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Abstract

In the multi-armed bandit problem, a gambler must decide
which arm of K non-identical slot machinesto play in a se-
guence of trials so as to maximize his reward. This classica
problem has received much attention because of the simple
model it provides of the trade-off between exploration (trying
out each arm to find the best one) and exploitation (playing
the arm believed to give the best payoff). Past solutions for
the bandit problem have dmost always relied on assumptions
about the statistics of the dot machines.

In thiswork, we make no statistical assumptions whatso-
ever about the nature of the process generating the payoffs of
the dot machines. We give a solution to the bandit problem
in which an adversary, rather than a well-behaved stochastic
process, has complete control over the payoffs. In a sequence
of T plays, we prove that the expected per-round payoff of our
algorithmapproachesthat of thebest arm at therate O (7'~ /3),
and we give an improved rate of convergence when the best
arm has fairly low payoff.

We aso consider a setting in which the player has ateam
of “experts’ advising him onwhich arm to play; here, wegive
a strategy that will guarantee expected payoff close to that of
the best expert. Finaly, we apply our result to the problem of
learning to play an unknown repested matrix game against an
all-powerful adversary.

1 Introduction

In the well studied multi-armed bandit problem, originally
proposed by Robbins[9], a gambler must choose which of K
slot machinesto play. At eachtimestep, hepullsthearm of one
of the machines and receives areward or payoff (possibly zero
or negative). The gambler’s purpose is to maximize his total
reward over a sequence of trials. Since each arm is assumed
to have a different distribution of rewards, the goal is to find
the arm with the best expected return as early as possible, and
then to keep gambling using that arm.

The problem is a classical example of the trade-off be-
tween exploration and exploitation. On the one hand, if the
gambler plays exclusively on the machine that he thinks is
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best (“exploitation”), he may fail to discover that one of the
other arms actually has a higher average return. On the other
hand, if he spends too much time trying out al the machines
and gathering statistics (“ exploration™), he may fail to play the
best arm often enough to get a high tota return.

As a more practicaly motivated example, consider the
task of repeatedly choosing a route for transmitting packets
between two points in a communication network. Suppose
there are K possible routes and the transmission cost is re-
ported back to the sender. Then the problem can be seen as
that of selecting a route for each packet so that the total cost
of transmitting alarge set of packetswould not be much larger
than the cost incurred by sending them all on the single best
route.

In the past, the bandit problem has amost always been
studied with the aid of statistical assumptions on the process
generating therewardsfor each arm. Inthegambling example,
for instance, it might be natural to assume that the distribution
of rewardsfor each arm is Gaussian and time-invariant. How-
ever, it is likely that the costs associated with each route in
the routing example cannot be modeled by a stationary distri-
bution, so a more sophisticated set of statistical assumptions
would be required. In generd, it may be difficult or impossi-
ble to determine the right statistical assumptions for a given
domain, and some domains may be inherently adversaria in
nature so that no such assumptions are appropriate.

In this paper, we present a variant of the bandit problem
in which no statistica assumptions are made about the gen-
eration of rewards. In our modd, the reward associated with
each arm isdetermined at each time step by an adversary with
unbounded computational power rather than by some benign
stochastic process. We only assume that the rewards are cho-
sen from a bounded range. The performance of any player is
measured in terms of regret, i.e., the difference between the
total reward scored by the player and the total reward scored
by the best arm.

At first it may seem impossible that the player should
stand a chance against such a powerful opponent. Indeed, a
deterministic player will fare very badly against an adversary
who assigns low payoff to the chosen arm and high payoff
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to dl the other arms. However, in this paper we present
a very efficient, randomized player agorithm that performs
well against any adversary. We prove that the regret suffered
by our agorithm is at most O(T?%3(K log K)/3), where K
isthenumber of armsand 7" isthenumber of time steps. Note
that the average per-time-step regret approaches zero at the
rate O(T—/3).

We also present more refined bounds in which the depen-
dence on T is replaced by thetota reward of the best arm (or
an assumed upper bound thereof).

Our worst-case bounds may appear weaker than thebounds
proved using statistical assumptions, such as those shown by
La and Robbins [6] of the form O(log7"). However, when
comparing our results to those in the statistics literature, it is
important to point out two differences between our framework
and theirs:

1. They define the regret as the difference between the ex-
pected total reward of the player and the maximum of
the expected tota rewards of any arm. Our definition,
in contrast, measures regret with respect to the specific
sequence of payoffs actually generated by the adversary.

2. They assume that the distribution of rewardsthat is asso-
ciated with each arm is fixed as the number of iterations
T increases to infinity. In contrast, our bounds hold for
any finite 7', and, by the generaity of our model, these
bounds are applicable when the payoffsare randomly (or
adversarially) chosen in a manner that doesdependon 7.

