
Uniform Circuits for Division: Consequences and

Problems

Eric Allender∗ David A. Mix Barrington†

September 7, 2000

Abstract

The essential idea in the fast parallel computation of division and
related problems is that of Chinese remainder representation (CRR) –
storing a number in the form of its residues modulo many small primes.
Integer division provides one of the few natural examples of problems
for which all currently-known constructions of efficient circuits rely on
some sort of extra information or non-uniformity; the major stumbling
block has seemed to be the difficulty of converting from CRR to binary.
We give new bounds on the nonuniformity required for division; it is
necessary and sufficient to be able to compute discrete logarithms mod-
ulo an O(logn) bit number. In particular, we show that the necessary
uniformity predicates lie in a class that (provably) does not contain L.

The fact that CRR operations can be carried out in log space has
interesting implications for small space classes. We define two ver-
sions of s(n) space for s(n) = o(logn): dspace(s(n)) as the traditional
version where the worktape begins blank, and DSPACE(s(n)) where
the space bound is established by endmarkers before the computation
starts. We present a new translational lemma, and derive as a conse-
quence that (for example), if one can improve the result of [14] that
{0n : n is prime} 6∈ dspace(log logn) to show that {0n : n is prime}
6∈ DSPACE(log logn), it would follow that L 6= NP.

1 Introduction

The exact complexity of division, powering, and iterated multiplication of
integers has been a major open problem since Beame, Cook, and Hoover [7]

∗Rutgers University, allender@cs.rutgers.edu
†U. of Massachusetts, barring@cs.umass.edu

1

Electronic Colloquium on Computational Complexity, Report No. 65 (2000)

ISSN 1433-8092

showed these problems to be in P-uniform TC0 in 19861. (TC0 is the set
of problems solvable by threshold circuits of constant depth and polynomial
size, “P-uniform” means that these circuits can be constructed by a poly-
time Turing machine.) In a recent breakthrough, Chiu, Davida and Litow
[9] showed these problems to be in L-uniform TC0, where the circuits can be
constructed in log space. They thus also solved an even older open problem
by showing these problems to be solvable in log space itself.

Here we examine two implications of this new result and some of the
new problems that it suggests. First, what are the prospects for improving
the result to place these problems in the most natural version of “uniform
TC0”, that of log-time uniform circuits or problems definable by first-order
formulas with Majority quantifiers? We show that that in Immerman’s
descriptive complexity setting [18], the new construction leads to first-order
formulas with Majority quantifiers and only a single extra numerical pred-
icate, for calculating powers modulo a number of O(logn) bits. (Thus the
threshold circuits are uniform if only the values of this predicate are pro-
vided.) But, we show, this new predicate lies in a class that provably does
not contain L, strongly suggesting that the full power of L-uniform TC0 is
not needed to solve these problems.

We then consider the implications of the new log space algorithms for the
study of small-space complexity classes. Most prior work on Turing machines
with O(log logn) space, for example, has assumed that the work tape starts
out blank, with no marker to indicate the end of the available space. We
call this class dspace(log logn), in contrast to the class DSPACE(log logn)
where this initial marker is given.

Lower bound results for the DSPACE classes exist – for example the set
of palindromes is not in DSPACE(o(logn)).

The space-efficient CRR algorithms allow us to prove more efficient
translational arguments, showing that the unary languages in DSPACE(log logn)
are simply the unary encodings of the languages in log space. This highlights
the difference between dspace and DSPACE classes. For example, a classic
result of Hartmanis and Berman [14] says that the set of unary strings of
prime length is not in dspace(o(logn)). The new translational lemma shows
that proving an analogous result for DSPACE(log logn) would separate the
classes L and NP.

In Section 2 we review the history and context of these numeric problems.

1[7] claimed only P-uniform NC1, but it was observed later in [22] that their algorithm
is implementable in TC0.

2

In Section 3 we outline the new proof of Chiu, Davida, and Litow [9] that
the necessary CRR operations for division can be carried out in log space,
and we show that this construction is uniform, given a predicate for discrete
logs of small numbers. In Section 4 we explain the possible consequences
of this fact for improving the uniformity of division circuits. Translational
lemmas for small space-bounded classes are presented in Section 5.

2 Circuits for Division: An Overview

We are concerned with the complexity of three basic problems in integer
arithmetic (with input and output in binary representation):

• Division: Given a number X of n bits and a number Y of at most n
bits, find bX/Y c,

• Powering: Given a number X of n bits and a number k of O(logn)
bits, find Xk, and

• Iterated Multiplication: Given n numbers X1, . . . , Xn, each of at
most n bits, find the product X1X2 . . .Xn.

Beame, Cook, and Hoover [7] showed that each of these problems can
be solved by a family of threshold circuits of constant depth and polynomial
size. A threshold circuit is made up of (unweighted) threshold gates, which
add up their Boolean inputs and output a Boolean that is true iff the sum
exceeds a certain threshold, a parameter of the gate. As always in circuit
complexity, a key property of the circuit family is its degree of uniformity.
The circuits of [7] are P-uniform, in that they can be constructed in time
polynomial in n. Thus they showed that these problems are in the class
P-uniform TC0.

