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A Polynomial Time Approximation Scheme for
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Abstract

The Max-Bisection and Min-Bisection are the problems of finding partitions of the
vertices of a given graph into two equal size subsets so as to maximize or minimize,
respectively, the number of edges with exactly one endpoint in each subset.

In this paper we design the first polynomial time approximation scheme for the
Max-Bisection problem on arbitrary planar graphs. The method of solution involves de-
signing exact polynomial time algorithms for computing optimal partitions of bounded
treewidth graphs, in particular their Max- and Min-Bisection, which could be also of
independent interest.
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1 Introduction

The max-bisection and min-bisection problems, i.e., the problems of constructing a halving
of the vertex set of a graph that respectively maximizes or minimizes the number of edges
across the partition, belong to the basic combinatorial optimization problems.

The best known approximation algorithm for max-bisection yields a solution whose size is
at least 0.701 times the optimum [15] whereas the best known approximation algorithm for
min-bisection achieves “solely” a log-square approximation factor [11]. The former factor
for max-bisection is considerably improved for regular graphs to 0.795 in [10] whereas the
latter factor for min-bisection is improved for graphs excluding any fixed minor (e.g., planar
graphs) to a logarithmic one in [11]. For dense graphs, Arora, Karger and Karpinski give
polynomial time approximation schemes for max- and min-bisection in [2].

In this paper, we study the max-bisection and min-bisection problems on bounded treewidth
graphs and on planar graphs. Both graph families are known to admit exact polynomial-time
algorithms for max-cut, i.e., for finding a bi-partition that maximizes the number of edges
with endpoints in both sets in the partition [9, 14].

Our first main result are exact polynomial-time algorithms for finding a partition of a
bounded treewidth graph into two sets of a priori given cardinalities, respectively maximizing
or minimizing the number of edges with endpoints in both sets. Thus, in particular, we ob-
tain polynomial-time algorithms for max-bisection and min-bisection on bounded treewidth
graphs.

The complexity and approximability status of max-bisection on planar graphs have been
long-standing open problems. Karpinski et al. observed in [17] that the max-bisection
problem for planar does not fall directly into the Khanna-Motwani’s syntactic framework
for planar optimization problems [18]. On the other hand, they provided a polynomial-time
approximation scheme (PTAS) for max-bisection in planar graphs of sublinear maximum
degree. (In fact, their method implies that the size of max-bisection is very close to that of
max-cut in planar graphs of sublinear maximum degree.)

Our second main result is the first polynomial-time approximation scheme for the max-
bisection problem for arbitrary planar graphs. It is obtained by combining (via tree-typed
dynamic programming) the original Baker’s method of dividing the input planar graph
into families of k-outerplanar graphs [4] with our method of finding maximum partitions
of bounded treewidth graphs.

It is interesting to note that our PTAS result for max-bisection on planar graphs is the
best possible under usual assumptions. Very recently, Jerrum [16] established NP-hardness
of exact max-bisection on planar graphs, in contrast to the status of max-cut problem on
planar graphs ([14]). The technique used in his proof was similar to the method used by
Barahona [5] to prove hardness of the planar spin glass problem within a magnetic field (P5).



2 Preliminaries
We start with formulating the underlying optimal graph partition problems.

Definition 2.1 A partition of a set of vertices of an undirected graph G into two sets X, Y
is called an (|X|,|Y|)-partition of G. The edges of G with one endpoint in X and the other
in'Y are said to be cut by the partition. The size of an (I, k)-partition is the number of edges
which are cut by it. An (I, k)-partition of G is said to be a maximum ([, k)-partition of G if
it has the largest size among all (1, k)-partitions of G. An (I, k)-partition of G is a bisection if
[ = k. A bisection of GG is a max bisection or a min bisection of G if it respectively maximizes
or minimizes the number of cut edges. An (I, k)-partition of G is a max cut of G if il has
the largest size among all (I',k')-partitions of G. The max-cut problem is to find a maz cut
of a graph. Analogously, the max-bisection problem is to find a max bisection of a graph.
The min-cut problem and the min-bisection problem are defined similarly.

The notion of treewidth of a graph was originally introduced by Robertson and Seymour
[19]. Tt has turned out to be equivalent to several other interesting graph theoretic notions,
e.g., the notion of partial k-trees [1, 6].

Definition 2.2 A tree-decomposition of a graph G = (V, E) is a pair ({X; | ¢ € I},T =
(I, F)), where {X; | i € I} is a collection of subsets of V, and T = (I, F') is a tree, such thal
the following conditions hold:

1. UiEI Xz - V
2. For all edges (v,w) € E, there exists a node 1 € I, with v,w € X;.
3. For every vertex v € V, the subgraph of T, induced by the nodes {i € I | v € X;} is

connected.