Whileit might seem that the apparent weakness of our bounds
isaresult of the adversarial nature of our framework, in fact,
each of the differences described above suffices to show that
an upper bound of O(logT") isimpossiblein our model. This
holds even when the rewards are generated randomly and in-
dependently of theplayer’ sactionsasin the standard statistical
framework.

Consider the first difference. In a statistical setting, the
difference in the definition of the regret corresponds to the
difference between the maximum expected total reward of
any arm and the expected maximum total reward of any arm
in a sequence of 7' trids. These two measures can be far
apart since, due to random variation, the expected maximum
is typicaly much larger than the maximal expectation. As
shown by Cesa-Bianchi et a. [2], thisidea can be used to
construct alower bound for the regret of any agorithm of the
form Q(/TTogK).1

We prove astronger lower bound in Section 6 that isbased
on the second difference. We describe a distribution over the
rewards of the different arms, which depends on 7", for which
the regret of any player isQ(vVTK).

A non-stochastic bandit problem was also considered by
Gittins[4] and Ishikidaand Varaiya [5]. However, their ver-
sion of the bandit problem is very different from ours. they

1In fact, this lower bound holds for the stronger full information game
described in Section 3.

assume that the player can compute ahead of time exactly
what payoffs will be received from each arm, and their prob-
lem is thus one of optimization, rather than exploration and
exploitation.

Our agorithmishbased in part on an al gorithmrecently pre-
sented by Freund and Schapire [3], which in turnis avariant
of Littlestoneand Warmuth’s[ 7] weighted mgjority algorithm,
and Vovk’s[10] aggregating strategies. Inthe setting analyzed
by Freund and Schapire (which we call here the full informa-
tion game), the player on each trial scores the reward of the
chosen arm, but gains access to the rewards associated with
all of thearms (not just the one that was chosen).

In some situations picking the same action at al trids
might not be the best strategy. For example, in the packet
routing problem it might bethat no singlerouteisgood for the
whole duration of the message, but switching between routes
from time to time can achieve a better performance. We give
avariant of our agorithm which combines the choices of NV
strategies (or “experts’), each of which recommends one of
the K actions at each iteration. We show that the regret with
respect to the best strategy is O(7%3(K InN)Y/3). Note that
the dependenceon thenumber of strategiesisonly logarithmic,
and therefore the bound is quite reasonable even when the
player is combining avery large number of strategies.

The adversariad bandit problem is closely related to the
problem of learning to play an unknownrepested matrix game.
In this setting, a player without prior knowledge of the game
meatrix is playing the game repeatedly against an adversary
with compl ete knowl edge of the game and unbounded compu-
tational power. It iswel known that matrix games have an as-
sociated value whichisthe best possibl e expected payoff when
playing the game against an adversary. If thematrix isknown,
then arandomized strategy that achievesthe value of thegame
can be computed (say, using alinear-programming a gorithm)
and employed by the player. The case where the matrix is
entirely unknown was previously considered by Bafios[1] and
Megiddo [8], who proposed two (extremely inefficient) strate-
gies whose per-round payoff converges to the game value.
For the same problem, we show that by using our algorithm
the player achieves an expected per-round payoff in 7" rounds
which efficiently approaches the value of the game at the rate
O(T—*/3). Thisconvergence ismuch faster than that achieved
by Bafios and Megiddo.

Our paper is organized as follows. In Section 2, we give
theformal definition of theproblem. In Section 3, we describe
Freund and Schapire’ sagorithmfor thefull information game
and state its performance. In Section 4, we describe our basic
algorithm for the partiad information game. In Section 5, we
show how to adaptively tune the parameters of thisagorithm
when no prior knowledge is available. In Section 6, we give
a lower bound on the regret suffered by any algorithm for
the partia information game. In Section 7, we show how
to modify the agorithm to use expert advice. Finadly, in
Section 8, we describe the application of our agorithm to



repeated matrix games.

2 Notation and terminology

We formalize the bandit problem as a game between a player
choosing actions and an adversary choosing the rewards as-
sociated with each action. The game is parameterized by the
number K of possible actions, where each action is denoted
by aninteger i, 1 < ¢« < K. We will assume that al the
rewards belong to the unit interval [0, 1]. The generalization
torewardsin [a, b] for arbitrary a < b is straightforward.

The gameisplayedinasequence of tridlst = 1,2, ..., 7.
We distinguish two variants. the partia information game,
which captures the adversaria multi-armed bandit problem;
and the full information game, which is essentially equivalent
totheframework studied by Freund and Schapire[3]. Oneach
tria ¢ of the full information game;

1. The adversary selects a vector x(¢) € [0, 1]% of current
rewards. The ith component z;(¢) is interpreted as the
reward associated with action ¢ at trial £.