Recently Chiu, Davida, and Litow [9] have dramatically improved this re-
sult by constructing circuit families for these problems that are constructible
in log space (hence putting the problems in L-uniform TC0). A logspace ma-
chine can simulate a constant-depth threshold circuit if it can construct it,
so this result also solves the longstanding open problem of putting these
problems into the class L, deterministic log space.

Here we present the argument of [9], paying close attention to the use of
non-uniformity in the circuits. To do this we use the formalism of descriptive
complexity developed by Immerman [5, 4, 18], where constant-depth circuit

3

families are presented in the form of first-order formulas. For example, the
complexity class FO (or log-time uniform AC0 [5]) consists of those languages
that can be described by first-order formulas where the variables range over
the positions in the input string, there are atomic formulas for equality,
order, addition, and multiplication of these input positions (as well as the
contents of the input at each position), and first-order quantifiers ∃ and
∀ range over the input positions. The larger class FOM (“first-order with
Majority”) is the same except that Majority quantifiers may be used in
the formulas — this class is equal in power to log-time uniform families of
threshold circuits of constant depth and polynomial size. In FOM one can
multiply two n-bit numbers, add together n n-bit numbers, and of course
carry out all operations in FO.

Allowing the family of threshold circuits to become less uniform corre-
sponds in the descriptive complexity model to adding new numerical pred-
icates to the first-order-with-majority formula. A numerical predicate is
one that depends only on the numbers of the input positions that form its
arguments, rather than on the contents of the input. For example, with
the numerical predicate T (i, j), meaning “the i-th Turing machine halts
on input j”, one can easily construct a first-order formula representing a
nonrecursive language. This language would be recognized by a family of
constant-depth, polynomial-size circuits, but these circuits themselves would
be a nonrecursive set. As we restrict ourselves to additional predicates that
are more computable, the corresponding circuit families become more uni-
form. For example, a language is in P-uniform TC0 iff it can be described
by a first-order-with-majority formula where all the numerical predicates
are P-computable, and analogously for L-uniform TC0. In fact, there is
a single numeric predicate NUMP such that P-uniform TC0 is equal to
first-order-with-majority augmented with NUMP, which we may denote as
FOM+NUMP. For more details, see [1, Theorem 5.1]. A similar construc-
tion yields a predicate NUML, such that logspace-uniform TC0 is equal to
FOM+NUML.

The central idea of all the TC0 algorithms for Division and related prob-
lems is that of Chinese remainder representation (CRR). An n-bit number
is uniquely determined by its residues modulo polynomially many primes,
each of O(logn) bits. In many cases we can determine each of these residues
in parallel, allowing a great savings in depth. Of course, our problems spec-
ify that their input and output must be in ordinary binary notation, so we
are faced with the problem of converting to and from CRR.

4

In particular, consider the expressive power of the power predicate “a ≡ bi
(mod m)” where a, b, i and m each have O(logn) bits. Since the multiplica-
tive group of a prime number is cyclic, we can identify a generator of this
group (the least g such that gm−1 ≡ 1 (mod m) and no smaller power of
g is 1) and compute discrete logarithms modulo m for each number, if m
is prime. More precisely, there is a first-order formula GEN(g,m) that has
POW as a predefined predicate, that is true if and only if g is the least gen-
erator of the multiplicative group mod m. Thus finding a generator can be
accomplished in the complexity class FO+POW. We will also call this a FO
reduction to POW from the problem of finding generators. (Note that FO
reductions are equivalent to uniform AC0-Turing reductions, as considered
in [28], where oracle gates are used, instead of predefined predicate symbols.
In particular, note that our use of the term “FO reduction” in this paper is
more general than in [18], where this term is used to denote AC0 many-one
reducibility.) Similarly, it is easy to see that computing discrete logs mod
m can be performed in FO + POW.

Finally, note that if the input and output are in CRR, the iterated mul-
tiplication problem simply reduces to the iterated addition problem (by
adding the discrete logs), showing that iterated multiplication (in CRR) is in
FOM once the power predicate is present (i.e., it is in the class FOM+POW).

This construction was used in [7], but additional work is required in
order to compute these functions in binary, instead of CRR. In order to
convert into and out of CRR, Beame, Cook and Hoover needed an additional
predicate: the binary representation of the product of the first n3 primes.
While the power predicate is easily seen to be computable in logspace, this
prime-product predicate was not known to be so computable. The central
contribution of [9] is to develop better methods for working with CRR, so
that the prime-product predicate is no longer needed. We will show below
that their construction is entirely in FOM + POW. Among other things
this shows that the power predicate, the essential ingredient in converting a
binary number into CRR, is powerful enough (along with FOM operations)
to get a number out of CRR into binary. In Section 4 we will discuss
the exact complexity of the power predicate and the prospects for placing
Division in FOM itself.

5

3 The Proof of Chiu, Davida, and Litow

We will refer to numbers with polynomially many bits as long numbers, and
denote them by capital letters. Numbers of O(logn) bits will be called short,
and denoted by small letters. We are given two long numbers X and Y and
asked to find Z = bX/Y c. Note that it suffices to find a small number of
candidates for Z, as in FOM we can compute ZY for any candidate and
then verify that X − ZY is non-negative and less than Y .

