Learning NegtedJdifterenges dndhe.bresence of Malicif
Noise

Peter Auer
Graz University of Technology, Klosterwiesgasse 32/2, A-8010 Graz (Austria)

pauer@igi.tu-graz.ac.at

July 6, 1996

Abstract

We present a PAC-learning algorithm and an on-line learning algorithm for nested
differences of intersection-closed classes. Examples of intersection-closed classes in-
clude axis-parallel rectangles, monomials, and linear sub-spaces. Our PAC-learning
algorithm uses a pruning technique that we rigorously proof correct. As a result we
show that the tolerable noise rate for this algorithm does not depend on the complexity
(VC-dimension) of the target class but only on the VC-dimension of the underlying
intersection-closed class. For our on-line algorithm we show an optimal mistake bound
in the sense that there are concept classes for which each on-line learning algorithm
(using nested differences as hypotheses) can be forced to make at least that many
mistakes.

1 Introduction and preliminaries

We are interested in the implications of noise when learning nested differences of intersection-
closed classes. For the noise-free case the learnability of nested differences was analyzed by
Helmbold, Sloan, and Warmuth [7]. The main focus of our work is the tolerable amount
of noise such that learning is still possible. The learning models we will consider are the
PAC-learning model with malicious noise [12, 8] and the on-line learning model [1, 10] with
noise. In both learning models the learner has to discover some fixed target concept C C X
over the domain X, where it is only known that C' € C for some given concept class C of
subsets of X. We will not distinguish between a concept C' and the corresponding function

_J+ if zelC
C("’”)—{— if 5¢C

1.1 Learning models

In the original PAC-learning model of Valiant [12] the learner receives a sample
(x1,C(x1)), ..., (Tm, C(zm)) labeled by the target concept C where the z; are independently

ISSN 1433-8092

drawn from a probability distribution D on X. The size m of the sample can be chosen by
the learner depending on the required precision € and confidence §. The learner successfully
learns C'if with high probability (measured by the confidence parameter ¢) a random sample
is draw such that based on this random sample the learner produces a hypothesis H which
is e-close to C, i.e. D{z : H(z) # C(z)} < €, where € is the precision parameter. In the
malicious PAC model of Kearns and Li [8] a certain fraction (measured by the noise rate 7)
of the examples is noisy. Formally, for each example (x;,C(x;)) of the sample an indepen-
dent Bernoulli experiment with success probability 7 determines if the example is affected
by noise. On failure the original example (z;, C(x;)) is passed to the learner, on success an
arbitrary example (z},1;) chosen by an adversary is passed to the learner. As in the original
PAC model, with high probability the learner has to produce a hypothesis H which is e-close
to the target concept C in respect to the original distribution D.

Definition 1.1 Let C be a concept class over domain X. Algorithm A (€, d)-learns C with
malicious noise rate n if there is an m(e,d,n) such that the following condition is fulfilled:
for any concept C' € C and for any probability distribution D on X, the probability that a
sample of size m(e,d,n) is given to algorithm A such that the algorithm’s hypothesis H is
not e-close to the target C' (in respect to D) is at most §. The sample is drawn accordingly
to D and C' and it is affected by a noise rate of at most n .

For the on-line learning model we use the formalization of Angluin [1], where in each
trial £ > 1 the learner has to produce a hypothesis H;, and if H; is considered to be different
from the target concept C, then the learner receives a counterexample (zy,1;), I € {+, -},
such that Hy(x;) # l;. If I, = C(xy) then (x4,1;) is a correct counterexample, if I, # C(x;)
then the counterexample is noisy. Furthermore we call an example (z,[) positive if [= +
and we call it negative if [= —. The performance of the learner is measured by its number
of mistakes, i.e. by the number of counterexamples it receives until it has learned the target
concept. We denote by MB(A,C, N) the maximal number of mistakes which algorithm A
makes while learning a concept from C, if at most N of the counterexamples are noisy. For
N = 0 we abbreviate MB(A,C) := MB(A,C,0). Furthermore we denote by MB(A, C) the
number of mistakes algorithm A makes when learning a fixed concept C'. It must be observed
that in the on-line model we do not explicitely introduce a noise rate as was done in [3, 4].
Nevertheless, our results could also be stated in terms of the tolerable noise rate. Assume a
bound like MB(A,C, N) < RN + M,. Here R is essentially the number of additional wrong
hypotheses that can result from a single noisy counterexample and M, is the number of
wrong hypotheses when there are no noisy counterexamples at all. Then learnability can be
proven for all noise rates less than 4, [4].