2. Without knowledge of the adversary’s choice, the
player chooses an action by picking a number i; €
{1,2,...,K} and scores the corresponding reward
.L“(t)

3. The player observes the entire vector x(¢) of current re-
wards.

The partial information game corresponds to the above de-
scription of the full information game but with step 3 replaced
by:

3. Theplayer observesonly thereward z;, () for the chosen
action i;.

LetGy = Ethl z;,(1) bethetota reward of player A choos-
ing actionsiy, iz, . . ., ir.

We formally define an adversary as a deterministic rule
mapping the past history of play is,...,7:—1 to the current
reward vector x(t). (Sinceall our results are worst-case with
respect to the adversary, there is no additiona power to be
gained by alowing the adversary to be randomized). As a
special case, we say that an adversary is oblivious if it is
independent of the player’s actions, i.e., if the reward at trid
t isafunction of ¢ only. Clearly, dl of our results, which are
proved for a non-oblivious adversary, hold for an oblivious
adversary aswell.

As our player dgorithms will be randomized, fixing an
adversary and a player algorithm defines a probability distri-
bution over the set {1,..., K}” of sequences of 7 actions.
All the probabilities and expectations considered in this pa-
per will be with respect to this distribution. For an oblivious
adversary, the rewards are fixed quantitieswith respect to this
distribution, but for a non-oblivious adversary, each reward

z;(t) is arandom variable defined on the set {1, ..., K}!~!
of player actions up to trial t — 1. We will not use explicit
notationto represent thisdependence, but will refer toitinthe
text when appropriate.

The measure of the performance of our algorithm is the
regret, which is the expected value of the difference between
the total reward of the algorithm and the total reward of the
best action. Formally, we define the expected total reward of
algorithm A by

and the regret of agorithm A by R4 = E[G 4] — Gpes- This
definition is easiest to interpret for an oblivious adversary
since, inthiscase, Gpeg truly measures what could have been
gained had the best action been played for the entire sequence.
However, for anonobliviousadversary, the definition of regret
is a bit strange: Although it till compares the total reward
of the agorithm to the sum of rewards that were associated
with taking some action j on al iterations, had action j been
taken, the rewards chosen by the adversary would have been
different thanthoseactually generated, sincethevariablez; (t)
depends on the past history of playsiy,...,7;—1. Although
the definition of R 4 looksdifficult to interpret in thiscase, in
Section 8 we prove that our bounds on the regret for a non-
oblivious adversary can aso be used to derive an interesting
result in the context of repeated matrix games.

3 Thefull information game

In this section, we describe an algorithm, called Hedge,
for the full information game which will also be used as a
building block in the design of our algorithm for the partia
information game. The version of Hedge presented hereis
a dight variant? of the agorithm introduced by Freund and
Schapire [3] as ageneralization of Littlestoneand Warmuth's
Weighted Mgjority [7] algorithm.

Hedge isdescribed in Figure 1. Themain ideaissimply
to choose action i at time ¢ with probability proportional to
(1+ @)*"), where « > Oisaparameter and s;(t) isthetota
reward scored so far by action i. Thus, actions yielding high
rewards quickly gain a high probability of being chosen.

The following is a straightforward variant of Freund and
Schapire's Theorem 2. For completeness, a proof is provided
in Appendix A.

2These modifications enable Hed ge to handle gains (rewardsin [0, 1])
rather than losses (rewardsin [—1, 0]).



Algorithm Hedge
Parameter: A rea number o > 0.
Initialization: Set s;(1) :==0fori=1,... K.

Repeat for ¢t = 1,2, ... until game ends
1. Choose action ¢; according to the distribution p(t),
where :
(14 a)s®)

pi(t) = Ef:l(l'i' a)sj(t).

2. Receivethereward vector x(¢) and score gain z;, (t).

3. Setsl-(t—i—l) = Si(t)—l—;l‘i(t) fOfiIl,...,K.

Figurel: Algorithm Hedge for the full information game.

Lemma3.1 For o > 0, and for any sequence of reward vec-
torsx(1),...,x(7T), the probability vectors p(¢) computed by
Hedge satisfy

T T_l z; | N Ink
> p(t) - x(t) > (Zf— (t)) N1+ a)—Ink

t=1

«
for all actionsj =1,..., K.

Taking expectationswithrespect to therandom choice of plays
and using standard approximationsfor the In function gives a
lower bound on the expected gain:

Theorem 3.2 For o« > 0, the expected gain of algorithm
Hedge in the full informationgameisat least

GpetIN(1+ @) — INK
«

E[GHedge]

InK

«
> Gpeg — EGbeﬂ -

Thus, it can easily be shown that, for an appropriate choice
of o, Hedge suffers regret a most v27'In K in the full
information game.

4 Thepartial information game

In this section, we move to the andysis of the partid in-
formation game. We present an algorithm Exp3 that runs
the agorithm Hedge of Section 3 as a subroutine. (Exp3
stands for “ Exponentid-wei ght a gorithm for Exploration and
Exploitation.”)