To fix notation, we now recapitulate the development of CRR. If we are
given a sequence of distinct primes2 m1, . . . , mk, each a short number, let
M be their product. Any number X < M can be represented uniquely as
(x1, . . . , xk) with X ≡ xi (mod mi) for all i. For each number i, let Ci be
the product of all the mj ’s except mi, let hi be the inverse of Ci modulo mi,
and let Di be hiCi. It is easy to verify that X is congruent modulo M to∑k

i=1 xiDi. In fact X is equal, as an integer, to (
∑k

i=1 xiDi)− rM for some
particular number r, called the rank of X with respect to M . Note that r
is a short number. It is roughly equal to the sum of the k rational numbers
xiDi/M or xihi/mi, each of which is between 0 and mi.

Lemma 3.1 If X,m1, . . . , mk are each given in binary and X < M , we can
compute (x1, . . . , xk) (the CRRM form of X) in FOM + POW.

Proof. For each modulus mi and each j < n we must calculate 2j

(mod mi) (given by the power predicate), add the results (using iterated
addition in FOM), and take the result modulo mi (in FO).

Lemma 3.2 [11, 20] The rank of X with respect to M is computable in
FOM + POW.

Proof. (This result was first shown by Davida and Litow [11], but
here we sketch an easier argument by Macarie [20].) Note that by Lemma
3.1 we can assume that X is given in CRRM form. If we approximate
each of the numbers xiDi/M to O(logn) bits of accuracy and then add the
approximations (using iterated addition, in FOM), we get the right answer
unless r is very close to an integer. If it is, we need to know whether∑k

i=i xiDi is just above or just below a multiple of M . But as shown in [20],

2Much of the development of CRR can be carried out equally well if the moduli are
powers of distinct primes. In our argument the principal CRR modulus M will always be
a product of distinct primes, though other CRR moduli may not be.

6

if this sum is close to a multiple of M we can replace this problem with an
equivalent one, of whether another sum is just above or just below a multiple
of M/mk . This problem is then either solved by approximation, or reduced
to an equivalent problem for a multiple of M/mk−1mk , and so on until the
problem is solved at some level or all the primes are eliminated. The various
levels of the recursion can be carried out simultaneously in parallel, since
they do not depend on the answers at previous levels. Also note that the
power predicate is used in this construction, both to convert X to CRRM

and to calculate the numbers Di.

Lemma 3.3 If p is a short prime power, then the iterated product problem
modulo p is in FOM + POW.

Proof. We have seen that if p is prime, we find a generator, take discrete
logs of the factors, add them together, and raise the generator to the result.
But in fact this strategy can be extended to work for all prime powers. If
p = qe with q a prime, in FO we can find the prime factorization of p and
hence compute q and e. The multiplicative group of the ring of integers
modulo qe is well-known to be cyclic unless q = 2 (and thus we compute
iterated product as in the prime case). But if q = 2 this multiplicative
group has two generators, one of which has order 2, so one can essentially
take discrete logs here as well.

Lemma 3.4 If X is given in CRRM , and p is a short prime power, then
we can compute X modulo p in FOM + POW.

Proof. We have a representation of the integer X as (
∑k

i=1 xiDi)−rM .
We can calculate each of the terms xiDi modulo p, and M modulo p, using
iterated product modulo p. Since we can also calculate the rank in FOM +
POW, we are done.

Remark: Although it will not be needed later, we note that the previous
two lemmas hold where p is any short number, not merely a prime power.
If we know the residue of a number modulo each of the prime-power factors
of p, we can compute the residue modulo p by simply guessing it (in FO)
and verifying that it has the correct residue for each factor.

Proposition 3.5 Let b1, . . . , b` be short powers of distinct primes, B be the
product of the bi’s, and let X be given in CRRM form. Then we can compute
bX/Bc, also in CRRM form, in FOM + POW.

7

Proof. For each bi, we compute X modulo bi and thus get X into CRRB

form. (Recall that this is possible even though the bi may be short prime
powers rather than short primes.) There is a unique number E, equal to
the residue of X modulo B, that is less than B and has this CRRB form.
Using the algorithm of Lemma 3.4, we can now put E into CRRM form, by
finding its residue modulo each of the numbers mi. Then we can calculate
X − E, a multiple of B, in CRRM form.

It is easy to calculate B in CRRM form. Let N be the product of those
prime factors n1, n2, . . . , nl′ of M that do not divide B. Let (y1, y2, . . . , yl′)
be the CRRN form of B. Given B in CRRM form it is easy in FOM
to compute the lists (n1, n2, . . . , nl′) and (y1, y2, . . . , yl′), since sorting is
in FOM. B−1 modulo N is easy to compute in CRRN , by computing y−1

i

mod ni. The number we want, bX/Bc, is exactly B−1 times X − E. We
can compute this number in CRRN form, getting the right answer because
bX/Bc < N (as X/B < M/B ≤ N). To get the remaining components of
the CRRM form of bX/Bc, we need only apply Lemma 3.4 for each prime
factor of M that divides B.

Proposition 3.6 If Y is any long number given in CRRM , we can find (in
FOM+POW) a number D (also in CRRM) such that (a) D is the product of
short powers of distinct primes and (b) the rational number Y/D is between
1/2 and 1.