1.2 Intersection-closed classes

A class C is intersection-closed if Ngeer C € C for any subclass ' C C, and if § € C.
Intersection-closed classes can be learned using the Closure Algorithm (ClosAlg) [5, 7, 11, 6],
which uses as hypothesis the closure of all positive (counter)examples seen so far. For
any intersection-closed concept class C the closure operator CL¢ : 2¥ — 2% is defined as
CL¢(S) = Neee,scc C- Thus the closure of a set S C X is the smallest concept in C which

1. B:=S.
2. WHILE 3z € B : CL(B\ {z}) = CL(B) DO B := B\ {z}.
3. OUTPUT B.

Figure 1: Construction of a basis B for set S.

contains S. Since the Closure Algorithm always produces the smallest hypothesis consistent
with all positive examples, in the noise-free case this hypothesis is also consistent with the
negative examples. For the noisy case the Closure Algorithm was extended in [4]. If not
stated otherwise we assume from now on that C is an intersection-closed concept class and
for convenience we write CL instead of CL.. If S is a set of labeled examples we write
CL(S,l) :== CL({z : (z,l) € S}), 1 € {+,—}, for the closure of the positive or negative
examples in S and we write CL(S) if we disregard the labels in S.

Intersection-closed classes have the following important property which we will use to
construct our algorithms: for any finite set S C X there is a minimal basis Bas(S) C S, such
that CL(S) = CL(Bas(S)) and B’ C Bas(S) implies CL(B') C CL(S). The basis Bas(S)
can be constructed by removing elements from S as long as the closure of the remaining
elements equals the closure of the original set S, see Figure 1.! Observe that there might be
more than one basis for a set S. In this case we assume that among these bases one is chosen
arbitrarily. For a labeled sample S we write Bas(S,l) = {(z,[) : = € Bas({z : (z,l) € S})}
for the labeled basis of the positive or negative examples in S. The size of any basis is
bounded by the VC-dimension [13] of C.

Lemma 1.2 ([7]) For any intersection-closed concept class C over X and any finite set
SCX,
|Bas(S)| < VC-dim(C).

1.3 Nested differences
The nested difference C' of concepts C4,...,Ck € C is defined as
C=C\(C2\ (Cs\...(Ck-1\ Ck)))- (1)

We call each C; in (1) a shell of C. To simplify notation we define

<01, .. ,CK> = Cl \ (Cg \ .. (CKfl \ CK))

If C = (C,...,Ck) then C(z) = ¢; where i = max{j > 0: 2z € ﬂ;:,:() Cj} (we assume
C() = X) and
e-—{ + if i odd

— if 7 even

! For many concept classes this is not a very efficient algorithm, but it shows that a basis can be constructed
effectively.

ol B B e]

Figure 2: Examples of nested differences of rectangles with 4 and 5 shells.

1. “All positive examples build the first shell.”
n:=1,5 :={(z,+) € S}.
2. REPEAT
“All examples misclassified by the last shell build the next shell.”
n:=n+1,5,:={(z,4,) € S:2 € CL(S,_1)}
UNTIL S,, = 0.
3. OUTPUT (CL(Sh),.-.,CL(S, 1))-

Figure 3: The Inclusion-Exclusion-Algorithm computes a hypothesis consistent with the
noise-free sample S.

(We will use the notation ¢; throughout the paper for the classification associated with the
i-th shell of a nested difference.) Two examples of nested differences of rectangles are show
in Figure 2. The concept class of nested differences with K shells and underlying class C is
defined as

CE) = {(Cy,...,Ck) :C; €C}

and the class of nested differences with an unbounded number of shells is C*) = |J k>1C (K),
For intersection-closed classes C we can always obtain a normal form of a nested difference
C e),

Fact 1.3 Let C be an intersection-closed concept class. Then for any C € C) there are
CiDCyD--DCL#D, CielC, k<K, with C = {(Cy,...,Cy).

Proof. Assume that C' = (Cj,...,C). Then also C' = (C{,...,Ck) where Ci = ;<,<; C}.
Clearly CY D Cy O --- D Ck. f Cf =C}, | forsome i =1,..., K —1 then (C7,...,Ck) =
(cy,....,CL,,Cl,,...,C%). Thus we can remove all duplicates among the CY,...,C% and
get C = (Cl,...,Ckz) with Cl IDEERREND Ckl. Finally, if Ckl = @ then <CI;---,CI§’> =
(Cy,...,Cy_1), which completes the proof. O

Helmbold, Sloan, and Warmuth [7] developed the Inclusion-Exclusion-Algorithm, Fig-
ure 3, to learn nested differences of intersection-closed classes. This algorithm first computes
the closure of all positive examples, obtaining the first shell of the hypothesis. In general,
this shell contains some negative examples so that the closure of these negative examples

- +
+

Figure 4: The noisy example (¥) causes the Inclusion-Exclusion-Algorithm to loop forever.

must be subtracted from the first shell. This closure of the negative examples (only the
negative examples in the first shell are considered) forms the second shell. Of course, in this
shell there again might be positive examples, and a third, positive shell must be subtracted
from the second, negative shell. This continues until a nested difference consistent with all
examples is found. It can be proven that this algorithm works well in the noise-free case,
but there is a problem in the noisy case. Consider Figure 4 where in the second shell there
is a noisy positive example. Given by the closure of all positive examples in the second shell
the third shell equals the second shell. The fourth shell, given by the closure of all negative
examples in the third shell, again equals the second shell. Thus for this set of examples the
Inclusion-Exclusion-Algorithm will not make any progress and cannot compute a consistent
hypothesis. This is not surprising at all, since for this set of examples there is no consistent
hypothesis in C™*.