The agorithm is described in Figure 2. On each trid #,
Exp3 receives thedistribution vector p(¢) from Hedge, and
selects an action ¢; according to the distribution p(¢) which
isamixture of p(¢) and the uniform distribution. Intuitively,

Algorithm Exp3
Parameters: Relsa > 0and y € [0, 1].
Initialization: Initidize Hedge.

Repeat for ¢t = 1,2, ... until game ends
1. Get thedistributionp(t) from Hedge.

2. Select action i; to be j with probability
pi(t) = (1—v)pi(t) +v/K.

3. Recevereward z;,(¢) € [0, 1].

4. Feed the smulated reward vector x(¢) back to
Hedge, where

otherwise.

Figure2: Algorithm Exp3 for the partial information game.

mixing in the uniform distribution is done in order to make
sure that the algorithm tries out all K actions and gets good
estimates of the rewards for each. Otherwise, the agorithm
might missagood action becausetheinitial rewardsit observes
for this action are low and large rewards that occur later are
not observed because the action is not selected.

After Exp3 receivesthereward z;, () associated with the
chosen action, it generates a simulated reward vector x(t) for
Hedge. AsHedge reguiresfull information, all components
of this vector must be filled in, even for the actions that were
not selected. For actions j # ¢; not chosen, we set z;(t) to
be zero. For the chosen action ¢;, we set the simulated reward
z;,(t) proportiond to z;,(t)/p;,(t). This compensates the
reward of actionsthat are unlikely to be chosen and guarantees
that the expected simulated gain associated with any fixed
action j is proportional to the actual gain of the action, i.e,
that E;,[2;() | i1,...,is—1] = F2;(t) for any fixed choice
of i1,...,4t—1. The constant scaling factor v/ K is used to
guarantee that therewards fed back to Hedge are intherange
[0, 1] asrequired. From this perspective, it isnecessary to mix
in the uniform distribution with the distribution generated by
Hedge in order to ensure that the simulated reward before
scaling, z;,(t)/pi,(t), isnot too large.

We now give the main theorem of this paper, which bounds
theregret of agorithm Exp3.

Theorem 4.1 For « > 0, v € [0, 1], the expected gain of
algorithmExp3isat least

1- KInK
E[GExpB] 2 77 (Gbest |n(1 =+ Oz) — ° )



«

2

> Gpest — (’Y+ )Gbeﬂ_

By making an appropriate choice of the parameters v and «
we get the following bound.

Corollary 4.2 If ¢ > Gpetx and algorithm Exp3 is run
with input parameters: o« = /(4K InK)/g and v =
min{l, Y (KInK)/(Zg)},thentheregret of algorithmExp3
isat most

Rexps < Sigz/s(K InK)Y/3.

V2
Proof of Theorem 4.1. We begin by showing alower bound
onthetota reward y_, z;,(¢t) for any sequence iy, . . ., i:
T K T
Yozt = > Y bi(1)3:,(1)
t=1 t=1
K < ~
= TX (@ =i D3, 0) + F2:,0))
(1-NK ¢
> Y pn (03 (1)
7 t=1
1-NK ¢
= =) p()-R(1) @
7 t=1
(1—)K d
> ——J;—(muﬁ¢0§:@@y-mK).(a
o t=1

Equation (2) holds for any action j by Lemma 3.1 since the
simulated reward vectors x(¢) are fed back to Hedge at each
time step. For any j,t we have

El2;(1)] = Eiy,. v [Ea [85(1) |, - de—d]]
N PO A 1O B
- Ell ,,,,, 21—1 [p (t) ]{ ﬁj(t) + (l p] (t)) O:|
= %E[mj(t)]. (3)
Thus, taking expectationsin (2), we get that

E lz xit(t)]

«
v t=1

As the inequdity holds for all j, we get the bound of the
theorem. The bound on regret follows from the fact that
|n(1+a)2a—a2/2f0ra>0. O

To apply Corollary 4.2, it is necessary that an upper bound
g 0N Gpeg be availablefor tuning « and . For example, if the
number of trials 7" is known in advance then, since no action

Algorithm Exp3.1
Initialization: Setn ;= 1ands; :=0for:=1,..., K.
1. Setg(n) := 2". Restart Exp3 and et the parameters
« and y of Exp3 beasin Corollary 4.2 (with g setto

g(n)).

2. Let Exp3 choosean actioni,. Afterthereward z;, (¢)
isreceived, update
5, 1= Si, + i, (8)/i, (1)

3. If max; §; > g(n) — K/y
Thenset n :=n + 1and goto 1.
Else goto 2.

Figure3: Algorithm Exp3.1 for the partia information game
when abound on Gey IS Not known.

can have payoff greater than 1 onany trial, wecanuseg = 7'
as an upper bound.