Proof. Clearly such a D exists with Y ≤ D ≤ 2Y , because given any
sequence of short odd primes we can multiply them together one at a time
until the product exceeds Y , remove the last prime, and then multiply by
2 until the result exceeds Y . To do this effectively, however, we need to be
able to take two numbers in CRRM and determine which is bigger, which
can be done in FOM + POW by Lemma 3.7 and its corollary.

Lemma 3.7 Let A < M be a number given in CRRM form. In FOM +
POW, we can compute whether A < M/2.

Proof. Write A as (
∑k

i=1 aiDi) − rM where r is the rank of A with

respect to M . So 2A is (
∑k

i=1(2ai)Di)− 2rM . Define ci for each i so that
ci ≡ 2ai (mod mi). The vector (c1, . . . , ck) is the CRRM form of a unique
number C < M , which is either 2A (ifA < M/2) or 2A−M (otherwise). We
know that each ci is either 2ai or 2ai−mi, so define tM to be the sum ofmiDi

for all those i where we must subtract off mi (note that t is a short number

8

and, by Lemma 3.4, t can be computed in FOM + POW by computing it
modulo a short power of 2). Thus 2A is equal to (

∑k
i=1 ciDi)− 2rM + tM .

But we can calculate the rank s of C, so that C is (
∑k

i=1 ciDi) − sM . So
now 2A = C iff 2r − t = s, an easily testable condition.

Corollary 3.8 [11, 12] Let X and Y be numbers less than M given in
CRRM form. In FOM + POW we can determine if X < Y .

Proof. First compare X and Y with M/2. If one is less than M/2 and
one is greater, then it is easy to determine if X < Y . In the remaining case
where either both or neither are less than M/2, it is easy to see that X < Y
if and only if Y −X is less than M/2.

Theorem 3.9 [9] Division, with input and output in binary, is in FOM +
POW.

Proof. Given X and Y , choose D as above and let u be the rational
number 1 − Y/D, so that u < 1/2 and D/Y is 1/(1− u) =

∑∞
j=0 u

j . Our

desired number bX/Y c is the floor of (X/D)(D/Y) or X/D times
∑∞

j=0 u
j .

We will find numbers N and A such that N is easy to compute, A is a
product of distinct short odd primes (not including those dividing D), and
the rational number N/A is within ε < 2−2n of 1/(1 − u). Then because
DA is a product of short odd prime powers, we can compute the floor of
XN/DA exactly. This number differs from the floor of X/Y by at most
εX/D, which is less than 1, so we have our two candidates for the floor of
X/Y .

To do this we create numbers A1, . . . , A2n, each a product of polynomi-
ally many short primes and each at least 2n bits long. Our number A will be
the product of all the Ai’s. For each i we pick a number ti such that ti/Ai is
within 2−2n of u. This is done by taking ti to be the floor of (D− Y)Ai/D,
in CRRM , which we can compute because D is a product of short prime
powers.

Then for each number j < 2n we can calculate the product for all i < j
of ti/Ai, with the numerator expressed in CRRM , and note that this rational
number is within 2−2n of uj . Multiplying this by Ai/Ai for all j ≤ i ≤ 2n, we
get a product Nj/A which is within 2−2n of uj , with Nj in CRRM . Summing
the Nj for all j < 2n gives a number N in CRRM such that N/A is very
close to 1/(1− u), as desired.

Of course this gives us the desired quotient only in CRRM , not in binary.
But it is easy, given division of arbitrary n-bit integers with result in CRR,

9

to convert a number from CRR to binary. To get the k-th bit of a number
Z that is given to us in CRR, we compute u = bZ/2kc and v = bZ/2k+1c,
and note that the desired bit is u− 2v. We get this bit as a CRR number,
but it is easy to recognize the CRR forms of the numbers 0 and 1. (By the
same token, it is now possible in FOM+POW to convert numbers from any
base to another, by first converting to CRR.)

4 Consequences

What does this new algorithm finally tell us about the complexity of Di-
vision? In one sense the circuit complexity of Division has been well-
understood since [7]; Division can be computed by threshold circuits of
constant depth and polynomial size, and since Majority is reducible to
Division, we cannot hope to put Division into a smaller circuit class.

The remaining question, of course, is how uniform the threshold circuits
can be made to be. The main result of [9] is that the P-uniform circuits of
[7] can be made L-uniform, with the important consequence that Division
is in L itself. Our analysis of their algorithm tells us something more, that
Division is in the class we have called FOM+POW. We think that a closer
analysis of this class will tell us something about the prospects for placing
Division within FOM itself, and open up some other interesting complexity
questions as well.

Here is a list of problems that have been known since [7] to be in P-
uniform TC0 but are not known to be in FOM:

• Division

• POW

• Iterated Multiplication

• Powering

• Converting CRR to Binary3

• Converting Binary to CRR

• Divisibility (i.e., given X and Y , does X divide Y ?)

3To be completely formal, the statement of this problem should include a specification
of the moduli used in CRR. For the purposes of this paper any reasonable definition is
sufficient, and hence we leave this unspecified.

10

All of these problems are in FOM + POW. For some of these problems,
this is optimal, as the following observations show.

Proposition 4.1 Division is complete for FOM + POW under FO reduc-
tions.