Lemma 1.4 Let C be any intersection-closed concept class. Then there is no hypothesis in
C™) consistent with examples (x1,+), -, (Tn, +), W1, =),y Wnr, =) if CLHz1, ..., 20}) =
CL({y1,---,yn}).

Proof. Assume that H = (H, ..., Hy) is consistent with the examples above and normalized
such that Hy D --- D Hy # 0. Since CL({z1,...,2,}) = CL{y1,...,Yn}) we have for any
i=1,...,k:z;€ Hyforallj=1,...,niffy; € H;forall j =1,...,n'. Since H is consistent
with the examples, all ; € H;. Thus also all y; € Hy. Again, since H is consistent, all
y; € Hy. This implies that all ; € Hy. Continuing with this argument we finally find that
all z; € Hy, and all y; € Hy. Hence H classifies all z; and y; with ¢, which contradicts that
H is consistent with the examples. O

In Section 2 we present a PAC-learning algorithm which removes a few examples from
the sample to obtain a hypothesis which is consistent with the remaining examples. Some
pruning of this consistent hypothesis finally gives a hypothesis which is e-close to the tar-
get concept. In Section 3 we give an on-line algorithm which does not explicitly discard
previous counterexamples but which maintains its hypothesis in a way such that this hy-
pothesis misclassifies some of the previous counterexamples but is consistent with all the
other counterexamples seen so far.

We conclude this section by proving that for any intersection-closed class C the number
of shells in the normal form of any nested difference is bounded by the mistake bound of the
Closure Algorithm, MB(ClosAlg,C). To prove this we use the following lemma.

Lemma 1.5 If C; D Cy then MB(ClosAlg, C;) > MB(ClosAlg, Cs) + 1.

Proof. Consider a sequence of counterexamples to ClosAlg when learning C5. Since in the
noisy-free case ClosAlg receives only positive counterexamples all these counterexamples are
in Cy. Thus all these counterexamples are also counterexamples to ClosAlg when learning C'.
After this sequence of counterexamples the hypothesis of ClosAlg is a subset of C5. Hence
any z € C; \ Cs is an additional counterexample to ClosAlg when learning C;. Therefore
ClosAlg makes at least one mistake more when learning C'; than when learning C. a

Thus C = (Ci,...,Cpy1) with C; D Ci; and m = MB(ClosAlg,C) implies
MB(ClosAlg, Cyi1) = 0 and hence C,,y1 = (. Therefore any normal form has at most
m shells and we have the following corollary.

Corollary 1.6 Let C be any intersection-closed concept class. Then for any k > m =
MB(ClosAlg, C) we have C*) = (™),

2 Learning of nested differences in the malicious PAC-
model

In this section we present an extension of the Inclusion-Exclusion-Algorithm which is robust
against noise. Algorithm RobustInclusionExclusion (Figure 5) performs in two phases. In
the first phase it removes examples from the sample until there is a hypothesis in C*) which is
consistent with the remaining sub-sample. In general this sub-sample will still contain noisy
examples. We will see (Lemma 2.5) that these noisy examples might force the consistent
hypothesis to be much more complex than the target concept. This can be seen as a case
of overfitting in the attempt to be consistent also with the noisy examples. In general this
complex consistent hypothesis will not be e-close to the target concept. Therefore, in the
second phase algorithm RobustInclusionExclusion prunes the complex consistent hypothesis
to obtain a hypothesis which is only moderately more complex than the target concept.
This pruned hypothesis is consistent with less examples from the sample than the complex
hypothesis, but nevertheless we are able to show that the pruned hypothesis is e-close to the
target concept.

In the first phase algorithm RobustInclusionExclusion has to detect noisy examples which
cause any hypothesis from C™ to be inconsistent with the sample. Recall that the Inclusion-
Exclusion-Algorithm does not make progress only if two consecutive shells of its “hypothesis”
are equal. Hence, in this case, algorithm RobustInclusionExclusion removes the bases of these
shells. Since the closures of both bases are equal and the examples in one basis are labeled
+ and the the examples in the other basis are labeled — at least one of these examples is
noisy by Lemma 1.4. Thus in one step the algorithm removes at least 1 noisy example and
at most 2d — 1 correct examples when d is the VC-dimension of C, since d upper bounds

Input: Sample S and upper bound K on the number of shells of the target concept.
Phase 1:

1. TL:ZO, S(]:S.
2. REPEAT
n:=n+1, Sy, :={(z,4,) € So:x € CL(Sp_1)}.
IF CL(Sp,%n) = CL(Sp—1,£n-1)
THEN n :=0, Sy := So \ (Bas(Sn, n) UBas(Sp—_1,€n—1))-
UNTIL S, = 0.

Phase 2:

1. n:=0.
2. REPEAT
n:=n+1,8,:={(x,4n) € So: z € CL(Sn_1)} \ U’ Bas(S;, £;).
IFn>2K+1
THEN n := 0, So = So \ U?:l Bas(Si,Ei).
UNTIL S,, = 0.
3. OUTPUT (CL(S,),...,CL(Sn_1)).

Remark:
All sets S,, have to be implemented as multi-sets. For example, if (z,+) appears
twice in the sample then initially it will appear twice in Sj.

