Simulating Access to Hidden Information while Learning

Peter Auer

Philip M. Long* B

I
4

Institute for THEET AN BIANSHTR ARG Y, REBATT PR cience Department gc:cc:

Technische Universitat Graz
Klosterwiesgasse 32/2
A-8010 Graz, Austria

Abstract

‘We introduce a new technique which enables a learner with-
out access to hidden information to learn nearly as well as
a learner with access to hidden information. We apply our
technique to solve an open problem of Maass and Turén [18],
showing that for any concept class F, the least number of
queries sufficient for learning F' by an algorithm which has
access only to arbitrary equivalence queries is at most a fac-
tor of 1/log,(4/3) more than the least number of queries
sufficient for learning F' by an algorithm which has access to
both arbitrary equivalence queries and membership queries.
Previously known results imply that the 1/log,(4/3) in our
bound is best possible. We describe analogous results for
two generalizations of this model to function learning, and
apply those results to bound the difficulty of learning in the
harder of these models in terms of the difficulty of learn-
ing in the easier model. We bound the difficulty of learning
unions of k concepts from a class F' in terms of the diffi-
culty of learning F. We bound the difficulty of learning in
a noisy environment for deterministic algorithms in terms
of the difficulty of learning in a noise-free environment. We
apply a variant of our technique to develop an algorithm
transformation that allows probabilistic learning algorithms
to nearly optimally cope with noise. A second variant en-
ables us to improve a general lower bound of Turan [19] for
the PAC-learning model (with queries). Finally, we show
that logarithmically many membership queries never help
to obtain computationally efficient learning algorithms.

1 Introduction

We introduce a new and apparently powerful technique
which enables a learner to simulate access to hidden
information. Such hidden information could be the an-
swer to a query, the knowledge of a value instead of
only knowing that a previous prediction was wrong (for
learning functions whose ranges have more than two ele-

*Supported by Air Force Office of Scientific Research grant
F49620-92-J-0515. Most of this work was done while this author
was at TU Graz supported by a Lise Meitner Fellowship from the
Fonds zur Forderung der wissenschaftlichen Forschung (Austria).

Duke University
P.O. Box 90129
Durham, NC 27708 USA

ments), the knowledge whether information is corrupted
with noise, et cetera. Clearly all such additional infor-
mation makes the task of the learner easier, but our
results show that learning doesn’t become much easier.

We introduce our technique by tailoring it to what we
think are the most interesting cases. More applications
of the technique are given in [3]. Since queries are often
substantially more expensive than computation time in
practice, in this paper our primary focus is on the num-
ber of queries required by learning algorithms.

The paper is organized as follows. In Section 2 we in-
troduce our technique and apply it to compare the com-
plexity of learning with and without arbitrary boolean
queries in the on-line learning model. In Section 3 we
describe some more applications of the technique. We
generalize the main result of Section 2 to two natural
models of the learning of functions with arbitrary ranges
and compare the difficulty of learning in these models.
We compare the difficulty of learning unions of &k ele-
ments of a concept class with the difficulty of learning
the original class. Finally, we give bounds for learning
in the presence of noise. In Section 4 we give a nearly
optimal randomized algorithm for on-line learning at a
high level of noise. In Section 5 we exploit our technique
to get lower bounds on the learning complexity in the
PAC learning model with additional queries in terms of
the Vapnik-Chervonenkis [21] dimension of the class, a
well-known measure of the “richness” of the class. Our
bound improves on the constant of a recent result of
Turdn [19], and our proof is somewhat simpler as well.
In Section 6, we describe a general bound on the use-
fulness of boolean queries in designing computationally
efficient algorithms.

2 On-line learning of concepts
with and without boolean
queries

In the on-line learning model [1] (also often called the

exact learning model) the learner has to learn a func-
tion f from some domain X to {0,1} (called a target

ISSN 1433-8092

concept) from some class F' C {0,1}* (called a concept
class). The learner’s interaction with its environment
is modeled with queries. To ask an equivalence query,
the learner proposes a hypothesis h € {0,1}X. If the
learner’s hypothesis is incorrect, it receives an z € X
which is a counterexample, i.e. which has h(z) # f(z).
If the hypothesis is correct (i.e., h = f), then the learner
has learned the target (and this last equivalence query is
not counted for measuring the performance of the algo-
rithm). Observe that h need not be from the target class
F, in fact arbitrary equivalence queries are allowed.! A
boolean query is any subset @ of F', and the learner re-
ceives YES if f € @Q and NO otherwise. An example
of a boolean query is “Is f(z) = 1?” for an x cho-
sen by the learner, often called a membership query. A
given boolean query Q C F by an algorithm A yields
information if there are f; € @ and fo € F — @ such
that both f; and fs are consistent with the answers to
the previous queries asked by A. The performance of
a deterministic learning algorithm is measured by the
number of queries the algorithm needs for learning the
most difficult target in F for it. (Randomized learning
algorithms will be considered in Section 4.)

In this section we compare the performance of the op-
timal learning algorithm which asks equivalence queries
andboolean queries with the performance of the optimal
learning algorithm which uses only equivalence queries.
(The model in which only equivalence queries are al-
lowed is equivalent to the mistake-bound model [14].)

For any concept class F' we denote by optgg(F) the
performance of an optimal learning algorithm for F
which uses equivalence and boolean queries and we de-
note by optg(F) the performance of an optimal learn-
ing algorithm for F' which uses only equivalence queries.
Our first result states that, if the answers to the boolean
queries are hidden from the learner, the performance of
the learner degrades only by a small constant factor (as
1/log,(4/3) =~ 2.41).