Proof. Note first that Beame, Cook, and Hoover presented a FO reduction
from Powering to Division in [7]. Thus, to solve the POW predicate a ≡ bi
(mod m) we can follow the reduction of [7] to use Division to compute bi,
and then divide bi by m and compare the answer to a. Similarly, it is well-
known that Majority is FO reducible to Division; since Majority is
reducible to multiplication [8] and Powering is reducible to to Division
[7], it suffices to reduce multiplication to Powering. But this is easy, since
XY = [(X + Y)2 −X2 − Y 2]/2.

Although the other problems are not known to be hard under FO reduc-
tions, some of them are complete under FOM reductions.

Proposition 4.2 POW, Iterated Multiplication, and Powering are
complete for FOM + POW under FOM reductions.

Proof. For POW this is a trivial observation. Since all of these problems are
in FOM+POW, they are all FO-reducible to Division. An argument in [7]
reducing Division to Powering is easily seen to provide a FOM reduction.
And, of course, Powering is a special case of Iterated Multiplication.

It is interesting to note that many number theorists conjecture that 2 is
a generator of the multiplicative group mod p for a constant fraction of all
m-bit primes [16, 17]. If this conjecture is true, then most of the argument
of Section 3 can be carried out using only primes of this sort. (There are
some minor technical modifications that need to be made to the argument
in Section 3 in order to completely do away with the use of prime powers
and the use of primes for which 2 is not a generator. We suppress those
details here.) Thus, if the conjecture is true, it follows that Converting
Binary to CRR is also complete for FOM + POW, since testing if 2 is a
generator can be checked in FO if one is able to convert 2i to CRR, and
in the same way discrete logs can be found modulo such primes p. Note
also that Converting Binary to CRR is FO-reducible to Divisibility,
since determining if X is equivalent to a mod p is equivalent to checking if p
divides X−a. Thus we conjecture that both of these problems are complete
for FOM + POW under FOM-reducibility.

11

There is some irony in the fact that we do not know how to show that
Converting CRR to Binary is hard for FOM + POW under FOM re-
ductions, although in some sense it was precisely this problem that was the
source of the P-uniformity in the algorithm of [7].

The class FOM+POW clearly lies somewhere between FOM itself and L-
uniform TC0. Is the full power of L-uniform TC0 needed to perform integer
division? We cannot answer this question definitively, since for all we know
FOM and L could be identical, but we can give significant evidence that it
is not. To do this we will need to take a closer look at the complexity of the
power predicate.

A recent paper of Barrington, Kadau, Lange, and McKenzie [6] looked
at groups presented as multiplication tables and the complexity of various
problems including that of computing powers. These results apply directly
to the group of integers modulo m (where m is polynomial in n) because the
product operation of this group is FO computable. They showed that pow-
ering in such a group, and thus our power predicate, is in a new complexity
class they called FOLL.

In [6] the class FOLL is defined to be those languages defined by first-
order formulas with a quantifier block iterated O(log logn) times, or equiv-
alently languages recognized by uniform circuit families (of AND and OR
gates) of depth O(log logn), polynomial size, and unbounded fan-in. FOLL
clearly contains FO and is contained in uniform AC1, and both contain-
ments are proper, but little else is known about FOLL. For example, is it
contained in L, NL, or SAC1?

We do at least know, by well-known lower bounds on circuit size and
depth (e.g.,[25]), that the parity language is not in FOLL. Since FOLL is
closed under FO reductions, it follows that no language in FOLL can be
complete under such reductions for any class including parity, in particular
for L, NC1, or FOM.

The power predicate is shown to be in FOLL in [6], as a special case of
computing powers in any group given by its multiplication table. The key
step in this computation is to note that ajk, for example, is FO computable
from the complete table of j-th and k-th powers, since ajk = b iff ∃c : (aj =
c)∧(ck = b). Thus each round of FO computation squares the highest power
computed, and (with some other clauses in the definition) after O(log logn)
rounds all powers polynomial in n can be computed.

It is also useful to consider a graph-theoretical approach to these prob-
lems. Define REACH(logn) to be the problem, given a directed graph G
with n vertices, and given two vertices s and t, of determining if there is a

12

path from s to t with length at most logn. Similarly, define REACH1(logn)
to be the same problem restricted to graphs with outdegree 1. The prob-
lems REACH(logn) and REACH1(logn) may be viewed as “scaled-down”
versions of the standard complete problems for NL and L, respectively. The
relevance of these problems is illustrated by the following inclusions:

FO + POW ⊆ FO + REACH1(logn) ⊆ FO + REACH(logn) ⊆ FOLL

The first of these inclusions can be seen by considering a directed graph
where the nodes are the elements of the multiplicative group mod m, we fix
an element a, and every node g has an edge to the node ga and the node g2.
By the familiar repeated squaring algorithm, every power ai of a is at the
end of a path of length O(log i) from the identity node, where each choice of
squaring or multiplying by a is given by one of the bits of i. To calculate ai,
it suffices to follow a particular path of length O(logn) in a graph. It is easy
to modify this construction and build a graph of outdegree one (by noticing
that the graph is leveled, and deleting one edge leaving each node). The
second inclusion is trivial, and the third inclusion follows from the familiar
Savitch algorithm.