If the rewards z;(¢) are in the range [a, b], a < b, then
Exp3 can be used after the rewards have been trandated
and rescaled to the range [0,1]. Applying Corollary 4.2
with ¢ = T, this gives a bound on regret of the form
O((b — a)T?3(K InK)*3). For ingtance, this is applica-
ble to a standard loss model where the “rewards’ fdl in the
range [—1,0].

Finally, inour definition of thegame, we have assumed that
the game always ends after 7" trials. However, we can get the
sameboundsontheregret evenif weallow theadversary toend
the game after an arbitrary trial of the adversary’s choosing.
The reason isthat this case can be reduced to the previousone
by having the adversary generate reward zero on all rounds
after the original game ends.

5 Guessing the maximal reward

Inthelast section, we showed that agorithm Exp3 yields
a regret of O(¢g%3(K InK)Y/3) whenever an upper bound ¢
on the total expected reward G Of the best action is known
in advance. Inthissection, we describe an algorithm Exp3.1
which does not require prior knowledge of a bound on G'peg,
and whose regret is a most O(GZ3(K In K)¥3) for Gpeg =
Q(K?®).

Our agorithm Exp3.1, described in Figure 3, proceeds
in rounds, where each round consists of a sequence of trias.
Weusen = 1,2,...toindex the rounds. On round n, the
algorithm “guesses’ abound g(n) for the total reward of the
best action. It then uses this guess to tune the parameters «
and vy of Exp3. Oniteration ¢, after Exp3 chooses action i,
and receives reward z;, (¢), the estimate §;, of thetotal reward
of action ¢; is incremented by z;,(¢)/pi,(t). Dividing the



reward by the probability of taking the action guarantees that
the expected value of each estimateis correct, i.e., E[§;(¢)] =
Zt, z; (1) foraII1<J<AanddI1<t<Twhere
5;(1) denotes the value of 5; at the end of trial t. Using
theae estimates, the algorithm detects (approximately) when
the actual gain of some action has advanced beyond g(n).
When this happens, the algorithm increments » and restarts
Exp3 with alarger bound on the maximal gain.
The performance of the agorithm is characterized by the
following theorem.

Theorem 5.1 For K > 2, the regret suffered by algorithm
Exp3.1lisat most

Regsa < 43(GH3/KInK + K2InK).

(We did not attempt to optimize the constantsin thistheorem.)

The proof of the theorem isdivided into two lemmas. The
first bounds the regret caused by each round, and the second
boundsthe number of rounds. We definethefollowingrandom
variables: T,, denotesthetrial on which the nth round begins
and R denotes the total number of rounds (i.e., the value of
n on the last trid 7). For notational convenience we dso
define Tr41 to be T' + 1, and we define g; (t) = .xJ (t) for

1<j<K,1<t<T.Notethat 5;(t) = Et,zlyj(t).

Lemmab.2 For anyaction j andfor everyround1 < n < R,
the gain of Exp3.1 during the nth iteration is lower bounded

by

Tpy1—1 Tpy1—1

> wz D 50 - s IR IE.

t=T, t=T,

Proof. We use Equation (2) from the proof of Theorem 4.1.
We replace —1] (t) by g;(t) and separate the term involving

ook "“'1 g; (¢) into two terms as follows:

Tn+1—l
Z 'rlt(t)
t=T,
~ Tn+1—l
1—v)K
> A=DK (14w 3 &) - InK
ay t=T,
Tn+1—l Tn+1—l - -
. o . KInK
> 3 um-(r+3) Y G- ——
t=T, t=T, v

We bound the second occurrence of the sum by adding
non- negative terms: YRR (1) < TR0 =

5;(Th41 — 1). From the def|n|t|on of the terml nation con-
dition,we know that §;(T,+1 — 1) < g(n). Substitutingthis
bound and our choicesfor « and «y into thelast equation above
we get the statement of the lemma. a

The next lemma shows that, with high probability, there
are not too many rounds.

Lemmab5.3 Let K > 2, Gpex > K, and r = [log, Gpes]-
Thenforanyi > 3,P{R > r+ i} < 10.2-2-5/3K5/3/G23,

Proof. (Sketch) Theideaof the proof issimple. If agorithm
Exp3.1 terminated round number r + i before iteration T,
then the value of at least one of the K estimators 51, ..., 5k
at iteration T' has to be larger than g(r + i) — K/v(r + i),
where v(n) isthe value of the parameter  used on round n.
However, the expected vaue of the estimator is Gpeg < g(7),
soreaching roundr+i impliesalarge estimationerror. Simple
arguments from probability theory show that the probability
of such alarge error in any of the estimators is very small.
(Details givenin Appendix B.) O

Proof of Theorem 5.1. Sincethetheorem holdstrivially when

Gres < K, we assume without generdity that Gpeg > K.
We fix some action j, partitionthe expected totd gaininto

runs, and bound the gain from each round using Lemma 5.2:

[
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If we now choose j to be the action with the largest gain, then
thefirst term is equal to Giheg and the second term bounds the
regret. To bound the second term we separate the expectation
into the sum of atypicd term and the atypical terms and then
use Lemmab5.3.