Figure 5: Algorithm RobustInclusionExclusion constructs a hypothesis in CZ%).

the number of examples in any basis. Phase 1 stops as soon as there are only examples left
which are consistent with some hypothesis in C*).

In Phase 2 examples are removed until there is an (almost) consistent hypothesis with at
most twice as many shells as the target concept. Let us assume that the target concept has K
shells and that during Phase 2 algorithm RobustInclusionExclusion constructs a hypothesis
with n = K + 2N shells. We will show (Lemma 2.5) that in this case at least N shells
have noisy examples in their bases. Thus removing the bases of all shells removes at most
d(K + 2N) examples and at least N noisy examples. Since the number of noisy examples is
reduced there is now a hypothesis with fewer shells. Repeating this process finally yields a
hypothesis in C(?%). Observe that there is a subtle point in Step 2 of Phase 2 of algorithm
RobustInclusionExclusion: the bases of previously constructed shells are removed before
a new shell is constructed. This guarantees that each example is an element of at most
one basis. On the other hand the examples in these bases might be misclassified by the
final hypothesis since they were not considered when subsequent shells were constructed.
Nevertheless we can show that the final hypothesis is e-close to the target concept.

Theorem 2.1 Let C be any intersection-closed concept class with VC-dim(C) = d < oo
and let K > 1. Then for any €¢,6 > 0 and any n = 5 — «a, 0 < o < 5, algorithm
RobustInclusionExclusion (e, d)-learns C¥) in the malicious PAC model with noise rate n
when provided with a sample S of size m > max{% (QdK In %% + In %) , log%}. Algo-

rithm RobustInclusionExclusion outputs a hypothesis in C?%) and runs in time polynomial

in the sample size m and the time needed to compute the closure and a basis of a set of size
m.

Remark 2.2 Algorithm RobustInclusionExclusion can be modified so that it tolerates a
noise rate up to 5. This can be done by changing the bound on n in Phase 2 of the algorithm.
Instead of producing a hypothesis in C*%) the modified algorithm produces a hypothesis whose
number of shells depends on 5; —n. Another modification of RobustInclusionExclusion gives
an algorithm which outputs a hypothesis in CYX). The drawback of this algorithm is that it

tolerates only a noise rate of O(3;).

Remark 2.3 We made no attempt to optimize the bound on the sample size.

2.1 Proof of Theorem 2.1

Assume that S" C S is the sub-sample which was not effected by noise. We set m' = |S’| so
that N = m—m/ is the number of noisy examples. Since the examples which were effected by
noise were chosen at random, S’ is a noise-free sample in the sense of the original PAC-model.
Thus we will bound the number of examples in S’ which are misclassified by the algorithm’s
hypothesis and then apply the following result from PAC-learning theory. Essentially the
lemma states that with high probability a hypothesis which makes few mistakes on a noise-
free sample is close to the target concept.

Lemma 2.4 (Adapted from [2]) Let C be any target concept and H any hypothesis class
on a domain X, d = VC-dim(#H). Furthermore let D be any distribution on X, and choose
€,0,a > 0. Then with probability at most § a sample of size m' > % (d In % + In %) s drawn
accordingly to D and labeled by C, such that there is an H € H which is not e-close to C but
makes at most (e — a)m' mistakes on the sample.

To bound the number of misclassified examples in S’ observe that there are two kinds of
misclassified examples. Obviously examples which were removed from S, in Phase 1 or 2
might be misclassified by the final hypothesis. Furthermore, some examples in the bases of
the shells of the final hypothesis might be misclassified. But observe that there are at most
2dK examples in these bases. Thus we only have to bound the number of examples which
are removed from S’ by the algorithm. Let s; and s, be the number of examples removed
from S’ during Phase 1 and Phase 2, respectively, and let N; and N, be the number of noisy
examples removed during Phase 1 and Phase 2, respectively.

In Phase 1 the examples in Bas(S,y1) and Bas(S,) are removed from S, iff
CL(Bas(S,+1)) = CL(Bas(S,)). By Lemma 1.4 at least one of these examples is noisy.
Since |Bas(S,+1) UBas(S,)| < 2d, with each noisy example at most 2d — 1 correct examples
are removed from S’. Thus we find s; < (2d — 1) V5.

To analyze Phase 2 we have to calculate the number of shells which are created by noisy
examples: besides the K shells which correspond to the shells of the target concept each
noisy counterexample generates at most 2 additional shells. See Figure 6: roughly speaking,
each noisy counterexample can be “covered” by 2 additional shells. The following lemma
gives a little stronger statement which we will need in Section 3.

+ +

Figure 6: The noisy example () is covered by an additional shell. Another shell is used to
cover the positive examples which would be misclassified otherwise.

Lemma 2.5 Let C be any intersection-closed concept class and C = (Cy,...,Cg) € CK)
some target concept. Furthermore let Si,...,S, C X be a sequence of sets of examples such
that the label of an example x € S; is £;. If CL(S;) D CL(Sy) D --- D CL(S,) # 0 and
at most N examples in the sets Sy, ..., Sy are noisy (in respect to C) then n < k + 2N for
some 0 < k < K and there are indices 1 <41 <+ <, <n withSij CCjforj=1,...,k.