Theorem 2.1 If F C {0,1}* then

optgg(F)
to(F) < SPPEBL)
opt(F) < log, 4/3

This result solves an open problem posed by Maass
and Turdn [18). They proved? that optgg(F) >
% and asked if there are classes F' = U, F),
with optgg(Fn) = o(optg(Fyn)). Our result shows that
this is not the case. Angluin and Kharitonov [2] gave
several natural examples of specific concept classes for
which polynomially many membership queries did not
help to obtain computationally efficient learning algo-

In a popular variant of this model, the learning algorithm is
required to output hypotheses from F'.

2Their result was only for membership queries but easily gen-
eralizes to boolean queries.

rithms, modulo cryptographic assumptions.?

The VC-dimension [21] of a class F' is defined by

VCdim(F) = max{d : Ix1,...,xq € X,
{(f(xl)a 7f(md)) : f € F} = {07 1}d}'

The fact that optg(F) > VCdim(F) [18] trivially yields
the following corollary.

Corollary 2.2 If F C {0,1}%, then
optgg(F) > log,(4/3)VCdim(F).

This improves on the optgg(F) > VCdim(F)/7 bound
of Maass and Turidn. Furthermore, an example due to
Maass and Turdn shows that the constant cannot be
improved in either Theorem 2.1 or Corollary 2.2. (In
their proof, the only boolean queries used are member-
ship queries. Thus, the obvious corollary of Theorem 2.1
bounding the usefulness of membership queries is also
optimal up to lower order terms.)

Theorem 2.3 ([18]) There is a family (X,)n of sets
and a family (F,), such that for eachn, F,, C {0,1}%~,
and

(log,(4/3) + 0o(1))VCdim(Fy,)
(log;(4/3) + o(1))opty (Fx).
The proof of Theorem 2.1 is based on a technique to

simulate access to the answers of the boolean queries
without actually receiving these answers.

optgp(Fn) <
<

Proof of Theorem 2.1: Let A®B be an optimal learn-
ing algorithm which for all targets f € F wuses at
most optgg(F) equivalence and boolean queries. As-
sume without loss of generality that all of AFB’s boolean
queries yield information. We construct a learning algo-
rithm AY which uses at most optgg(F)/ log,(4/3) equiv-
alence queries and no boolean queries.

The algorithm AY runs copies AFB of AFB as subal-
gorithms and keeps a weight w; for each copy. Initially
AP starts with one copy of AP® and its weight is 1. To
prove the theorem we (as observers of the algorithm AF)
investigate how the total sum of all weights w; changes,
and we keep track of a special copy AFB (and its weight)
which performs in the same way as A®® would perform
if boolean queries were available. Initially the single
copy is the special one. The copies and their weights
are maintained by AY in the following way.

e If some copy A¥B wants to ask a boolean query Q,
this copy is split into two copies, one copy receives
the answer YES and the other copy receives the
answer NO. The weight w;/2 is assigned to both
copies.

3In fact, they proved the difficulty of the easier problem of
PAC learning with membership queries [20].

Clearly the total sum of weights is not changed.

If AFB is the special copy then one of the new copies
represents the correct answer to the query and this
copy becomes the special one. Its weight is half the
weight of the original special copy.

e When no copy wants to ask a boolean query (because
all of AFB’s boolean queries yield information, it is
easy to see that eventually this happens), then all
copies want to ask equivalence queries, and algo-
rithm AP asks an equivalence query where the hy-
pothesis h is determined by majority vote of the hy-
potheses h; of the subalgorithms according to their
weights,

o ={ g

If the hypothesis is not correct and AT receives
a counterexample x*, then this counterexample is
passed to all subalgorithms which also predicted in-
correctly for x*, i.e. x* is passed to all A¥B with
hi(z*) = h(z*). Furthermore the weights of all
these copies are multiplied by 1/2. The copies that
predicted correctly for * are not modified and they
don’t receive a counterexample. They don’t change
their states and propose the same hypotheses as be-
fore.

Since 3 in; wr)=h(e") Wi 2 Dichi(e")#h(ar) Wis 0T
guing as in [16] we have for the modified weights
w} that

oW
=D ihi(e)=h(z*) Wi T 2ithi(e*)2h(z") Wi
= 5 Yihi(a)mh(z) Wi T Dichi(a)2h(ar) Vi
= % Ez w; — % lei:hi (&*)=h(z*) Wi

T 2ithi(o*)#£h(ar) Wi

Zz’:hi(m):l Wi 2 i, (z)=0 Wi
ithi(z)=1 w; < Zi:hi(w)zo W;-

IN

§ 2w
Thus the total sum of weights decreases by at least
a factor 3/4.

The weight of the special copy is multiplied by 1/2
only if it predicted incorrectly for x* and receives
z* as counterexample.

To summarize, after M equivalence queries of A® with
incorrect hypotheses the total sum of all weights is at
most (3/4)M. On the other hand the weight of the spe-
cial copy is always at least (1/2)°Ptee (™) since the num-
ber of equivalence and boolean queries of the special copy
is bounded by optrg (F). By taking logarithms and solv-
ing for M, we get

< optgg(F)
~ log, 4/3

which implies the theorem. O

To get a feel for how AP works, it is worthwhile to
view its state as a tree, where the various copies of AFP
correspond to the leaves. For example, suppose AP is
learning f, and at the beginning of A¥’s execution, the
single copy of A®B would ask an equivalence query h;.
Then the tree at this point would consist of a single node
labelled by h;. Suppose that AP then got a counterex-
ample, call it z;, which it passed to the single copy of
AFBand that AFP then asked whether f was in some
subset)1 of F' (a boolean query). After this, the tree
would look as follows.