E [223/3] < 22r+IBP IR < 4 3)
+ Y 22UHHNEP (R S 4 i}
i=3
< (16Gpes)?/®
1{5/3 o _
4G/ 10.2- 5532
beﬂ i=3
< 65GH3+65K53,
This gives the statement of the theorem. O

6 A lower bound

In thissection, we prove an information-theoreticlower bound
on the regret of any player, i.e, alower bound that holds



even if the player has unbounded computational power. More
precisaly, we show that there exists an adversaria strategy
for choosing the rewards such that the expected regret of any
player agorithm is Q(vTK). Observe that this does not
match the upper bound for our algorithms Exp3 and Exp3.1
(see Corallary 4.2 and Theorem 5.1); it isan open problem to
close thisgap.

The adversaria strategy we usein our proof isobliviousto
theagorithm; it simply assignstherewards at random accord-
ing to some distribution, similar to a standard statistical model
for the bandit problem. The choice of distribution depends
on the number of actions K and the number of iterations 7.
This dependence of the distributionon 7" isthe reason that our
lower bound does not contradict the upper bounds of theform
O(logT) which appesar in the statistics literature [6]. There,
the distribution over therewardsisfixed as7" — co.

For the full information game, matching upper and lower
bounds of the form ¢ (/T TogK) were aready known [2].
Our lower bound shows that for the partial information game
the dependence on the number of actions increases consid-
erably. Specificaly, our lower bound implies that no up-
per bound is possible of the form O(7T*(log K)?) where
0<a<lg>0.

Theorem 6.1 There exist some positive constant ¢ > 0 and
natural number Ko such that for any number of actions
K > Ko and any number of iterations 7' > K there exists a
distributionover therewards assigned to different actionssuch
that the expected regret of any algorithmisat least e/ T K.

Thelower bound on the expected regret implies, of course,
that for any algorithm there is a particular choice of rewards
that will cause the regret to be larger than this expected vaue.

Proof. (Sketch) We construct the random distribution of the
rewards as follows. One of the K actionsis chosen uniformly
at random to be the “good” action. The 7" rewards associated
with the good action are chosen independently at random to
be 1 with probability 1/2 + a+/K/T and 0 otherwise for
some small constant @ > 0. The rewards associated with the
other actions are chosen independently at randomtobe O or 1
with equal odds. Then the average optimal reward per trid is
1/2+a+/K/T. Ontheother hand, weshow that thedifference
between the distributions of rewards of good and bad arms is
so dight that, in 7" trids, the al gorithm cannot detect whichis
the good arm with sufficient religbility. More precisaly, there
isa constant probability that the good action is sampled only
2T/ K times and the total gain isa most 7'/2. From thisa
lower bound, on the expected regret can be derived. (Details
omitted for lack of space.) O

7 Combining the advice of many experts

Up to this point, we have considered a bandit problem in
which the player’s goal isto achieve a payoff close to that of

the best single action. In a more genera setting, the player
may have aset of strategiesfor choosingthe best action. These
strategies might select different actions at different iterations.
The strategies can be computationsperformed by the player or
they can be externa advice given to the learner by “experts.”
We will use the more general term “expert” (borrowed from
Cesa-Bianchi et al. [2]) because we place no restrictions on
the generation of the advice. The player’'sgoa inthiscaseis
to combinethe advice of the expertsin such away that itstotal
reward is close to that of the best expert (rather than the best
single action).

For example, consider the packet routing problem. Inthis
case there might be severa routing strategies, each based on
different assumptions regarding network |oad distributionand
using different data to estimate current load. Each of these
strategies might suggest different routes at different times, and
each might be better in different situations. In this case, we
would liketo have an agorithmfor combining these strategies
which, for each set of packets, performs amost as well asthe
strategy that was best for that set.

Formally, at each tria ¢, we assume that the player, prior
to choosing an action, is provided with aset of N probability
vectors ¢/ (1) € [0,1)%, j = 1,...,N, S &l (t) = 1. We
interpret ¢ (1) as the advice of expert j on tria ¢, where the
ith component &/ (¢) represents the recommended probability
of playing action i (as a specia case, the distribution can be
concentrated on a single action, which represents a determin-
istic recommendation). If the adversary chooses payoff vector
x(t), then the expected reward for expert j (with respect to
the chosen probability vector &7 (t)) issimply &’ (¢) - x(t). In
analogy of Gpeg, We define

Gpes = max E; ;
best 1< SN 11,07

S e ~x<t>] ,

t=1

so that theregret R4 = E[G 4] — Gpes Measures the expected
difference between the player’'s total reward and the total re-
ward of the best expert.