Proof. We start by constructing the indices ¢;. We set ¢ = 0, Cy = Sy = X, Cgy1 = 0,
and 4;11 = min{i; + 1425 : 5> 0, Sj, 4119, C Cjy1} for j =0,..., K (we assume S; = () for
i > n). Observe that /;, = £;. The indices 4; are chosen such that S;; is the “largest” set
which is included in C; and whose examples are labeled by ¢;. Let k be the number of indices
i; with 1 <'4; < n. Obviously this choice of indices satisfies S;; C C; for j =0,..., k. By the
construction of the ¢; and the prerequisite of the lemma we have C; D CL(Sij) 2 Sij+1+25

for all s > 0 and all j =0,...,%. Since all examples in S;, 11495 have label £;,,, all correct
examples in Sij+1+23 Q Cj are in Cj+1. Thus Sij—|—1—|—25 Z Cj_|_1 only if Sij+1+25 contains at
least one noisy example. Hence for j = 0,...,k each S; 1,5;,43,...,S5i;,,-2 contains at

least one noisy example since S;;
for all 5 gives

41 1s the first set with S;, 1149, C Cj41. Counting these sets

A“>§#Hy—@—1:iﬁl—%—wk+1)>n—k
It 2 2 - 2
J_
and the lemma. O
In Phase 2 the bases of all sets S; are removed from Sj. Since the bases Bas(S;),i=1,...,n,

n—K

fulfill the prerequisite of Lemma 2.5 at least
removing all bases at least "=
of dn examples is removed at most dn —

example at most

5 bases contain a noisy example. Thus by
K noisy examples are removed. Since at most a total number

";K examples are removed from S’. Thus per noisy

dn — =K 2dn 4dK
2 — 1< =" 1=4d—-1
n_K n—K - K

examples from S’ are removed. Hence we get sy < (4d — 1)Ns.

Summing over Phase 1 and Phase 2 we find that s; + so < (4d — 1)N. Now we have
to bound the number of noisy examples N. The number of noisy examples is the sum of
m independent Bernoulli trials whose probability of success is at most 1. Thus we get by
standard Hoffding bounds that N < m(n+ §) with probability at least 1 — g if m> S log 2.
Recalling that there are at most 2dK examples in the bases of the final hypothesis we find
that with probability at least 1 —g the algorithm’s hypothesis misclassifies at most a fraction
of

(4d — 1)N + 2dK (4d — 1)N + 2dK

m/ m— N
(4d - 1)(n+ «/2) n 4dK
- 1—n—a/2 m
(4d - 1)(§ —0/2) _ a?
- -4 +a/2 8e)

examples in S’. Some algebra shows that (2) <e—afor0 <e<1,0< a < 5. By applying
Lemma 2.4 with H = C?%) ¢, §/2, and «, we get that with probability 1 — £ the algorithm’s
hypothesis is e-close to the target if

8e . oK 48¢ 8

provided that N < m(n+%). The VC-dimension of C (2K) is bounded by the following lemma.
Lemma 2.6 ([7]) For any intersection-closed class C
VC-dim(C'®)) < K - VC-dim(C).

At last we have with probability 1 — ¢ that W' =m—N >m(l—n—2) > 2 (for 0 < e < 1)
which implies (3). Summing up we find that with probability 1—0 the algorithm’s hypothesis

is e-close to the target, which gives the theorem.

2.2 Discussion and related results

Kearns and Li [8] presented a general technique to make a PAC-learning algorithm noise
robust. They show that any time-efficient learning algorithm for the noise-free PAC model
which uses a sample of size m, can be turned into a time-efficient PAC learning algorithm
tolerating a malicious noise rate up to §2 (l%gnﬂ) In general, C'%) can be (¢, §)-learned in the

noise-free case using a sample of size m = O (% log ¥ + % log %) [7], where d = VC-dim(C).

Applying the result of Kearns and Li gives for small € a tolerable noise rate of 2 (ﬁ) While
this bound on the tolerable noise rate depends on the number of shells, our result gives an
error tolerance of 2 (g) which is independent of the number of shells. The error tolerance of
our algorithm is the best known for example for the class of nested differences of axis-parallel
rectangles.

Talking about achievable noise tolerance one has to be aware of the fact that we are
considering only time-efficient algorithms. Time-efficiency essentially means that the algo-
rithms run in time polynomial in the sample size. If the run time of the learning algorithm

10

Algorithm XInclusionExclusion maintains a sequence of sets of counterexamples
S =(51,.-.,5), n >0, such that CL(S;) D CL(S;41) foralli=1,...,n — 1.
Initialization:

Initialize S to the empty sequence, S := (), n := 0.

Construction of the hypothesis:
In each trial t > 1 set H; := (CL(S1),...,CL(Sy)). (Hi

Update:

Let (x¢,1;) be the counterexample to Hy.

Set i :=min{l < j <n:z; ¢ CL(S;)}. If 2, € CL(S;) for all j then 4 :=n + 1.
Update S by setting S; := S; U{xt}. fi =n+1set Spi1:={z;} and n:=n+ 1.