The treewidth of a tree-decomposition ({X; | ¢« € I}, T = (I, F)) is max;es | Xi| — 1. The
treewidth of a graph is the minimum treewidth over all possible lree-decompositions of the
graph. A graph which has a tree-decomposition of treewidth O(1) is called a bounded treewidth
graph.

Fact 1[7]: For a bounded treewidth graph, a tree decomposition of minimum treewidth can
be found in linear time.

To state our results on max-bisection for planar graphs we need the following definition.

Definition 2.3 A real number o is said to be an approximation ratio for a maximization
problem, or equivalently the problem is said to be approximable within a ratio «, if there



is a polynomial time algorithm for the problem which always produces a solution of size at
least « times the optimum. If a problem is approximable for arbitrary o < 1 then it is said
to admil a polynomial time approximation scheme (a PTAS for short). Similarly we define
approximation ratios and PTASs for minimization problems.

2.1 Optimal partitions for graphs of bounded treewidth

Let GG be a graph admitting a tree-decomposition 7' = (I, F') of treewidth at most k, for
some constant k. By [9], one can easily modify T, without increasing its treewidth, such
that one can see T' as a rooted tree, with root r € I, fullfiling the following conditions:

1. T is a binary tree.
2. If a node 1 € [ has two children j; and j,, then X; = X; = X,.

3. If a node ¢ € I has one child j, then either X; C X; and |X; — X;| =1, or X; C X;
and |XJ — XZ| = 1.

We will assume in the remainder that such a modified tree-decomposition 7" of GG is given.

For each node 1 € I, let Y; denote the set of all vertices in a set X; with 7 =2 or j is a
descendant of ¢ in the rooted tree T'. Our algorithm is based upon computing for each node
1 € I a table maxc;. For each subset S of X;, there is an entry in the table maxc;, fulfilling
H{(v,w)e EJves, weY,—S}.

maxc(S) = max
S'CY;, S'nX;=S

In other words, for S C X;, maxc;(S) denotes the maximum number of cut edges for a
partition of Y;, such that all vertices in S are in one set in the partition, and all vertices in
X, \ S are in the other set in the partition.

Our algorithm computes for each ¢ € I, an array mazp; with O(2*|Y;|) entries. For each
[ €{0,1,...,|Yi|} and each subset S of X;, the entry mazp;(l,5) is set to

maxgcy; |s|=t,5'nx;=s [{(v,w) € Elv € §" & w € Y; \ S'}|. In other words, mazp;(l, S) is set
to the maximum number of cut edges in an ([, |Y;| — [)-partition of ¥; where S and X;\ S are
in the different sets of the partition and the set including S is of cardinality [. For convention,
if such a partition is impossible, rnazp;(l, S) will be set to —oo.

The entries of the array are computed following the levels of the tree-decomposition 7' in a
bottom-up manner. The following lemma shows how the array can be determined efficiently.



Lemma 2.1

o Let 1 be a leaf in T. Then for all | € {0,1,....|X;|} and S C X; where |S| = I,
mazxp;(1,5) = |{(v,w) € Elv € S,w € X;\ S}|. The remaining entries of maxp; are
set to —o0.

o Let 1 be a node with one child j in T. If X; C X; then for all | € {0,1,....|Y;|} and
S Q XZ', ma:vpz(l,S) = maXSIQXWS;nXZ:S ma:vpj(l,S').

o Let i be a node with one child j in T. If X; U{v} = X; where v ¢ X; then for all
1€ {0,1,..,1Y]} and S C X;, if v € S then maxp;({,5) = mazxp;(l — 1,5\ {v}) +
{(v,s)|s € Xi\ S} else mazxpi(l,5) = maxp;(1,5)+ |{(v,s)]s € S}.

o Let 1 be a node with lwo children 31, 72 in T, with X; = X; = X;,. For all | €
{0,1,..,1Yil} and S C Xi, maxpi(l,5) = max; i,—|s|=i&l >|s|&t>|s| mazp; (11,5) +
maxp;,(lz,5) — [{(v,w) € Elv € S,w € X; \ S}.

It follows that computing an array mazp; on the basis of the arrays computed for the
preceding level of T' can be done in time O(2%|Y;|?). Consequently, one can compute the
array maxp, for the root r of T in cubic time.

Theorem 2.1 All mazimum (I,n — [)-partitions of a graph on n nodes given with a tree-
decomposilion of trecwidth k can be computed in time O(2%n?).

By substituting min for maz, we can analogously compute all minimum (/, n — [)-partitions
of a graph with constant treewidth.

Theorem 2.2 All minimum (I,n — [)-partitions of a graph on n nodes given with a tree-
decomposition of trecwidth k can be computed in time O(2%n?).