Next, AF would create two copies of AFB. one which
it would give the response YES, and the other which
would get the response NO. If the copy that got the re-
sponse YES asked another equivalence query, call it hs,
and the copy that got the response NO asked, for some
@2, whether f € ()2, then we can visualize the state of
AF with the following tree.

Now, before taking any action on the equivalence query
made on the leaf on the right, A® would “expand” the
leaf on the left, again creating two copies, which would
be given YES and NO respectively as answers to their
most recent question. If these copies of AFE each asked
equivalence queries, call them h3 and h4, then the fol-
lowing tree would encode the state of AF:

Since all the leaves would be asking equivalence queries,
AF would be ready to ask an equivalence query, call it
g, where, using the weighting scheme in the proof of
Theorem 2.1,

gz =1
ha(z)/4 + hs(z)/8 + ha(z)/8
> (1= ha(2))/4+ (1 — hs(2))/8 + (1 — ha(x))/8.

Suppose the counterexample to g obtained by AF, call it
Z2, had ha(z2) = ha(z2) = g(x2), and hz(z2) # g(x2).
Then z5 would be passed to those copies of AFB whose
hypothesis were wrong about it, in this case, to the
copies hypothesizing hs and h4. If these copies asked
an equivalence query and another membership query
respectively, then the new tree would look like this:

X1
NO YES
NO YES X5
‘ X2

The process would continue in this manner, with A¥
“expanding” all leaves whose copies of APB ask boolean
queries until there are no more such leaves, and then
asking an equivalence query constructed from the hy-
potheses on the leaves as described above.

The above is an example of a more general technique.
One may simulate knowledge of hidden information us-
ing a tree like the above, “expanding” nodes when the
subalgorithm needs information hidden from the master
algorithm. The combination of the hypotheses of the
leaves is done in the style of Weighted Majority [16],
but the main difference with the Weighted Majority al-
gorithm is that the Weighted Majority algorithm uses
a fixed set of subalgorithms, while our algorithm dy-
namically creates subalgorithms depending on previous
outcomes to queries.

3 More applications of the basic
technique

When generalizing equivalence queries to functions tak-
ing on potentially more than two values, there are two
very natural alternatives.

In one alternative (called weak reinforcement in [4]),
the algorithm only discovers some z for which h(z) #
f(x), but does not find out the value of f(z). This type
of reinforcement is sometimes all that is available, for ex-
ample in some control problems. Let us denote the op-
timal number of equivalence queries for learning a class
F C Y in this model by optg yeqi(F). If the algorithm
is allowed boolean queries on top of weak equivalence
queries, denote the optimal number of queries required
for learning F' by optgp weak (F)-

In a second alternative (called strong reinforcement in
[4]), when the algorithm makes an equivalence query h
for which A # f, the algorithm receives an x for which
h(z) # f(x), and also receives f(x). This type of rein-
forcement also occurs naturally, for example in weather
prediction. Let us denote the optimal number of equiva-
lence queries for learning a class F C Y¥ in this model
by 0Pty strong (F)- If the algorithm is allowed boolean
queries on top of strong equivalence queries, denote the
optimal number of queries required for learning F' by
OptEB,strong (F) -

Notice that in the case Y = {0, 1}, we have optg (F) =
OptE,weak(F) = OptE,strong (F) and OptEB (F) =
OptEB,weak(F) = OptEB,strong (F)

The proof of Theorem 2.1 can be modified to obtain
generalizations of that result for both alternatives.

Theorem 3.1 If F CYX, then

OptEB,strong (F)

F 1
OptE,strong() 10g2 4/3) ()
OPtE weak(F) < 1.39]Y |optpg weak (F), (2)
OptE,Weak(F) < QOPtEB’weak(F) -1 (3)

A result similar to (1), but weaker, was proved in [4].
Of course, Theorem 2.3 implies that the constant
1/log, 3 of (1) is optimal. The bounds for optg year(F)

can be seen to be best possible up to a constant factor
for certain values of Y| and optgp weax(F), as recorded
in the following theorem, whose proof is omitted due to
space constraints.

Theorem 3.2 Choose positive integers a and b such
that b > 2. Then there are sets X, Y such that |Y| =1,
and there is a set F' of functions from X toY such that
OptEB,weak(F) S a, and

ab/18 if a>2logyb
OPtE weak (F) > 2° —1 _if a<logyb
% (1+4lnZ) otherwise.

As a main application of Theorem 3.1 we obtain
bounds on how much harder it is to learn with weak
reinforcement.

Corollary 3.3 If F CYX then

OptE,weak(F) S 139|Y| |—1 + 10g2 |Y|-|OptE,strong(F)'

Proof: Follows from (2) and the fact that a strong
equivalence query can be simulated by a weak equiva-
lence query and [log, |Y|] boolean queries. O

This bound is easily seen to be within an O(log|Y|)
factor of the best possible.

Proof Sketch for Theorem 3.1: The proof closely
follows that of Theorem 2.1 (we therefore borrow no-
tation from that proof). In the concept learning case we
had the situation that a counterexample divides the sub-
algorithms into those which predicted correctly, respec-
tively incorrectly, for the counterexample. Algorithm AP
(the master algorithm) achieved its performance by con-
structing its hypotheses in such a way that ot least half
of the weight predicted incorrectly for any counterexam-
ple.