I
—
-

I

=
N2

Figure 7: Algorithm XlInclusionExclusion for the on-line learning of nested differences with
noise.

is not constrained then the optimal noise tolerance of ie can be achieved. This is done by
searching for a hypothesis which misclassifies a minimal number of examples in the sample.

The optimality of ;+. was proven in [8].

3 On-line learning of nested differences in the presence
of noise

In this section we present algorithm XlInclusionExclusion, Figure 7, which is a variation of
the Inclusion-Exclusion-Algorithm and has the advantage that in the presence of noise it
still produces a hypothesis consistent with most of the counterexamples seen so far. We
start with an informal description of the algorithm. Like the Inclusion-Exclusion-Algorithm
its hypothesis H; is the nested difference of the closures of some sets of counterexamples
S1, 9, . .. For each trial the Inclusion-Exclusion-Algorithm calculates these sets from scratch,
such that S is the set of all positive counterexamples seen so far, S, is the set of all negative
counterexamples in the closure of S, and so on. In contrast, algorithm XInclusionExclusion
updates the sets Sy, 59, ... incrementally: the counterexample z; is added to the set S; with
the smallest index 4 such that z; ¢ CL(S;). Since before the update z; € CL(S;_1) \ CL(S;)
and z; was a counterexample to H;, the label of x; is £;. While the hypothesis of the Inclusion-
Exclusion-Algorithm is always consistent with all counterexamples seen so far (therefore
the Inclusion-Exclusion-Algorithm cannot tolerate noisy counterexamples), the hypothesis
of algorithm XlInclusionExclusion is in general not consistent with all the counterexamples
(which enables the algorithm to deal with noise), see Figure 8. We get the following mistake
bound for algorithm XlInclusionExclusion and we will show that this bound is optimal.

11

+ +

Figure 8: The new negative counterexample, added to S5, enlarges the second shell of the
hypothesis. Since all positive counterexamples remain in S, one of them (not necessarily a
noisy one if the target is from C®)) is misclassified by the hypothesis.

Theorem 3.1 For any intersection-closed concept class C and for any 2 < K <
MB(ClosAlg,C) and any N >0

K(K - 1)

MB(XInclusionExclusion, C%), N) < (2N + K) - MB(ClosAlg, C) — 5

where algorithm XInclusionExclusion uses hypotheses from CE+2N) and runs in time poly-
nomial in K, N, and the mazimal time taken by ClosAlg to learn a concept from C.

Theorem 3.2 For any m > 2 there is an intersection-closed concept class C with
MB(ClosAlg,C) = m such that

K(K-1)

MB(A,C®) N) > (2N + K) -m — 5

for any N > 0, any 2 < K < m, and for any on-line learning algorithm A which uses
hypothesis from C*).

Proof of Theorem 3.1. To prove the mistake bound on algorithm XlInclusionExclusion
we show that there are at most K + 2N sets S; and we bound the number of examples
in each of these sets. We use the notation of Figure 7. Let C = (Cy,...,Ck/), K' < K,
be the normalized target concept. Since the sets S; fulfill the prerequisite of Lemma 2.5
we have n < k + 2N for some 0 < k < K’ and there are indices 1 < 47 < --- < 4 < n
with S;; € Cj. Furthermore observe that counterexample z; is added to set S; only if
x; ¢ CL(S;). Thus the sequence of counterexamples xy,, Z4,, ... added to set S; is also a
sequence of counterexamples to the Closure Algorithm when learning the concept class C.
Moreover, the sequence x,,Ty,, ... added to a set S;; is a sequence of counterexamples to
the Closure Algorithm when learning C;. Hence |S;| < MB(ClosAlg,C) for all 1 < i < n.
Using the fact that C; D --- O Cks and Lemma 1.5 we find [S;;| < MB(ClosAlg, C;) <
MB(ClosAlg,C) — j + 1. Since n < 2N + k summing over all sets S; gives the theorem. O

12

3.1 Proof of Theorem 3.2

For the proof of the lower bound we will show that nested differences of linear sub-spaces
are hard to learn. Let C be the concept class of all linear sub-spaces of the vector space Z’
over the field Z, where p is an arbitrary prime p > m. (The field Z, is given by the set
{0,...,p—1} and the operations addition and multiplication modulo p [9].) For this concept
class MB(ClosAlg,C) = m [4]. We will show that there are 2m vectors in Z;' such that to
any on-line algorithm these vectors can be given as counterexamples several times resulting
in a total number of 2m/N +2m — 1 counterexamples. Among these counterexamples at most
N will be noisy. After these 2mN + 2m — 1 counterexamples the learning algorithm will
not have gained sufficient information about the target concept so that it receives another
m(K —2) — w + 1 counterexamples before finally learning the target.

We start proving the theorem for the case m = K = 2 which gives an idea how the proof
in the general case works. In this case m(K —2) — @ + 1 = 0 such that the information
from the first 2mN + 2m — 1 counterexamples is sufficient for learning. For the general case
we will have to deal also with the m(K — 2) — @ + 1 additional counterexamples.