By Fact 1 we obtain the following corollary.

Corollary 2.1 All mazimum and minimum (I,n—1)-partitions of a bounded treewidth graph
on n vertices can be computed in time O(n®).

Since a tree-decomposition of a planar graph on n vertices with treewidth O(y/n) can be
found in polynomial time by the planar separator theorem [8], we obtain also the following
corollary.

Corollary 2.2 All mazimum and minimum (l,n — [)-partitions of a planar graph on n
vertices can be computed in time 200/



3 A PTAS for max-bisection of an arbitrary planar
graph

The authors of [17] observed that the requirements of the equal size of the vertex subsets in a
two partition yielding a max bisection makes the max-bisection problem hardly expressible as
a maximum planar satisfiability formula. For this reason we cannot directly apply Khanna-
Motwani’s [18] syntactic framework yielding PTASs for several basic graph problems on
planar graphs (e.g., max cut). Instead, we combine the original Baker’s method [4] with our
algorithm for optimal maximum partitions on graphs of bounded treewidth via tree-type
dynamic programming in order to derive the first PTAS for max-bisection of an arbitrary
planar graph.

Algorithm 1

input: a planar graph G = (V, F) on n vertices and a positive integer k;

output: (1 — ﬁ)—approximations of all maximum (/, n — [)-partitions of GG

1. Construct a plane embedding of G

2. Set the level of a vertex in the embedding as follows: the vertices on the outer boundary
have level 1, the vertices on the outer boundary of the subgraph obtained by deleting
the vertices of level 1 — 1 have level 7, for convention extend the levels by k& empty ones

numbered —k 4+ 1, —k + 2, ..., 0;

3. For each level j in the embedding construct the subgraph H; of G induced by the
vertices on levels 7,7 + 1, ..., 7+ k;

4. For each level j in the embedding set n; to the number of vertices in H; and compute
all maximum (I, n’; — [)-partitions of Hj;

5. For each ¢, 0 < ¢ <k, set (G to the union of the subgraphs H; where j mod k41 = 1;

6. For each 7, 0 <1 <k, set n; to the number of vertices in G; and compute all maximum
(I, n; —I)-partitions of GG; by dynamic programming in a tree fashion, i.e., first compute
all maximum partitions for pairs of “consecutive” H; where j mod k + 1 = 1, then for
quadruples of such H; etc.;

7. For each [, 1 <[ < n, output the largest among the maximum ([, n — [)-partitions of

G 0<i<k.

Lemma 3.1 For each [, 1 <1 < n, Algorithm 1 oulputs an (I,n — [)-partition of G within
k/(k+1) of the mazimum.



Proof: Let P be a maximum (I, n —[)-partition of . For each edge e in P, there is at most
one 1, 0 < 7 < k, such that e is not an edge of G;. Consequently, there is i/, 0 < ¢/ <k,
such that Gy does not include at most |P|/(k + 1) edges of P. It follows that a maximum
(I,n — [)-partition of such a G cuts at least k|P|/(k 4+ 1) edges. Algorithm 1 outputs an
(I,n — [)-partition of GG cutting at least so many edges as a maximum (/,n — [)-partition of

Gy 0O

Lemma 3.2 Algorithm 1 runs in O(k2%*~'n?) time.

Proof: The time complexity of the algorithm is dominated by that of step 4 and 6.

The subgraphs H; of G are so called k-outerplanar graphs and have bounded treewidth
3k — 1 [8]. Hence, for a given i, 0 < i < k, all maximum (I, n} — [)-partitions of H; where
j mod k+1 = i can be computed in time O(2%~1r?) by Lemma 2.1, the pairwise disjointness
of the subgraphs and ;3 < n. It follows that the whole step 4 can be implemented in time
O(k23%=1p3).

In step 6, a maximum (I, n; — [)-partition of the union of 29+ “consecutive” H;’s satisfying
jgmod k + 1 =1 can be determined on the basis of appropriate maximum partitions of its
two halves, each being the union of 27 of the H;’s, in time O(n). Hence, since | < n; and the
number of nodes in the dynamic programming tree is O(n), the whole step 6 takes O(kn?)
time. a

Theorem 3.1 Algorithm 1 yields a PTAS for all mazimum (I,n — [)-partitions of a planar
graph.

Corollary 3.1 The problem of maz-bisection on planar graphs admits a PTAS.

4 Final remark

We can easily obtain an analogous PTAS for Min-Bisection on planar graphs in a special
case when the size of Min-Bisection is §(n). If the size of Min-Bisection is o(n) and many of
the removed edges have endpoints in the different sides of the bisection, such a method may
however fail to produce a good approximation.
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