We think it is reasonably likely that Division is in FOM, the fully uni-
form version of TC0. We have seen that this happens if and only if POW ∈
FOM. In particular, the full power of L-uniformity (i.e., the numeric pred-
icate NUML) does not seem to be needed, since POW and REACH(logn)
lie in FOLL, and in particular REACH1(log) is an “exponentially-easier”
special case of the standard complete problem for L.

Is Division in uniform NC1? Here we refer to the most robust definition
of “uniform NC1”, that of Ruzzo [23], in terms of the “extended connection
language” of a circuit. According to this notion of uniformity, uniform
NC1 = ATIME(logn). Again, Division lies in uniform NC1 if and only if
POW ∈ ATIME(logn).

One attack on this problem would be to try to show REACH1(logn) ∈
ATIME(logn). A positive answer to this question would resolve two ma-
jor open questions about uniform NC1: it would include Division and we
could redefine it in terms of the simpler “direct connection language” being
in DLOGTIME rather than the extended connection language. (That is,
the two most natural definitions for uniform NC1 proposed in [23] would
coincide.)

It is conceivable that REACH1(logn) is in FO. This hypothesis implies
that L can be simulated by unbounded fan-in circuits of depth O(logn/(log logn)),

13

rather than the depth O(logn) given by Savitch’s theorem. Similarly, show-
ing that REACH1(logn) ∈ FOM would yield threshold circuits of depth
O(logn/(log logn)) for every problem in L. Note that NC1 does have un-
bounded fan-in circuits of depth O(logn/(log logn)) [8].

5 Small space-bounded complexity classes

For many people working in computational complexity theory, space-bounded
computation only “begins” with logarithmic space. To be sure, there is a
large literature with dealing with space bounds between log logn and logn.
(For example, see [19] for a perspective on the sequence of difficult pa-
pers leading up to a separation of the bounded-alternation hierarchy for
sublogarithmic-space-bounded machines.) Nonetheless, this work relies on
the automata-theoretic limitations of the small-space-bounded machine. For
instance, if s(n) = o(logn) is a fully-space-constructible function, then there
is a constant k such that, for infinitely many n, s(n) < k. This provides easy
proofs of lower bounds for the space complexity of many languages, such as
the proof in [14] that the set {0n : n is prime} cannot be accepted in space
o(logn).

However, it is still an open question whether the set of (binary encodings
of) primes can be accepted in space o(logn). How can this be? Surely the
binary encoding of a set cannot be easier than the unary encoding of the
same set!

Let us see why this is still an open question. Usually a lower bound on
the complexity of the binary encoding of a set follows from a bound on the
complexity of the unary encoding, using a standard translation lemma, such
as:

Lemma 5.1 (Traditional Translation Lemma) If s(logn) = Ω(log logn)
is fully space-constructible, then the first statement below implies the second:

• A ∈ dspace(s(n)).

• un(A) ∈ dspace(logn+ s(logn)).

The converse also holds, if s(logn) = Ω(logn).

Note in particular that this translation lemma does not allow one to
derive any lower bound on the space complexity of A, assuming only a
logarithmic lower bound on the space complexity of un(A). As an example

14

to see that this is unavoidable, consider the regular set A = 10∗. Arguing as
in [14] it is easy to see that un(A) = {02k : k ∈ N} is not in dspace(o(logn)).
(Every infinite unary language in dspace(o(logn)) has an infinite regular
subset; un(A) does not.)

There is another reasonable way to define space complexity classes. Let
DSPACE(s(n)) be the class of languages accepted by Turing machines that
begin their computation with a worktape consisting of s(n) cells (delim-
ited by endmarkers), as opposed to the more common complexity classes
dspace(s(n)) where the worktape is initially blank, and the machine must
use its own computational power to make sure that it respects the space
bound of s(n). Viewed another way, DSPACE(s(n)) is simply dspace(s(n))
augmented by a small amount of “advice”, allowing the machine to com-
pute the space bound. (This model was defined under the name “DEMON-
SPACE” by Hartmanis and Ranjan [15]. See also Szepietowski’s book [27]
on sublogarithmic space.)

DSPACE(s(n)) seems at first glance to share many of the properties of
dspace(s(n)). In particular, it is still relatively straightforward to show that
there are natural problems, such as the set of palindromes, that are not
in DSPACE(o(logn)). (This follows from a simple crossing-sequence and
Kolmogorov-complexity argument [15].)

The main contribution of this section is an easy argument, showing that
the efficient division algorithm of [9] provides a new translation lemma.

Lemma 5.2 New translation lemma Let s(n) = Ω(logn) be fully space-
constructible. Then the following are equivalent:

• A ∈ dspace(s(n))

• un(A) ∈ DSPACE(log logn + s(logn)).

Proof. For the forward direction, it is sufficient to present a small-space
algorithm for un(A).

Note that log logn space can hold the binary representation of a short
prime p. Thus on input 0n, a DSPACE(log logn) machine can compute the
pieces of the Chinese Remainder Representation of n.

Thus, by [9], in space log(|n|) = log logn we can compute the bits of
the binary representation of n. Thus, on input 0n a Turing machine can
simulate a s(|n|)-space-bounded computation (of a machine having input n)
in space s(logn).