Observe that for vectors @i,...,x, € Z;' the closure CL({z1,...,2,}) is the linear
sub-space spanned by these vectors. We set by = (1,0), by = (0,1), u; = (1,1), and
uy = (1,-1). Since CL({b1,by}) = CL({w1,u2}) = Z there is no concept in C*) con-
sistent with the labels (by,+), (b2, +), (u1, —), (u2, —) by Lemma 1.4. Thus among the
(by,+), (ba, +), (w1, —), (ug, —) there is a counterexample to any hypothesis from C*). After
4N + 3 trials one of these counterexamples has been given at most N times so that we
consider this counterexample to be noisy. We can do that because a learning algorithm
has to work for any target concept and for any selection of noisy examples. Knowing the
learner’s hypotheses in advance (since we are considering deterministic algorithms) we can
pick a target concept which is consistent with all but the noisy examples. If (b;,+) is this
noisy counterexample than the remaining counterexamples are consistent with CL({bs}). If
(by, +) is the noisy counterexample than the remaining counterexamples are consistent with
CL({b1}). If (uy,—) is the noisy counterexample than the remaining counterexamples are
consistent with CL({b;,b2}) \ CL({uz}), and if (ug, —) is the noisy counterexample than
the remaining counterexamples are consistent with CL({b;, b2}) \ CL({u;}). Thus for each
algorithm there is a hypothesis from C® which can force 4N + 3 mistakes of the algorithm
if N of the counterexamples might be noisy.

For the case m > 3 we use a somewhat more sophisticated argument and some tools from
linear algebra. Let x -y denote the inner product of the vectors z,y € Z;'. Furthermore
we call vectors xy,..., &, € Z;" orthonormal if ¢; - ¢; = 1(p) for all 4 = 1,...,n, and
x;-x; = 0(p) for i # j. We will make use of the following lemma.

Lemma 3.3 If forn > 3 by,...,b, are orthonormal vectors from Z;' then there are also
orthonormal vectors wy, ..., u, € Z;* such that

1. CL({by,...,b,}) = CL{u1, ..., u,}),
2. b; ¢ CL(U) for all b; and any subset U of at most n — 1 vectors from uy, ..., U,

3. u; & CL(B) for all u; and any subset B of at most n — 1 vectors from by, ..., b,.

13

Proof. Basicly we get the u; by rotating the b;. We set

u; = (Z bj + (1 — 2_1n)b,~> 277,_1

JF#i

where 27! denotes the multiplicative inverse in the field Z,. Since the b; are orthonormal
we find
Ui - U; = (n -1+(1- 2_1n)2) 4n~% = 1(p)

and
Ui~ U = (TL —-2+2(1- 2_1n)) 4n~2 = 0(p)

for 4 # j. Thus the vectors wq,...,u, are orthonormal and therefore linear independent.
Since CL({u1,...,u,}) € CL({by,...,b,}) and the linear sub-space spanned by uq,...,u,
has dimension n as the linear sub-space spanned by by, ..., b,, we have CL({u1,...,u,}) =
CL({bi,...,b,}). Furthermore b, - u; # 0(p) for all s and j implies that no b; can be
expressed as the linear combination of n — 1 of the vectors u; and vice versa. O

We are ready now to prove Theorem 3.2 for m > 3. Let by,..., b, be the unit vectors
of Z,' (which obviously are orthonormal) and let ui,...,u, be the alternate orthonor-
mal vectors given by Lemma 3.3. We label all b; with + and all w; with —. Since
CL({by,...,b,}) = CL({uy,...,u,}) there is no hypothesis in C*) consistent with all
these labels and one of the labeled vectors can be given as counterexample to any hy-
pothesis. After 2m/N + 2m — 1 trials one of the vectors was given as a counterexam-
ple at most N times and we consider this labeled vector to be the noisy counterexam-
ple. If b; is the noisy vector then the labels of all other vectors are consistent with
CL({bi,...,b; 1,b;11,...,by}) since no u; is in this closure by Lemma 3.3. If u; is the noisy
vector then Z7"\ CL({uy, ..., Ui 1,Uit1, - ., Un}) is consistent with the labels of the remain-
ing vectors. Therefore we can pick a concept (Cy) or (C,Cy) such that after 2mN +2m — 1
counterexamples this concept is consistent with all but NV of the counterexamples. Further-
more C; resp. (5 is spanned by m — 1 orthonormal vectors.