For strong reinforcement the same idea works if AP
constructs its hypothesis h such that h(z) is a y for
which Zi:h,-(z):y w; 18 maximized over Y (with ties bro-
ken arbitrarily). When AP receives a counterezample
(z*, f(z*)), it is passed to all AP® for which h;(z*) #
f(z*) and all their weights are multiplied by 1/2. Since
h(z*) # f(z*) at most half of the weight predicted cor-
rectly for x* and the analysis of the proof of Theorem
2.1 gives (1).

For weak reinforcement the situation is more com-
plicated. Even if the hypotheses of A¥ are constructed
as in the strong reinforcement case, so that at most
half of the weight predicted correctly for a counterex-
ample x*, the master algorithm A® doesn’t know which
of the subalgorithms predicted incorrectly since it does
not know the true value of f(x*). It only knows that
those AFB with h;(z*) = h(z*) predicted incorrectly.
Therefore the counterexample x* is passed only to these
subalgorithms and only their weights w; are multiplied

by 1/2. Since Y-, p. (z+)=h(z+) Wi 5 at least a fraction
1/1Y| of the total weight before x* was received, we can
follow a line of reasoning analogous to that of The-
orem 2.1 to see that the total weight decreases by at
least a factor 1 — 1/(2|Y|) and thus optg wea(F) <
0Pt weate(F) /108 (1 + 1/(2[Y| — 1)), which gives (2).
To obtain a bound independent of |Y| we consider a
modified master algorithm, which also views the vari-
ous copies of AFP to be the leaves of a rooted tree with
branching factor at most two in a manner similar to the
example after the proof of Theorem 2.1. As in the algo-
rithm A¥ of Theorem 2.1, whenever a copy AF® wants
to ask a boolean query, its leaf is given two children cor-
responding to two copies generated and given YES or
NO respectively. However, as its hypothesis, the modi-
fied master algorithm chooses the hypothesis of some leaf
AFB of minimal depth in the tree. A child is given to this
leaf which receives the counterexample x*. The depth of
the tree is bounded by optpp weak(F) + 1 and there al-
ways must be a leaf of depth at most optyp weax (F) cor-
responding to the “special” copy. The number of equiv-
alence queries of A® is given by the number of nodes in
the tree with exactly 1 child. A combinatorial argument
shows that this number is bounded by 20PtER, weald(F) _ 1
which gives (3). O

When ¥ = {0,1}, a common way to build a richer
class from a class F C {0,1}% is to take k-fold logical
ORs of elements of F, ie. {f1V---V fr : fi,..,fr €
F}. Let us call the resulting class ORg(F). Almost
tight bounds on the PAC learning sample complexity
of ORg(F) in terms of k¥ and the sample complexity
of F' have been obtained [6], but the techniques used
apparently cannot be applied to bound the relative dif-
ficulty of on-line learning of ORy(F'), and this problem
had remained open. Using our technique, we obtain the
following result.

Theorem 3.4 For any F C {0,1}%, for any k > 2,

k[1 + log, k]optg (F)
log, 4/3 ’

Proof: Choose X, F C {0,1}*, and k > 2. For each
fyoo fu € Folet ¢y, 1y : X = {0,1}F be defined by
¢(f1,---,fk) (.CE) = (fl(x)a 7fk(x)) Let

Fe ={9¢s1,...pn) : 15 fr € F'}.

To learn a fi V --- V fr € ORg(F) it is sufficient
to learn ¢y, . 5) € Fp in the weak reinforcement
model since a hypothesis* @, .. p,) for learning Fy
can be transformed into a hypothesis hy V -+ V hy
for learning OR(F) and a counterexample z* with

(ha V-V hp)(x*) # (f1 V-V fr)(z*) also satisfies

opty (ORk(F)) <

4note that any function from X to {0,1}* can be expressed
this way

Plhyesh) (E) # D(f1,....5) (7). Thus opty(ORk(F)) <
OPtg weak (Fx) and similarly

optrg (ORk(F)) < optgs weak (Fi)- (4)

If the learner is allowed to ask boolean queries while
learning Fj, after each counterexample z*, [log, k]
boolean queries suffice to find a component h; of the
hypothesis @y, ,....»,) for which h;(z*) # fi(z*). Using
copies of an optimal learning algorithm for F for each of
the k£ components and passing the counterexample z* to
the corresponding copy of the incorrect component h;
implies

OPtER, weak (Fi) < [1 + log, kk opty (F)

since the learner uses at most k optg(F) counterexam-
ples and [log, k] times that many boolean queries.
Applying (4) and Theorem 2.1 completes the proof.
O
This bound is easily seen to be within an O(log k)
factor of the best possible. Also, it can be trivially gen-
eralized to functions with larger ranges, and to methods
of combining elements of F' other than taking ORs (see

[3])-

One obtains a more realistic model of learning if
the information given to the learner is sometimes in-
correct. We might define optg(F,n) to be the opti-
mal number of equivalence queries required for learning
F, given that at most 1 of the counterexamples were
incorrect, i.e. were elements of the domain for which
the learner’s hypothesis was in fact correct. Clearly
optg(F,0) = optg(F).

If the learner is allowed to ask (using boolean queries)
whether the last counterexample was incorrect or not, it
can learn using only optg(F,0) + 1 equivalence queries
and also that many boolean queries. This is achieved
by simulating a learning algorithm with performance
optr(F,0) in such a way that only correct counterex-
amples are passed to that algorithm. The proof of The-
orem 2.1 thus gives the following result essentially with-
out modification.

