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Abstract

We investigate a variant of the Probably Almost Correct learning model
where the learner has to learn from ambiguous information. The ambiguity
is introduced by assuming that the learner does not receive single instances
with their correct labels as training data, but that the learner receives tuples
of instances where a tuple has a negative label if all instances of the tuple
should be labeled as negative and a tuple has a positive label if at least one
instance of the tuple should be labeled as positive. Thus a positive tuple is

ambiguous since it is not known which of its instances is a positive instance.
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Such ambiguous information is for example relevant in learning problems
for drug design. We present an improved algorithm for learning axis-parallel
rectangles in this model of ambiguous information. In the drug design domain

such rectangles represent the shapes of molecules with certain properties.

Keywords: computational learning theory, classification, multiple instance prob-

lem, axis-parallel rectangles.

1 Introduction and statement of results

1.1 The PAC learning model

The PAC learning model was first introduced by [Valiant, 1984]. It gives a formal-
ization of concept learning in respect to an underlying distribution D over some
domain X. Concepts are modeled as subsets C' C X of the domain X and the
class of all relevant concepts is called the concept class C C 2X. For convenience we
sometimes refer to a concept as a function C : X — {4, -} with C(z) =+ ifz € C
and C(z) =—ifz ¢ C.

The goal of the learner is to calculate a hypothesis C C X which approximates
the unknown target concept C to be learned. The quality of the approximation is
measured by the underlying distribution D such that D{z : C(z) # C(z)} is the
error of hypothesis C , i.e. the probability that a random instance drawn accordingly
to D is incorrectly (in respect to C) classified by C. If D{z : C(z) # C(z)} < € we

say that C as an e-accurate hypothesis.



To obtain a good hypothesis the learner is given a random training sample of
labeled instances (z1,C(z1)),- .., (Tm,C(zn)) drawn independently from D. Since
the sample is drawn at random the learner might be unlucky and receive a sample
from which one cannot learn much. Thus the learner is required to calculate a
good hypothesis only for most of the possible sample draws. Formally, we have the

following definition.

Definition 1.1 An algorithm A PAC-learns the concept class C C 2% with accuracy
€ > 0 and confidence 6 > 0 from m examples if for for all distributions D on X and
all C' € C, with probability 1 — & a random sample of size m is drawn from which
algorithm A calculates a hypothesis C with D{z : C(z) # C(z)} < e. The input to

the algorithm are the parameters € and 0 and the random sample.

A general technique to calculate a good hypothesis is to pick an arbitrary concept
C € C which classifies all examples in the training sample correctly. Then, under
some mild conditions and if the training sample is big enough, it can be shown that

Cisa sufficiently accurate hypothesis.

1.2 Ambiguous information — multiple instances

In a variant of the PAC learning model, the multiple instance model, the learner

receives a training sample of label r-tuples

((xl,la .. axl,r)azl)a ey ((xm,la e axm,'l‘); Em)

with £, = + if thereisa zy ; € C'and ¢, = — ifall z; ; ¢ C, where C is the target con-
cept. Of course this model could be equivalently embedded into the usual PAC model
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by using as domain X" and as concept class C) := {C)|C € C and (21, ...,2,) €
C" o 3j - z; € C}. Unfortunately, it is very likely that in this model even simple
concept classes cannot be learned within a reasonable amount of time. Consider for

example the class of d-dimensional axis-parallel rectangles’

C= {i:ﬁl[o,bi] b > o}.

Then there is the following theorem.

Theorem 1.2 ([Auer et al., 1997]) If the class C™) can be learned with arbitrary
small accuracy € and confidence 6 in time polynomial in d, r, 1, and %, then RP =

€’

NP.

The above problem arises since when learning C™ the distribution on R**" is
arbitrary. To circumvent this problem we assume that all instances x; ; of a tuple
(Xk.15-- -, Xgy) are drawn independently from some distribution D on R? (?). Thus
the distribution on R%*" from which the r-tuples are drawn is D", i.e. the underlying
distributions from which C(") has to be learned are restricted to this type. Formally,

we have the following model.

Definition 1.3 An algorithm A learns the concept class of d-dimensional rectangles
C with accuracy € > 0 and confidence 6 > 0 from m independent r-instance examples

if for for all distributions D on R® and all C € C the following holds: with probability

'We consider only rectangles with their “lower left” corner fixed at 0. The generalization to
arbitrary axis-parallel rectangles is straight forward.

2In the following we denote instances by x to indicate that they are elements of RZ.



