ N + N
< dn+(d—1)NE +dN™ + P 4+ N 4+ N
< dn+ (d+1)P"™ + (d+1)N™.

Now Lemma 5.4 follows immediately from Propositions 5.7 and 5.8.

6 A lower bound on the learning complexity in the
noise-free case (Proof of Theorem 3.1)

We give an adversary strategy for the subclass of rectangles R%(0). The adversary dynam-
ically updates a cube of possible “upper right” corners. It tries to find CEs such that the
volume of this cube decreases by a factor of at most 1 — a where a is close to 0. Since a
positive CE may eliminate at most a fraction a from the cube, the adversary has to give a
negative CE if the learner’s hypothesis is big. But after a negative CE the set of possible
corners is not a cube. Thus after a negative CE the adversary gives (d—1) positive CEs such
that the remaining set again is a cube. As can be seen from Figure 1 (some generalization
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Figure 1: The effect of positive and negative CEs.

for large d is needed) for a = 1/d the volume of the remaining cube is (1 — 2)¢! times the

volume of the original cube.

A formal treatment of this construction reveals another technical difficulty: We are operating
in a discrete domain, hence we have to argue about the number of points in the cube instead
about its volume. We overcome this difficulty by arguing only about cubes with relatively
large edges such that the volume very closely approximates the number of points. This is
done by considering only coordinates with large edges.

We denote the adversary’s cube by [19_;[1;(q), u;(q)] C {0, ...,n—1}% and the set of “active”
coordinates by D(q) C {1,...,d}. The hypotheses of the learner are denoted by h*(q),
the CEs by z(q). We assume without loss of generality that the learner’s hypotheses are
consistent with all previously seen CEs.

Adversary strategy S:
1. Set g:==1andforall j =1,...,dlet [;(1) :== 0, u;(1) :=n — 1.
2. D(q) :={i: ui(q) — l;(q) > d}.
3. If D(g) = 0 then STOP.
4. Forall j=1,...,d set

yi(9) = [L(q) + (u;(9) = 1)) /d].

5. If i € D(q) : b (¢) < yi(g) then fix that i and set for all j =1,...,d
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oy ulg) it =i
7i(0):=1 " it j £
(This is a positive CE.)
yi(g) if j=i
lilg+1):= e
at) { Li(g) if j#i
u;(q +1) := u;(q)
qg:=q+1, GOTO 2
6. If Vi € D : hf(q) > yi(g) then
(. L yile) if i€ D(q)
(8) i(0) = { 0 if j¢D(g)
(This is a negative CE.)
(b) For p =1,...,|D(q)| — 1 choose some i € D(q) with h; (¢ + p) < yi(¢) and
set forall j=1,...,d
_ ) ouilg) if =i
(This is a positive CE. For p=1,...,|D(q)| — 1 such an i exists by
the assumption that the learner’s hypotheses are consistent.)
(c) For the i € D(q) with l;(¢) < yi(q) (there exists exactly one) set
yi(@) if j€ D(q), j#i
li(q) if J=1
(

li(g +1D(q)]) == {
li(q) if  j¢&D(q)

uj(q) if jeD(q), j#1i
uj(q + |D(q)]) := { yi(g) — 1 if j=i
uj(q) if 7€ D(q)

(d) ¢:=q+ [D(q)|, GOTO 2.
Assume the adversary stops with ¢ = ). It is easy to see from the definition of the adversary

strategy that there is a target ¢+ € H?Zl[lj(Q),uj(Q)] consistent with all given CEs. To
bound the number of CEs ) — 1 from below we distinguish between step 5 and 6.

Proposition 6.1 If the condition of step 5 is satisfied for g then H?Zl[uj(q—i- 1)—1li(g+1)+
1] > (1= 1/d) TTE[u(q) — Ui(g) + 11.