Theorem 3.5 If F C {0,1}* then

2(optg(F,0) +n)
log, 4/3

Cesa-Bianchi, et al [8] independently obtained a similar
result which implies an improvement on Theorem 3.5
in which the constant is 4.41. Theorem 3.5 is op-
timal to within a constant factor since optg(F,n) >
2n + optg(F,0) [16]. Optimizing for the constant on
the n term in Theorem 3.5 yields the following.

Theorem 3.6 For any F C {0,1}* and any 0 < € <
1/3

< 4.82(optg(F,0) + n).

optg(F,n) < (2+€)n + (167 In 1) optg(F,0).

Proof Sketch: The proof is similar to and less involved
than the proof of Theorem 4.1 and therefore details are
omitted here. The main idea is to use the following vari-
ant of the algorithm of the proof of Theorem 2.1. Instead
of setting the weights of the newly generated copies cor-
responding to the answers YES and NO of a boolean
query (in this case to the query “Was the last coun-
terexample noisy?”) each to half of the current weight
w, the copies are given weights ciw and (1 — ¢;)w, re-
spectively. Furthermore the weights of the copies receiv-
ing a counterexample are multiplied by some co instead
of 1/2. Choosing appropriate ¢ and cy and carrying
through with an analogous argument to that in the proof
of Theorem 2.1 yields the theorem. m|

4 Randomized learning in the
presence of malicious noise

In this section, we illustrate the application of our tech-
niques to randomized learning algorithms, obtaining a
result analogous to Theorem 3.6, except that the con-
stant on the 7 term becomes 1 instead of 2 + e.

The model of this section is due to Maass [17]. For
F C {0,1}*, we assume that before the learning process
starts, the environment fixes an f € F', and a sequence
(1,91), -, (Tm, Ym) for which [{t : y, # f(z)}| <, ie.
the number of noisy examples is at most 7. Learning
is still an on-line process, i.e. the learner asks its ini-
tial equivalence query h; without seeing any examples,
then it receives (z1,y:1), which may be a counterexam-
ple, or may be a supporting example, i.e. may have
hi(z1) = y1. Then, the learner uses (z1,y1) to (pos-
sibly randomly) generate a second hypothesis hs, and
so on. We denote by optgg (F,7n) the maximum (i.e.,
the worst-case), over f € F and (z1,%1), -, (T, Ym)
subject to the constraints described above, of the ex-
pectation (over the algorithm’s randomization) of the
number of examples for which h.(z;) # y; made by the
optimal algorithm in this model; i.e., optgg (F,7) is the
average number of “mistakes” made by the optimal algo-
rithm for the most difficult target f and finite sequence
of (y,y:) pairs with |[{t : y; # f(z4)}| <nforit.

Theorem 4.1 For any F C {0,1}%, and any o, 3 > 0
with a+ 8 <1,

In(1/a)optg(F,0) +1n(1/8)n
21In(1+a+l3)

2In(1/a)optgg (F,0) +1n(1/8)n
21In('

A

OptER (FJ 77) >

1+a+ﬁ)

Straightforward application of recent results on combin-
ing the predictions of experts [22, 16, 23, 9] yield bounds
in terms of |F'| instead of optgg (F,0). Choosing appro-
priate o and 8 we get the following bounds.

Corollary 4.2 If F C {0,1}* then
optgr(F,n) < 2.21(optg(F,0) +n)
optpr(F,n) < 3.29(optgg(F,0) +n).

If n > 2 optg(F,0)

optgr(F,n) <n+2y/noptg(F,0) (ln opta(F.0) + 2> .

n
optg(
and if n > 4 optgg (F,0)

OptER(Fan)
< 1+ 2+/2noptgg (F,0) (ln Sopten(m0) T 2) '

Our results also hold in a variant of the above model
where the environment need not choose the sequence
(z1,¥1)y-- -, (Tm,ym) in advance but only has to choose
the example (x¢,y;) before the learner proposes its hy-
pothesis hg, so that the example (z;, y;) may depend on
the hypotheses h1,...,hs—1.

Proof of Theorem 4.1: We prove the first inequality.
The second follows from the fact [17] that optg(F,0) <
2OptER (Fa 0) .

The proof is like that of Theorem 2.1, except for the
following differences.

1. The master algorithm AFR runs copies of an opti-

mal learning algorithm AF for the noise-free case.

2. The hidden information in this case is whether a
given example (xy,y:) is noisy. Thus each copy
of A® which predicted incorrectly for the example
(z¢,ye) is split into two copies, one which assumes
that the example was noisy, and another which as-
sumes that the example was not noisy. Clearly the
example is only passed to that copy of A® which
assumes that the example was not noisy.

3. When the master algorithm splits a subalgorithm
into two copies, the weights of these copies are not
reduced by the same factor: the weight of the copy
that assumes the example was not noisy is o times
the original weight, the weight of the copy that as-
sumes the example was noisy is 3 times the original
weight.

4. Instead of setting h(z) to 1 deterministically if the
total weight of copies evaluating to 1 is more than
the total weight of those evaluating to 0, the master
algorithm randomly sets h(z) to 1 with probability
P, 5(r) given by

Inl-r(1-a-70)
n(l-r(l—a=-8)+h(d—-1-r1-a-24)
where r is the weight of the copies evaluating to 1

divided by the total weight of all copies.® (Observe
that Pog(1 —71) =1— Py g(r).)