1—0 a random sample of r-instance examples of size m is drawn from D" and labeled
by C™) such that algorithm A calculates a hypothesis C C R* with Dr{(x1,.-.,%;) :

C(T)(Xlg e ,Xr) # CA’('I‘)(Xla .- ':XT)} < €.

1.3 Previous and new results

The first investigation of learning axis-parallel rectangles from multiple instances was
undertaken by [Dietterich et al., 1997] in an empirical work for drug design. The
first positive theoretical result for learning rectangles from independent multiple
instances was obtained by [Long and Tan, 1996], but they had to assume that the
underlying distribution is a product distribution on R¢. In [Auer et al., 1997] the
restriction to product distributions was removed and the performance bounds were

considerably improved.

Theorem 1.4 ([Auer et al., 1997]) The class of d-dimensional axis-parallel rect-

angles can be learned from

independent r-instance examples with accuracy € and confidence 6.

A general results for learning from multiple instances was obtained in

[Blum and Kalai, 1997]. For the class of rectangles they have the following bound.

Theorem 1.5 ([Blum and Kalai, 1997]) The class of d-dimensional azis-

parallel rectangles can be learned from

2
m =0 <d_27" (logc—i +loglogz>>
€ 0 €
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independent r-instance examples with accuracy € and confidence 6.

Combining the techniques of [Auer et al., 1997] and [Blum and Kalai, 1997] we are
able to obtain an algorithm for learning rectangles from independent multiple in-
stances whose analysis gives performance bounds which improve on both bounds

given in Theorems 1.4 and 1.5.

Theorem 1.6 The class of d-dimensional axis-parallel rectangles can be learned

from

d’r . 2d+2
m = 3832 —log —

independent r-instance examples with accuracy € and confidence 6. The run time of

the learning algorithm is O(drmlogm).

Remark 1.7 We did not attempt to optimize the constants.

2 An improved algorithm for learning rectangles

from multiple instances

2.1 Basic idea

The main idea to calculate a good approximation C of a target rectangle C' is to
calculate estimates for 3;(t) = D{x : x € C and z; > t} which are the probabilities
that a random instance is inside the target rectangle and its i-th coordinate is greater
than t. Another important quantity is p = D{x : x ¢ C'}, the probability to draw a
random instance outside of the target rectangle. Note that ¢ = p” is the probability
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to draw a negative r-instance example. The following lemmas show that a good
approximation C of C can be calculated from sufficiently accurate estimates Bz(t)

and ¢ of (3;(t) and g, respectively.

Lemma 2.1 If |[g—¢| < §{ and ¢ < 4% then C = R% is an e-accurate approzimation

of C. Otherwise, if |¢ — q| < § and ¢ > 3 then

de f;

QIR

<

N
N[0

Proof. If C = R? then the hypothesis classifies all examples as positive. Thus the
probability of error is ¢ < ¢+ ¢ — | < €if [ — ¢| < £ and § < 3e. If § > 3¢ then

ngand\g—l\:‘%‘gé. []
Lemma 2.2 If ¢ > &, C C C, and D{x : Cx) # Cx)} < L then

3rq

D {(x1,...,%,): CO(xq,...,%,) #C(xy,...,%,)} <e.
Proof. Since C ccC
D {(x1,...,%,): C(xq,...,%.) #C(x1,...,%,)}
= (1-D{C})" - (1 - D{C})

r—1

= (D{C} - D{é}) Z(l — D{C}H*(1 - D{C’})Tfkfl

k=1

€p e\ e 1\t
< P+ L) << (1 n —) <e
- 3q (p 3rq) -3 T =€

Lemma 2.3 If|[¢—¢| < %, ¢> 2, and foralli =1,...,d and all t € R, |3i(t) —

Bi(t)| < =2, then C = [1%,[0, by,

12drq’
A1/
N A €q
bi =inf<t: i t) < Z(
n { ﬁ()_8drq}

s an e-accurate approximation of C.



Proof. Let C = (bi,...,bs). Then fi(b) = 0 and Bi(b;) < 2. < 7 by

— 12drq — 8drg

Lemma 2.1. Thus b; < b;. Furthermore 3;(b;) < eql/r

< Soa T Tomg S 34 Since Gi(-) is

12drq — 3drg

continuous from the right. Hence ¢ C C and D{C\ C} < T, Bi(b;) < 2, and

_an

Lemma 2.2 gives the claim. 0

2.2 Calculating an estimate for [;(t)

To calculate an accurate estimate of 3;(t) we introduce the quantities o, (t) = D{x:
x; > t}, the probability of drawing a random instance whose i-th coordinate is
greater than ¢, and ~;(t) = D{x : z; > t|x ¢ C}, the conditional probability of
drawing a random instance whose i-th coordinate is greater than ¢ given that the
random instance is not inside of the target rectangle. These quantities can be easily
estimated from a random sample S of multiple instance examples. Furthermore