Our resultshold for any finite set of experts. Formaly, we
regard each ¢’ (t) as arandom variable, which is an arbitrary
function of the random sequence of plays iy, ...,4;—1 (just
likethe adversary’s payoff vector x(¢)). Thisdefinitionallows
for experts whose advice depends on the entire past history as
observed by theplayer, aswell asother sideinformationwhich
may be available.

We could at this point view each expert as a “meta
action” in a higher-level bandit problem with payoff vector
defined at tria ¢ as (¢'(1) - x(t), ..., &£ (N) - x(t)). Wecould
then immediately apply Corollary 4.2 to obtain a bound of
O(g?/3(N log N')}/3) ontheplayer’sregret relative to the best
expert (where ¢ is an upper bound on Gpeg). However, this
bound is quite weak if the player is combining many experts
(i.e, if N isvery large).

We show below that the algorithm Exp3 from Sec-



Algorithm Exp4
Parameters: Realsa > 0and y € [0, 1]
Initialization: Initidize Hedge (with K replaced by N)
Repeat for ¢t = 1,2, ... until game ends
1. Get thedistributionq(t) € [0, 1]V from Hedge.

2. Get advice vectors ¢’ () € [0, 7%, and let
p(t) == ;4 (D€ (1).

3. Select action i; to be j with probability
pi(t) = (1—7)p;(t) +v/K.

4. Receivereward z;,(¢) € [0, 1].

5. Compute the simulated reward vector x(t) as

otherwise.

6. Feed the vector y(t) € [0,1]" to Hedge where
yi(t) =& (1) - %(t).

Figure 4: Algorithm Exp4 for using expert advice in the
partial information game.

tion 4 can be modified yielding a regret term of the form
O(¢?3(K log N)*/3). This bound is very reasonable when
the number of actions is small, but the number of experts is
quite large (even exponential).

Our agorithm Exp4 is shown in Figure 4, and is only
a dightly modified version of Exp3. (Exp4 stands for
“Exponentia -weight algorithm for Exploration and Exploita-
tion using Expert advice”)

As before, we use Hedge as a subroutine, but we now
apply Hedge to a problem of dimension N rather than K.
At tria ¢, we receive a probability vector q(t) from Hedge
which represents a distribution over strategies. We compute
the vector p(t) as aweighted average (with respect to q(#)) of
the strategy vectors £’ (¢). The vector p(t) is then computed
asbeforeusing p(t), and an action i, ischosen randomly. We
define the vector x(t) € [0, 1]* as before, and we finally feed
thevectory(¢) € [0, 1] toHedgewherey; (t) = &’ (t)-x(t).

Theorem 7.1 For « > 0, v € [0,1], and for any family of
experts, the expected gain of algorithmExp4 is at least

1- = KInN
E[GExp4] 2 TPY(Gbeﬂln(l‘FOZ)— Y )
~ a\ ~ KInN
> Gbeﬂ—(’Y—F E) Ghegt — pos

Proof. From the definitions above, we have that
N .
p(t) - %(t) = 3 g;(DE (1) - (1) = a(t) - ().
ji=1

Thus, for dl 3, using (1) from the proof of Theorem 4.1, and
then applying Lemma 3.1, we have

Z xit(t) >

- “‘7’”[" S q0)-y(0)

> k) LS (In(1+ a)zT:yj(t) - InN) :

t=1

Taking expectations and using (3), we see that
. N P}/ -
Ely; ()] = E[€(1) - X(1)] = E[€’ (1) - x(1)]
and the theorem follows as in the proof of Theorem4.1. O

Anaogous versions of Corollary 4.2 and Theorem 5.1 can
beprovedinwhich K In K isreplaced intheregret by K In V.

8 Nearly optimal play of an unknown
repeated game

The bandit problem considered up to this point is closely re-
lated to the problem of playing an unknown repeated game
against an adversary of unbounded computationa power. In
this latter setting, a game is defined by an n x m matrix A.
On each tria ¢, the learner (or row player) chooses arow i of
the matrix. At the same time, the adversary (column player)
chooses acolumn j. Thelearner then receives the payoff A;;.
In repested play, thelearner’'sgoal isto maximizeitsexpected
total payoff over a sequence of plays.

Suppose in some trial the learner chooses its next move
i randomly according to a probability distribution on rows
represented by a (column) vector p € [0, 1], and the ad-
versary similarly chooses according to a probability vector
q € [0,1]™. Then the expected payoff isp? Aq. Von Neu-
mann’'s famous minimax theorem states that

H T : T
maxminp* Aq = minmaxp" Aq,
P q P ad qQ p P ad

where the max and min are over al distribution vectorsp and
q. The quantity » defined by the above equation is called the
value of the game given by matrix A. In words, this says
that there exists a mixed (randomized) strategy p for the row
player that guarantees expected payoff at least v, regardless of
thecolumn player’ saction. Moreover, thispayoff isoptimal in
the sense that the column player can choose a mixed strategy



whose expected payoff is a most v, regardiess of the row
player’s action.