15

For the converse, given a Turing machine accepting un(A) in space
log log(x)+s(log x) on input 0x, we want to use log(|x|)+s(|x|) = O(s(|x|))
space to determine if x ∈ A. We provide merely a sketch here.

The most näıve approach to carry out this simulation will not work, since
we do not have enough space to record the location of the input head in a
simulated computation on 0x, and thus we cannot perform a step-by-step
simulation. However, we do have enough space to carry out a simulation
until either

(a) the input head returns to an endmarker without repeating a worktape
configuration, or

(b) some worktape configuration is repeated.

In case (a), a step-by-step simulation is sufficient. In case (b), we can
determine the period of the loop, and (doing some simple arithmetic) we
can determine the state the machine will be in when it encounters the other
end marker.

Thus in either case, the simulation can proceed.

Corollary 5.3 Let C be any complexity class. In order to show C is not con-
tained in L, it suffices to present a set A ∈ C such that un(A) 6∈ DSPACE(log logn).

We remark that the argument above can easily be adapted to show
that the unary languages in NSPACE(log logn + log(s(n))) are exactly the
unary encodings of languages in NSPACE(s(n)). It should be remarked
that a different translational method was presented by Szepietowski [26] for
relating the L = NL question to the dspace(log logn) = nspace(log logn)
question. However, as we have seen, there is no direct analog to Corollary
5.3 for the dspace or nspace classes.

In fact, it is not very difficult to show that there are unary languages in
P (and even in dspace((log logn)2)) that are not in DSPACE(log logn). A
straightforward delayed diagonalization (as in [14]) can be used to construct
such a set A ⊆ 0∗. Note that this does not prove P 6= L, since un(A) (a very
sparse set) is in DSPACE(log logn). Stating this another way, the unary set
A ∈ dspace((log logn)2) is equal to un(B) for some B ∈ dspace((logn)2),
where B is not known to be in P.

Observe that all unary languages in NSPACE(log logn) are in FO. This
follows since if B is a unary language in NSPACE(log logn), then B = un(A)
for some A ∈ NL. Thus, by [21] (see also [13]), A ∈ RUD =

⋃
k ΣkTIME(n).

It was observed in [2] that B = un(A) ∈ FO if and only if A ∈ RUD.

16

In some ways, DSPACE(log logn) is a more natural class than dspace(log logn),
in the sense that this class is related to a natural class of branching pro-
grams, whereas no similar characterization is known for dspace(log logn).
The following definitions make this precise.

For this extended abstract, we assume the reader is familiar with basic
definitions regarding branching programs. A branching program is leveled if
the vertex set can be partitioned into columns, where all edges from vertices
column i go to vertices in column i+1. We need not assume that all vertices
in a given column query the same input location. We assume that vertices
are labeled by a pair (c, j) where c is the number of the column, and j is
the index of the node within column c. The width of a branching program is
the maximum number of vertices in any column. In this paper, we consider
only deterministic branching programs though parallel results on NSPACE
classes and nondeterministic branching programs (or “contact schemes”) can
be obtained by the same techniques.

Theorem 5.4 A is accepted by log-time-uniform branching programs of
polynomial size and width O(logO(1) n) if and only if A is FO-reducible to a
language accepted by an oblivious DSPACE(log logn) machine.

Proof. First, consider a language accepted by an oblivious machine
M with a worktape of size O(log logn). By definition of “oblivious”, the
input location scanned by M at time t can be computed in FO. Thus it
is an easy matter to construct a branching program with a node for each
worktape configuration on each level, with edges simulating M ’s transition
function. The resulting branching program will be FO-uniform, and this
can be transformed into an equivalent log-time uniform branching program
by standard techniques.

Conversely, let A be accepted by a log-time uniform leveled branching
program of width logO(1) n. It is easy to show that there is a FO reduction
that, given an input string x, produces a sequence of the form

##f1#f2# . . .#ft##

where t is the number of columns, and each fi is a function fi : {1, . . .w} →
{1, . . .w}, where w = logO(1)n is the width of the branching program, with
the property that fi(j) = j ′ iff the branching program, when in vertex j in
column i, moves to vertex j ′ in column i+ 1 when querying the specified bit
of x.

17

Note that an input x is accepted byM if and only if ft(ft−1(. . .(f1(1)) . . .))
is an accepting state of M . We encode each function f in the sequence as a
list

(1, f(1))(2, f(2)) . . .(w, f(w)).

Note that there is an oblivious machine with space bound O(log logn) that
takes such a sequence of functions as input and computes the composition.

Essentially equivalent observations appear elsewhere. For instance, it is
shown in [10] that leveled branching programs of width O(2s(n)) correspond
to non-uniform finite automata with space bound s(n).

We do not know if the restriction to oblivious machines is necessary.
If the behavior of a machine’s input head is allowed to depend on the in-
put contents, then the machine potentially has access to the logn bits of
memory contained in the input head position. This might allow an other-
wise space-bounded machine to solve L-complete problems. For example,
the “non-uniform automata” of [3] are oblivious, correspond to constant-
width poly-size branching programs and have the power of NC1. But as
shown by Barrington and Immerman (reported in [10]), if the oblivious-
ness restriction is removed, the same machines have the power of general
poly-size branching programs or L. But these machines make important
use of non-uniformity, in the form of a read-only “program tape”. It is not
clear whether a DSPACE(log logn) machine, for example, would be able to
exploit the input position in the same way.