5Essentially the same “transfer function” was used in a differ-
ent context in [22, 9].

Observe that the master algorithm splits all those subal-
gorithms which predicted incorrectly for the last example
(z¢, yi), without regard to whether its own prediction was
correct or not.

Let ry be the fraction of the weights on the subalgo-
rithms that predict incorrectly on the tth example, and
let pt = Pop(re) be the probability that the master al-
gorithm predicts incorrectly. To prove the theorem it is
sufficient to bound E;’;l p¢ from above. Since, regard-
less of the algorithm’s actual prediction, o fraction of ry
of the weights is modified we obtain that the total weight
of all subalgorithms decreases by a factor 1—ry(1—a—p0).
Thus

aoptE(F,O)ﬂTI < H[]_ - ’I't(]- —a— /6)]
t=1

because the weight of the special copy is at least
a°Pte(F0) 31 Some calculations, using the fact (see [9])
that Vr,Zln(ﬁ)Pa”@(r) < —-In(1-7r(1-a-21),
complete the proof. O

5 PAC learning with queries

In the PAC learning model [20] the learner has to,
with high probability, give a good approximation to
a target concept f from some concept class F' C
{0,1}%. In the standard PAC-model the learner
learns about the target concept only by random exam-
ples (z1, f(x1)), (x2, f(x2)),... independently drawn
from some distribution D over X and labeled ac-
cording to the target concept f. There are well
known lower and upper bounds on the number of
random examples necessary for learning: the upper
bounds are O (VCdim(F)e~!loge™" + e tlogd') [6]
and O (VCdim(F)e~*log =) [12], and the lower bound
[10] is © (VCdim(F)e~ + e *logd~'). In this section
we prove a lower bound for a variant of the PAC learn-
ing model proposed by Turdn [19], where the learner
may request random examples, ask equivalence queries,
and ask boolean queries. Then the learner has to output
with high probability a good approximation of the tar-
get concept. The performance of the learner is measured
by the number of random examples plus the number of
equivalence queries plus the number of boolean queries.
Turédn [19] showed that the VC-dimension of the con-
cept class (up to a constant factor) is a lower bound
on the learning complexity in this model. Clearly this
general bound cannot be improved by more than a con-
stant factor since VCdim({0,1}*) = |X| and {0,1}*
can be learned exactly using | X| equivalence or boolean
queries. In this section, we apply our technique to im-
prove on the constant of Turdn’s bound, using a some-
what simpler proof. For previous results in the PAC
learning model and variants thereof, see the references
in [19].

Definition 5.1 An algorithm A is a PAC-learning al-
gorithm for F C {0,1}* with equivalence and boolean
queries if for all €, > 0, there exists some integer
ma(e,d) such that, for all distributions D over X and
all f € F, if A is given € and § as input, after requesting
a total number of random examples, equivalence queries,
and boolean queries bounded by ma(e,0), A halts, and
with probability at least 1 — 9§, outputs a final hypothesis
h € {0,1}% such that D[z € X : f(z) # h(z)] < e. The
probability is taken over oll requested random examples
and the possible randomization of A.

We denote the performance of an optimal learn-
ing algorithm for concept class F' in this model by
optpgrp(F,€,d8). The main result of this section is the
following theorem.

Theorem 5.2 For all F C {0,1}* with VCdim(F) =
d<oo,all0<e<1/24, and all 0 < § < 1/24, we have

optprg(F, €, d) > d/10.

The proof of the theorem evolves through some lemmas,
where the central lemma is Lemma, 5.4.

Lemma 5.3 If VCdim(F) = d < oo then
OptPEB(Faead) 2 OptPEB({Oal}Xaea 6) fOT' any X with
| X|=d.

Lemma 5.4 Let |X| =d and F = {0,1}*. Then there
is an algorithm which for any 0 < § < 1 ezactly learns
any f € F with probability at least 1 — &, using only
equivalence queries and random examples drawn from
the uniform distribution on X, such that the number of
random examples and equivalence queries is bounded by
optpgg(F,€,0)(1 + 10g214/3) + 10g2€4/3 for all0 <e<1.

Proof: The proof is similar to the proof of Theorem
2.1. Again we construct a learning algorithm AFF which
does not use boolean queries and runs as subalgorithms
copies of an optimal learning algorithm (for F) APFB
which does use boolean queries. To the proof of The-
orem 2.1 we add mechanisms for dealing with random
examples and the final hypotheses of the subalgorithms.

At the beginning AFF requests a list L of
optpgg(F,€,8) random examples. If a copy APFE re-
quests a random example then the next example from
L not previously passed to APEB (or one of its prede-
cessors) is passed to APEB. Thus different copies might
receive the same random example, but from the point
of view of a single copy it receives independently drawn
examples. The weights of the copies are not changed if
they request random examples.

If a copy APEB proposes a final hypothesis h;, the
master algorithm AP treats this hypothesis like a hy-
pothesis of an equivalence query. It constructs its
own hypothesis h (for an equivalence query) as the

weighted majority vote of the hypotheses of the sub-
algorithms (some of which are final hypotheses, some
of which are equivalence queries). If a final hypothe-
sis h; predicts correctly for the counterexample z* (i.e.
hi(z*) # h(z*)) then the state of the copy AFFP is
not changed. If it predicts incorrectly (h;(z*) = h(z*))
then APEB’s final hypothesis h; is replaced by a new hy-
pothesis h} which has hi(2*) # h(z*) and is otherwise
the same as h;. The corresponding weight w; is multi-
plied by 1/2. Subalgorithms asking equivalence queries
for which z* is a counterexample are updated as in the
proof of Theorem 2.1.