Proof. This follows from u;(¢+1) —li(¢+1) +1 =u;(q) — [l:i(q) + (ui(q) — l;(¢))/d] +1 >
(ui(q) — li())(1 = 1/d) + 1. O

Proposition 6.2 If the condition of step 6 is satisfied for q then H;—l:l[uj((H- \D(q)])—1;(g+
1D(g)]) + 1] > 55(1 = 1/d) PO 17 [u;(q) — 1i(g) +1].

Proof. For alli € D(q) which appear in step 6b we have u;(¢+|D(q)|) —li(g+|D(q)|) +
(1 —1/d)[u;(q) — li(q) + 1]. For the i of step 6¢ we have u;(q+ |D(q)|) — l;(¢+ |D(q)|) +
lli(q) + (uilg) — li(@)/d] — li(a) = (uilq) — Li(g) + 1)/(2d).
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Lemma 6.3 Ifn > d?, d > 2, and the adversary strateqgy S stops with ¢ = Q then

d*logn

@= 40logd’

Proof. Let Qo = min{q < Q:|D(q)| < d/2}. Thus for q < Qo we have d/2 < |D(q)| < d.

Since (1—1/d)/P@ > L(1-1/d)IP@DI"! we have by Propositions 6.1 and 6.2 and by induction
on q that

H[Uj(Qo) —1;(Qo) + 1]

> JIlu(1) = 45(1) +1]

1] Qo/ID(Qo-1)|

> [1(1 1/d)%* 1]2Q°/d
2d
and
d
H[ug Qo) — 1;(Qo) +1] < nlP@)lgd-ID@o)
< pdl2gd/2.

Since log(1 — x) > —2z for 0 <z < 1/2 we get

2Qo/d >

%[logn —logd] dlogn
0g(2d) +2(d —1)/d — 20logd’

O
Proof of Theorem 3.1. For n > d? the first statement of the theorem follows from Lemma

6.3. Since the second statement of the theorem yields LC(R%,0) = Q(d?) for n > d and
d? > %gﬂ for d < n < d?, the first statement holds also in this case.

The second statement of the theorem can be established much more easily. We reuse the
adversary strategy S, replacing only step 2 by

D(q) == {i : ui(q) — li(q) > 1}
and step 4 by
Yi(q) == li(q) + 1.
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Analogously to Propositions 6.1, 6.2 we get

D luilg+1) = Lilg+1) +1]

> S lula) — (g + 1] - 1
> luj(q+ |D(q)]) — Li(g + |D(q)]) + 1]

> ;[ug‘(Q) —li(g) +1] = (n—1) = ([(D(g)| = 1),

respectively. A modification of the proof of Lemma 6.3 then gives

dn — (2Qo/d)(n + d — 2)
11w (Qo) = 1;(Qo) + 1] < dn/2 + d/2
and thus

dn—1)/2 _n
2/d2 575 25

7 Proof of Theorem 2.3

The following trivial algorithm learns any target from the target class 7 = {T1,...,T 1 } if
r < 1/|T|: The hypotheses of the algorithm are

H =T\,Hy=T,,...,Hp =T,
Hrp=T,...,Hy =T mod |T)+1; - - -

Let T; be the target and z1, . ..,z asequence of CEs with [{1 < ¢ < Q : z, & TAHQ}\ <rQ.

Since|{1§q§Q:Hq:TZ~}|2%—1vveget%—1<7"Qand62<1 TITI

To prove the second statement of the theorem let the adversary construct only negative CEs
by

zg =1 if H,= {i}.
If we set 7i(¢) = {1 < p < q: x; = i}| then for all ¢ > 0 there is a target {i} with
ni(q) < q/n.

8 Conclusion

We investigated the implications of noise in the equivalence query model for the target class of
d-dimensional rectangles. Assuming a noise model where only the fraction of noisy examples
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is bounded, we archived a characterization of the maximal tolerable noise rate. Furthermore
we presented a reasonably efficient, robust learning algorithm. Besides some results about
general target classes, we also obtained a lower bound on the learning complexity of rectangles
in the noise-free case.
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