Thus, if the learner knows the matrix A, it can compute a
strategy (for instance, using linear programming) that iscertain
to bring an expected optimal payoff v on each trial.

Suppose now that the game A is entirely unknown to the
learner. To be precise, assume the learner knows only the
number of rows of the matrix, and a bound on the magnitude
of the entriesof A. The main result of this section is a proof
based on the resultsin Section 4 showing that the learner can
play in such a manner that its payoff per trial will rapidly
converge to the optimal maximin payoff ». This result holds
even when the adversary knows the game A, and aso knows
the (randomized) strategy being used by the learner.

This problem of playing a repeated game with incom-
plete information was previously considered by Bafios[1] and
Megiddo [8]. However, these previoudy proposed strategies
are extremely inefficient. Not only isour strategy simpler and
much more efficient, but we also are able to prove much faster
rates of convergence.

In fact, the application of our earlier algorithms to this
problem is entirely straightforward. The learner’s actions are
now identified with the rows of the matrix and are chosen
randomly on each trial according to algorithm Exp3, where
wetune o and v asin Corollary 4.2 withg = T', where T" is
the total number of roundsof play.®> The payoff vector x(t) is
simply the column j; of A chosen by the adversary ontrial ¢.

Theorem 8.1 Let A bean unknown gamematrixin [a, b]™*™
with value ». Suppose the learner, knowing only @, b and n,
uses the algorithm sketched above against any adversary for
T trials. Thenthelearner’s expected payoff per trial isat least

v—3(b— a)\sl nzlnn.

Proof. We assume that [a,b] = [0, 1]; the extension to the
general caseisstraightforward. By Corollary 4.2, we have

T T
E|Y Ai|=E [Z l‘n(t)]
t=1 t=1
= 3
> maxE LZ:; ri(t)] - %T%"(n Inn)¥/3,
Let p besuchthat v = max, ming p” Aq = ming p? Ag. Then
T n T
max E lz zi(t)| = pi Y E[xi(t)]
t=1 i=1 t=1

3If T is not known in advance, the methods developedin Section 5 can be
applied.

where g; is a distribution vector whose j;th component is 1.
O

Note that the theorem is independent of the number of
columnsof A, and, with appropriate assumptions, the theorem
can beeasily generalized to adversarieswith aninfinite number
of strategies. If the matrix A isvery large and dl entries are
small then even if A isknown tothe player, our agorithm may
be an efficient aternative to linear programming.

The generdity of the theorem aso alows us to handle
games in which the outcome for given plays, j isarandom
variable (rather than a constant A; ;). Findly, as pointed out
by Megiddo [8], such a result is valid for non-cooperative,
multi-person games; the average per-tria payoff of any player
using thisstrategy will converge rapidly to the maximin payoff
of the one-shot game.
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A  Proof of Lemma 3.1

Let W, =YK (1+a) W For1<t<T,
Wiz1 i (14 a)* (1 + a)=®)
Wt N Wi

1
i

1+ oz)‘“(t:)(l + ax;i(t))
Wi

s (L4 0) Wy (t)
Wi

where we used the fact that ;(¢) € [0, 1] for the inequality.
Thus
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Observing that Wy = K and Wrp1 > (14 a)2e=:%) for
any j, we obtain the statement of the lemma. O

B Proof of Lemma 5.3

To get the upper bound we use

P{R>r+i}
= e3> -
< Sr{smsoern- L)

and

- . K
P {sj(T) >g(r+1i)— m}
Var(s; (7))
(9(r +1) — E[5;(T)] - 7(,{12'))2

by Chebychev’sinequality. Since

t=1

<

and the (g; (¢) —
ences, we have

z;(t)) form a sequence of martingale differ-

T
Var(s;(T)) = E [E(;&j (t) — =, (t))zl : (4)
t=1
Observe that the probability of selecting action j at trid ¢,
given that thistrial iswithin the first » + ¢ rounds, is at least
u =~(r+1i)/K. Alsoobservethat increasing the probability
of selecting action j to p on trials after » + ¢ rounds are
compl eted does not change the probability of startingr +i+1
roundsin 7 trials. Therefore we can, for the sake of our upper
bound, assume that the probability of selecting action j at any

trial upto 7" isat least . Evaluating Equation (4), we get

Var(5(T)) < [2:1 wz;t) ]
< eyt

Since E[5;(t)] < Ghes, Gbes > K, ¢ > 3 and by our choice
of r, it can be verified that

g(r+ i) —E[5;(T)] - K B > 0.42 - Glpeg - 2.

Y(r+i

.\ 2/3

K A
<102 27513,
- <be>

Summing over al actions j gives the lemma O

Thus,

P {520 -

< Ghes
S (0422 Go, 25
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