Following the analysis of the proof of Theorem 2.1 we
have that after M equivalence queries of APF with incor-
rect hypotheses, the total sum of all weights is at most
(3/4). On the other hand with probability 1 — § we
have for the first final hypothesis h; of the special copy
that D[z : hs(z) # f(x)] = |[{z : hs(z) # f(z)}|/d <€,
where f is the target concept. Thus the final copy must
be modified at most de times to be completely correct.
Hence with probability 1 — § the weight of the special
copy is at least (1/2)°Pteee(F,6:0)+de gince the number of
equivalence and boolean queries of the special copy is
bounded by optpgg(F,€,0). By taking logarithms and
solving for M, we get

1
M< —— F
S fog, 4/3(OptPEB(1€,0) + de)
which, adding the number of random examples, implies
the lemma. m|
The following lemma’s proof uses ideas from [6, 19].

Lemma 5.5 Choose 0 < e < 1and 0 < 4§ < 1. If
|X|=d and F = {0,1}* and a (randomized) learning
algorithm A uses less than d(1/2—e—3+€d) equivalence
queries and random examples drawn from the uniform
distribution on X, then there is an f € F such that with
probability at least §, the error of A’s final hypothesis is
greater than e.

Proof Sketch: Assume without loss of generality that
X ={1,...,d}, and furthermore, that whenever A asks
an equivalence query h, it receives the least counterex-
ample to h; i.e., if f is the target, its counterexample is
the least x such that h(x) # f(x). Note that, with this
convention for generating counterexamples, when A re-
ceives a counterexample x, in addition to discovering
f(z), it also can determine f(z) for z < z, as it knows
that f(z) = h(z). On the other hand A does not learn
anything about f(z) for z > x.

Suppose that the target function f is chosen uniformly
at random from {0,1}%, or that, equivalently, each f(z)
is independently set to 1 with probability 1/2. If A
“kmows” f(x) on k elements of the domain, then, since
each f(x) was chosen independently at random, the ex-
pected number of misclassifications of A’s final hypoth-

esis, given this “knowledge”, is (d — k)/2. Thus

E(number of misclassifications)
= d/2 — E(number of points “known”)/2. (5)

To determine a bound on the expected number of
“kmown” points, first, each random example increases
the number of known points by at most 1. Now, consider
a particular equivalence query h. Suppose ui,us, ..., u;
are the points that are “unknown” when h is asked.
Since the value of the target function f was chosen in-
dependently of the other elements of the domain, h is
correct on each u; independently with probability 1/2.
Thus, the expected number of points “discovered” by this
equivalence query is at most

l
Yttt <,

i=1

Thus for each random example or equivalence query, the
expected number of points “discovered” is at most 2, and
therefore, if a total of m equivalence queries and random
ecxamples are asked, the total expected number of points
“discovered” is at most 2m.

Plugging into (5), we get that the expected number of
misclassifications is at least d/2 — m. The fact that for
a randomly chosen f, the expected number of misclas-
sifications is at least d/2 — m implies that there is a
particular f for which the expected number of misclas-
sifications is at least d/2 — m. If the error of A’s final
hypothesis is no worse than € with probability at least
1 — 4, than the expected error is at most (1 — d) + 4.
Thus solving (d/2—m)/d < e(1—3)+4 for m completes
the proof. O

Combining Lemmas 5.3, 5.4, and 5.5 together with
some straightforward calculations proves Theorem 5.2.

Let optpg(F,€,d) be the performance of an optimal
learning algorithm which uses only random examples
and boolean queries, and let optp(F,€,0) be the per-
formance of an optimal learning algorithm which only
uses random examples. Then using similar techniques as
above, together with by now standard Chernov-bound
techniques from [6, 5], one can prove that

optp(F,€,6) = O((optpg(F,€/2,6/2) + 1Og(l/5))/€)(- :
6
If optpy is defined similarly where membership queries
replace boolean queries, Eisenberg and Rivest [11]
showed that for all F with a certain property,
optpm(F,€,0) = Q(log(1/0)/e). PAC learning using
only boolean queries was studied by Kulkarni, Mitter
and Tsitsiklis [13].

6 Boolean queries and computa-
tionally efficient algorithms

To discuss issues of computational efficiency, it is use-
ful to chose an encoding scheme for elements of X and
elements of F' (see, e.g. [2]). For each n and s, an en-
coding scheme gives rise to the set X, of all elements of
X whose encoding has length at most n and Fj, the
corresponding set for F' and s. We assume boolean
queries take constant time. To ask an equivalence query
h, the learning algorithm must output an algorithm for
computing h, and is charged for the time required for
evaluating h at the counterexample received for h. We
say that an algorithm for F' is efficient if the time re-
quired for learning any function f € F' is bounded by a
polynomial in the length of the encoding of the longest
counterexample received and the encoding of f.

Bshouty, Goldman, Hancock and Matar [7], for many
concrete classes F', proved tight bounds on the num-
ber of equivalence queries required by an algorithm that
learns arbitrary functions in F' using polynomially many
membership queries. Their upper bounds were obtained
using efficient algorithms. The following result provides
a general bound on the usefulness of few boolean queries
(and therefore, for example, few membership queries)
for designing efficient algorithms.