It is easy to see that unary languages (and even languages in 0∗1∗) in
DSPACE(log logn) are accepted by machines whose input heads sweep back
and forth across their input. Thus one can also express questions about
DSPACE(log logn) in terms of the “sweeping automata” of [24]. For in-
stance, if one can show that the set {0n1m : n is prime} is not accepted by
a sweeping automaton with logO(1)n states, then L 6= NP.

6 Acknowledgments

Eric Allender was supported by NSF grant CCR-9734918. Much of this
work was carried out during the March 2000 McGill Invitational Workshop
on Complexity Theory – the authors thank the organizer Denis Thérien
and all the other participants. We also thank Dieter van Melkebeek, Samir
Datta, Michal Koucky, Rüdiger Reischuk, and Sambuddha Roy for helpful
discussions.

18

Additional work on this project was carried out during the Park City
Mathematics Institute’s summer program in July and August 2000, sup-
ported by the Clay Mathematics Institute. The authors thank PCMI, CMI,
Alexis Maciel, and the students in the PCMI undergraduate where this ma-
terial was presented.

References

[1] E. Allender. P-uniform circuit complexity. J. ACM 36:912–928, 1989.

[2] E. Allender and V. Gore. On strong separations from AC0. In Advances in
Computational Complexity Theory, Jin-Yi Cai, ed., DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Volume 13, AMS Press, 1993,
pp. 21–37.

[3] D. A. M. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. Journal of Computer and System
Sciences, 38:150–164, 1989.

[4] D. A. M. Barrington and N. Immerman. Time, hardware, and uniformity. In
Complexity Theory Retrospective II, L. A. Hemaspaandra and A. L. Selman,
eds., Springer-Verlag, 1997, pp. 1–22.

[5] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1. Journal of Computer and System Sciences, 41:274–306, 1990.

[6] D. A. M. Barrington, P. Kadau, K.-J. Lange, and P. McKenzie. On the com-
plexity of some problems on groups given as multiplication tables. Proc. 15th
IEEE Conference on Computational Complexity, 2000, pp. 62–69.

[7] P. Beame, S. Cook and J. Hoover. Log depth circuits for division and related
problems. SIAM J. Comput., 15:994–1003, 1986.

[8] A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility.
SIAM J. Comput., 13:423–439, 1984.

[9] A. Chiu, G. Davida, and B. Litow. NC1 Division. Preliminary version. Avail-
able at http://www.cs.jcu.au/∼bruce/papers/crr00.ps.gz.

[10] C. Damm and M. Holzer. Inductive Counting for Width-Restricted Branching
Programs. Information and Computation 130:91–99, 1996.

[11] G. I. Davida and B. Litow. Fast parallel arithmetic via modular representation.
SIAM J. Comput., 20:756–765, 1991.

[12] Paul F. Dietz, Ioan I. Macarie, and Joel I. Seiferas. Bits and relative order
from residues, space efficiently. Information Processing Letters, 50:123–127,
1994.

19

[13] L. Fortnow Time-space tradeoffs for satisfiability. Journal of Computer and
System Sciences 60:336–353, 2000.

[14] J. Hartmanis and L. Berman. On tape bounds for single letter alphabet lan-
guage processing. Theoretical Computer Science 3:213–224, 1976.

[15] J. Hartmanis and D. Ranjan. Space bounded computations: Review and new
speculation. In MFCS ’89: Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science 379, Springer-Verlag, 1989, pp. 49–66.

[16] D. R. Heath-Brown. Artin’s conjecture for primitive roots. Quart. J. Math.
Oxford (2) 37:27–38, 1986.

[17] C. Hooley. Applications of Sieve Methods to the Theory of Numbers. Cambridge
Tracts in Mathematics No. 70, 1970.

[18] N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.

[19] M. Lískiewicz and R. Reischuk. Computing with sublogarithmic space. In
Complexity Theory Retrospective II, L. A. Hemaspaandra and A. L. Selman,
eds., Springer-Verlag, 1997, pp. 197–224.

[20] I. Macarie. Space-efficient deterministic simulation of probabilistic automata.
SIAM J. Comp. 27:448-465, 1998.

[21] V.A. Nepomnjaščĭı. Rudimentary predicates and Turing calculations. Soviet
Math. Dokl. 11:1462–1465, 1970.

[22] J. Reif and S. Tate. On threshold circuits and polynomial computation. SIAM
J. Comput., 21:896–908, 1992.

[23] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 21:365–383, 1981.

[24] M. Sipser. Lower bounds on the size of sweeping automata. Journal of Com-
puter and System Sciences 21:195–202, 1980.

[25] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. Proc. 19th ACM Symposium on Theory of Computing
(STOC), 1987, pp. 77–82.

[26] A. Szepietowski. If deterministic and nondeterministic space complexities are
equal for log logn, then they are also equal for logn. Theoretical Computer
Science, 74:115–119, 1990.

[27] A. Szepietowski. Turing Machines with Sublogarithmic Space. Lecture Notes
in Computer Science 843, Springer-Verlag, 1994.

[28] C. B. Wilson. Decomposing NC and AC. SIAM J. Comput. 19:384–396, 1990.

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