We proceed by proving by induction that for any 2 < K < m—1 we can force any learner
to make at least 2mN + S F M (m — 1) = [2mN +2m—1]-1— [m(K —2)— @ + 1] mis-
takes while there is still a concept in C) consistent with all but the N noisy counterexamples.
Obviously this gives the theorem for 2 < K < m — 1. Above we have already proven this
for K = 2. To get the remaining number of mistakes we basicly use the fact that in the
noise-free case any algorithm can be forced to make at least m — [mistakes when learning a
linear sub-space of dimension m — [. Since the shells C}, Cs, ..., Cx have essentially dimen-
sions m,m —1,...,m — K + 1 we get the result. But of course we have to take care that a
counterexample given while learning C; does not help the learner when learning C;; for some
] >0

For K > 3 let (Cy,...,C)), | < K — 1, be the concept consistent with previous cor-
rect counterexamples such that the following holds: Cj is spanned by orthonormal vectors
bi,...,b, k.2, no previous counterexamples besides the by,...,b,, k.o are elements of
Cj, and the learner has already made 2mN + Y ?(m —) mistakes. By the construc-
tions in the above paragraphs these conditions are fulfilled for K = 3. Let wy, ..., Um_K12

14

be the alternate orthonormal vectors given by Lemma 3.3 such that CL(by, ..., by, _xi0) =
CL(w1, - -, Um_k o). Thelabels of all b; are £; and we label all w; with £;;. Thus one of these
labeled vectors can be given as counterexample to any hypothesis from C*). After m — K +1
trials at least one of the u; was not given as counterexample. We denote this vector by
us-. Then the concept (C,...,Cip1) € CH, Cryy = CL(Uy, .., Uir 1, Ui 41, - -+, UK 42),
is consistent with all correct counterexamples (note that none of the b; or u; was noisy): by
Lemma 3.3 no b; is contained in Cjyq, and since C;;; C () also no of the other previous
counterexamples is contained in Cj;;. Thus all requirements for the next induction step are
met.

At last we have to deal with the case KX = m > 3. From the above considerations we
know that there is a concept (Ci,...,C}), | < m — 1, consistent with all previous correct
counterexamples such that Cj is spanned by orthonormal vectors by, by, no other counterex-
ample is element of C;, and the learner has already made 2mN + Y1"5%(m — 1) mistakes.
Let u; = by + by and uy = by — by. We assign the label ¢;; to u; and us. If the learner’s
hypothesis is consistent with these labels then it is not consistent with the labels of b; or
b, by Lemma 1.4. Thus in this case one of the b; can be given as counterexample to the
learner’s hypothesis. If the learner’s hypothesis is not consistent with the label of u; then
w1 is given as counterexample (analogously for us): this forces an additional mistake of the
learner and (C4, ..., C), Cyyq) with Cpyy = CL({u1}) is consistent with this counterexample.
This concludes the proof.

4 Conclusion

We investigated the learnability of nested differences in the presence of noise, both in the ma-
licious PAC-learning model and in the on-line learning model. For both models we presented
general algorithms which were based on the Closure Algorithm and the Inclusion-Exclusion-
Algorithm. We analyzed a pruning technique used by the algorithm for the malicious PAC-
learning model and we showed that this algorithm achieves a noise tolerance which is superior
to previously known results. Our on-line learning algorithm was proven to obtain the best
possible general mistake bound.

Acknowledgments

I want to thank Nicolo Cesa-Bianchi, David Haussler, Christiane Michel, and Manfred War-
muth for very fruitful discussions. I also gratefully acknowledge support by the Fonds zur
Forderung der wissenschaftlichen Forschung, Austria, through grant JO1028-MAT. This re-
search was done while visiting the University of California at Santa Cruz.

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, April 1988.

15

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

M. Anthony and J. Shawe-Taylor. A result of Vapnik with applications. Discrete Applied
Mathematics, 47:207-217, 1993.

Peter Auer. On-line learning of rectangles in noisy environments. In Proceedings of
the Sixth Annual ACM Conference on Computational Learning Theory, pages 253-261.
ACM Press, 1993.

Peter Auer and Nicolo Cesa-Bianchi. On-line learning with malicious noise and the
closure algorithm. In Setsuo Arikawa and Klaus P. Jantke, editors, Algorithmic Lear-
nung Theory, AII’94, ALT 94, pages 229-247. Lecture Notes in Artificial Intelligence
872, Springer, 1994. The journal version was accepted for publication in Annals of
Mathematics and Artificial Intelligence.

D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0,1} functions on ran-
domly drawn points. In Proceedings of the 29th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 100-109. IEEE Computer Society Press, 1988.

D. Helmbold, R. Sloan, and M. K. Warmuth. Learning integer lattices. SIAM J.
Comput., 21(2):240-266, 1992.

David Helmbold, Robert Sloan, and Manfred K. Warmuth. Lerning nested differences
of intersection-closed concept classes. Machine Learning, 5:165-196, 1990.

M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM J. Comput.,
22:807-837, 1993.

Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and Their Applica-
tions. Cambridge University Press, revised edition, 1994.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285-318, 1988.

B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kaufmann, San
Mateo, CA, 1991.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, November
1984.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory of Probab. and its Applications, 16(2):264—
280, 1971.

16

Figure 2: Examples of nested differences of rectangles with 4 and 5 shells.

Figure 4: The noisy example (}) causes the Inclusion-Exclusion-Algorithm to loop forever.

17

Figure 6: The noisy example &) is covered by an additional shell. Another shell is used to
cover the positive examples which would be misclassified otherwise.

Figure 8: The new negative counterexample, added to S5, enlarges the second shell of the
hypothesis. Since all positive counterexamples remain in S, one of them (not necessarily a
noisy one if the target is from C®)) is misclassified by the hypothesis.

18

ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC I1SSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