Bi(t) = a;(t) — p - v(t) which yields the estimate
Bi(t) = Gu(t) —p - %(t) (1)

with

number of instances x in S with z; > ¢

total number of instances in S
number of negative examples in S

=3
I
—~
w
p—

total number of examples in S
b= Qi 4

number of negative instances x in S with z; > ¢

total number of negative instances in S
The following shows that this gives a sufficiently accurate estimate for §;(t) if the

random sample S is big enough.



Lemma 2.4 If |[¢ — q| < 55, ¢ > %, and for all i = 1,...,d and all t € R,

li(t) — ai(t)] < geh and 1i(t) = %(0)| < g5k, then [Bi(t) — Bi0)] < 5.

It ¢ > q then (2) <

Proof. We have |p — p| = prl—f;‘ = p‘l— (g)l/r.

exp (qr—_qq) 14 W since —= < 1. If § < g then (3)1/ > exp (38 qrqq) > 1= 36§rq

since & . < 1. Thus [p—p| < %C% Then |3;(t) — Gi(t)| < |au(t) — q;(t)| + |pvi(t) —

PH®)] + [pYi(t) — D%(0)] < g 0

Lemma 2.5 ([Vapnik and Chervonenkis, 1971]) Let P be an arbitrary proba-

bility distribution on R and f(t) = P{z : x > t}. Furthermore define the random

variable fm(t) - #{1Si5m=$i>t=(w1%zm) drawn from P  Then for all m > i’—glog% the

probability that | f(t) — f(t)| > € is at most 8.
Proof. By an adaption of [Vapnik and Chervonenkis, 1971]. 0

Lemma 2.6 If the size of the sample S satisfies m := |S| > 382 - 32 - d = log 2d+2
and § > 3¢ then the estimates G, &;(t), and ¥;(t) satisfy the conditions given in

Lemma 2.4.

Proof. We use Lemma 2.5. Since ¢ is estimated from m independently drawn

0
2d+2°

examples, it follows that |¢ — §| < 5 with probability 1 —

353 Since &;(t) is

estimated from rm independently drawn instances we get |o;(t) — &i(t)| < 555 <

366(‘;(1 with probability 1 — 2d+2 for each i+ = 1,...,d and all ¢ € R. Since 9;(¢)

is estimated from the negative instances we first lower bound their number. The

probability that from m examples less than m( — %) are negative is at most



_d
2d+2°

1

— E) negative instances and

Thus with high probability there are rmg (1

19:(t) — v ()| < 38€dM/11T£1 < 3657g With probability 1 — ﬁ foreach i =1,...,d and

all t € R. Hence with probability § all estimates are sufficiently accurate. 0

2.3 Computational issues, Proof of Theorem 1.6

With all the preceding work the algorithm for calculating a good hypothesis C =
T1%.,]0, b;] can now be described quite easily.

From a sample of size m, ¢ and p can be calculated by (3) and (4) in time O(m).
Ifg< % the algorithm outputs C := R¢. Otherwise it proceeds as follows.

Since the values of &;(t) and &;(t'), t < t, differ only if there is an instance
x in the sample with ¢ < z; < t' the values of &;(t) (see (2)) can be calculated
incrementally after sorting all instances accordingly to their i-th coordinates. This
takes time O(rmlog(rm)). The values of 4;(t) can be calculated analogously from
(5).

Finally, b; can be calculated by considering the i-th coordinates of all instances in

ascending order. Then b; is given by the first coordinate z; which satisfies Bz(mz) <

82{’:@ with 3;(-) given by (1). This takes time O(rm).

Proof of Theorem 1.6. Obviously the run time of the algorithm is bounded by
O(drmlog(rm)) = O(drmlogm). Furthermore, Lemmas 2.1, 2.3, 2.4, and 2.6 show

that the calculated hypothesis is e-accurate with probability 1 — 4. [l
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3 Conclusion and ongoing research

In this paper we presented an approach to solve the multiple instance learning
problem for axis-parallel rectangles. Along these lines similar multiple instance
learning problems can be attacked. A particular interesting problem is learning
decision trees from multiple instances. Since in general learning decision trees even
from single instances is hard, one has to restrict oneself to situations where learning
from single instances is possible. It can be shown that in these situations also

learning from multiple instances is possible.
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