Theorem 6.1 Choose X, F C {0,1}* and an encod-
ing scheme & for X and F. Then if there is an efficient
algorithm AFB for learning F (w.r.t. £) and there is a
constant ¢ such that A¥® asks at most c(logn + log s)
boolean queries, where n is the length of the longest
counterexample received and s is the length of the tar-
get function, then there is an efficient algorithm AF for
learning F' (w.r.t. £) that makes no boolean queries.

Proof Sketch for Theorem 6.1 We use a slightly
modified version of the algorithm transformation of the
proof of Theorem 2.1, in which copies of AFB that have
used more than ¢ = c(logn + logs) boolean queries
are eliminated from consideration. The special copy is
clearly never eliminated. We show that at any given
time, there are at most 29 copies under consideration.
To see this, it is useful to view the various copies of AFB
as the leaves of a binary tree (different from the tree con-
sidered in the proof of Theorem 3.1). The tree is initial-
ized with the single copy at the root. At any given time,
when a copy asks a boolean query, it is given two chil-
dren corresponding to the copies that receive YES and
NO respectively. After A¥ asks equivalence queries, the
number of copies remains constant. Thus, we may con-
sider those updates as simply relabelling the leaves of
the tree. Since the tree under consideration always has
depth at most q, it has at most 27 leaves. O

7

Acknowledgements

We thank Manfred Warmuth for posing the problems

solved in Theorems 3.5 and 4.1.

We thank Gyorgy

Turén for his comments on an earlier draft of this pa-

per,

including pointing out an error. We thank Peter

Bartlett for asking us the question partially answered
by (6).

References

[1]

[2]

[4]

[6]

[9]

[10]

D. Angluin. Queries and concept learning. Machine
Learning, 2:319-342, 1988.

D. Angluin and M. Kharitonov. When won’t mem-
bership queries help? In Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing,
pages 444-454, New Orleans, May 1991. ACM.

P. Auer and P.M. Long. Structural results for
on-line learning models with and without queries,
1993. Submitted.

P. Auer, P.M. Long, W. Maass, and G.J. Woegin-
ger. On the complexity of function learning. The
1993 Workshop on Computational Learning The-
ory, 1993.

G. Benedek and A. Ttai. Learnability with respect
to fixed distributions. Theoretical Computer Sci-
ence 86(2):377-389, 1991.

A. Blumer, A.
M.K. Warmuth.
Chervonenkis dimension.
1989.

Ehrenfeucht, D. Haussler, and
Learnability and the Vapnik-
JACM, 36(4):929-965,

N.H. Bshouty, S.A. Goldman, T.R. Hancock, and
S. Matar. Asking questions to minimize errors. The
1998 Workshop on Computational Learning The-
ory, 1993.

N. Cesa-Bianchi, Y. Freund, D. Helmbold, and
M.K. Warmuth. On-line prediction and conversion
strategies. The 1993 IMA FEuropean conference on
Computational Learning Theory, 1993.

N. Cesa-Bianchi, Y. Freund, D.P. Helmbold,
D. Haussler, R.E. Schapire, and M.K. Warmuth.
How to use expert advice. Proceedings of the 25th
ACM Symposium on the Theory of Computation,
1993.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L.G.
Valiant. A general lower bound on the number
of examples needed for learning. Information and
Computation, 82(3):247-251, 1989.

10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

B. Eisenberg and R.L. Rivest. On the sample com-
plexity of PAC-learning using random and chosen
examples. The 1990 Workshop on Computational
Learning Theory, pages 154-162, 1990.

D. Haussler, N. Littlestone, and M.K. Warmuth.
Predicting {0, 1}-functions on randomly drawn
points. Technical Report UCSC-CRL-90-54, Uni-
versity of California Santa Cruz, Computer Re-
search Laboratory, December 1990. To appear in
Information and Computation.

S.R. Kulkarni, S.K. Mitter, and J.N. Tsitsiklis. Ac-
tive learning using arbitrary binary valued queries.
Machine Learning, 11(1), 1993.

N. Littlestone. Learning quickly when irrelevant at-
tributes abound: a new linear-threshold algorithm.
Machine Learning, 2:285-318, 1988.

N. Littlestone. Mistake Bounds and Logarithmic
Linear-threshold Learning Algorithms. PhD thesis,
UC Santa Cruz, 1989.

N. Littlestone and M.K. Warmuth. The weighted
majority algorithm. Technical Report UCSC-CRL-
91-28, UC Santa Cruz, October 1991. To appear,
Information and Computation.

W. Maass. On-line learning with an oblivious en-
vironment and the power of randomization. The
1991 Workshop on Computational Learning The-
ory, pages 167-175, 1991.

W. Maass and G. Turdn. Lower bound methods
and separation results for on-line learning models.
Machine Learning, 9:107-145, 1992.

G. Turdn. Lower bounds for PAC learning with
queries. The 1998 Workshop on Computational
Learning Theory, 1993.

L.G. Valiant. A theory of the learnable. Commu-
nications of the ACM, 27(11):1134-1142, 1984.

V.N. Vapnik and A.Y. Chervonenkis. On the uni-
form convergence of relative frequencies of events
to their probabilities. Theory of Probability and its
Applications, 16(2):264-280, 1971.

V. Vovk. Aggregating strategies. In Proceedings
of the 3nd Workshop on Computational Learning
Theory, pages 371-383. Morgan Kaufmann, 1990.

V. Vovk. Universal forecasting algorithms. Infor-
mation and Computation, 96(2):245-277, 1992.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

