
Tracking the best disjunction

Peter Auer
�

Manfred K. Warmuth
�

Department of Computer Science
University of California at Santa Cruz

Santa Cruz, CA 95064 (USA)

Abstract

Littlestone developed a simple deterministic on-line
learning algorithm for learning � -literal disjunctions. This
algorithm (called Winnow)keeps one weight for each of the� variables and does multiplicative updates to its weights.
We develop a randomized version of Winnow and prove
bounds for an adaptation of the algorithm for the case
when the disjunction may change over time. In this case
a possible target disjunction schedule � is a sequence of
disjunctions (one per trial) and the shift size is the total
number of literals that are added/removed from the dis-
junctions as one progresses through the sequence.

We develop an algorithm that predicts nearly as well
as the best disjunction schedule for an arbitrary sequence
of examples. This algorithm that allows us to track the
predictions of the best disjunction is hardly more complex
than the original version. However the amortized analysis
needed for obtaining worst-case mistake bounds requires
new techniques. In some cases our lower bounds show that
the upper bounds of our algorithm have the right constant
in front of the leading term in the mistake bound and al-
most the right constant in front of the second leading term.
By combining the tracking capability with existing applica-
tions of Winnow we are able to enhance these applications
to the shifting case as well.

1 Introduction

One of the most significant successes of the Computa-
tional Learning Theory community has been Littlestone’s
formalization of an on-line model of learning and the devel-
opment of his algorithm Winnow for learning disjunctions
[Lit89, Lit88]. The key feature of Winnow is that when
learning disjunctions, the number of mistakes of the algo-
rithm grows only logarithmically with the input dimension.

�
P. Auer is supported by grant J01028-MAT of the Fonds zur Förderung

der wissenschaftlichen Forschung, Austria.�
M. K. Warmuth acknowledges the support of the NSF grant IRI-

9123692.

For many other standard algorithms such as the Perceptron
Algorithm [Ros58], the number of mistakes can grow lin-
early in the dimension [KW95]. In the meantime a number
of algorithms similar to Winnow have been developed that
also show the logarithmic growth of the loss bounds in the
dimension [LW94, Vov90, CBFH � 94, HKW94, KW94].

In this paper we give a refined analysis of Winnow, de-
velop a randomized version of the algorithm, give lower
bounds that show that both the deterministic and the ran-
domized version are close to optimal, and adapt both ver-
sions so that they can be used to track the predictions of the
best disjunction.

Consider the following by now standard on-line learn-
ing model [Lit89, Lit88, Vov90, CBFH � 94]. Learning pro-
ceeds in trials. In trial �
	 1 the algorithm is presented with
an instance ��� (in our case an � -dimensional binary vector)
that is used to produce a binary prediction ˆ�� . The algo-
rithm then receives a binary classification �� of the instance
and incurs a mistake if ˆ� ��� � . The goal is to minimize
the worst-case number of mistakes of the algorithm for an
arbitrary sequence of examples ������ �� � ���� . This is of course
a hopeless scenario. For any deterministic algorithm an
adversary can always choose the sequence so that the al-
gorithm makes a mistake in each trial. A more reasonable
goal is to minimize the number of mistakes of the algo-
rithm compared to the minimum number of mistakes made
by any concept from a comparison class.

In this paper we use monotone1 � -literal disjunctions as
the comparison class. If the dimension (number of Boolean
attributes/literals) is � then such disjunctions are Boolean
formulas of the form ���

1 � ���
2 �� ! ! "� �#�"$, where the indices%'&

lie in (1 � ! ! � �*) . The number of classification errors
of such a disjunction with respect to a sequence of exam-
ples is simply the total number of misclassifications that
this disjunction produces on the sequence. The goal is to
develop algorithms whose number of mistakes is not much
larger than the number of classification errors of the best
disjunction on any sequence of examples.

In this paper we consider the case where the mistakes of

1By expanding the dimension to 2 + , Learning non-monotonedisjunc-
tions reduces to the monotone case.

Electronic Colloquium on Computational Complexity, Report No. 70 (2000)

ISSN 1433-8092

the best (“target”) disjunctionare caused by attribute errors.
The number of attribute errors of an example ���� � � ���
(0 � 1)���� (0 � 1) with respect to a target disjunction �� is
the minimum number of attributes/bits of �� that have to
be changed so that for the resulting ˜� , �� � ˜� � � � . The
number of attribute errors for a sequence of examples with
respect to a target concept is simply the total number of
such errors for all examples of the sequence. Note that
if the target �� is a � -literal monotone disjunction then the
number of attribute errors is at most � times the number of
classification errors with respect to �� (i.e. the number of
examples ���� � � � in the sequence for which �� ���� � �� �).

Winnow can be tuned as a function of � so that it
makes at most � �	��
 � ln � �� � ��� mistakes on any se-
quence of examples where the best disjunction makes at
most � attribute errors [Lit88]. We give a randomized
version of Winnow and give improved tunings of the orig-
inal algorithm. The new algorithm can be tuned based
on � and � so that its expected mistake bound is at most��
 � 2
�� � 1 � ��� � � ln � �� � � on any sequence of examples
for which there is a monotone � -literal disjunction with at
most � attribute errors. We also show how the original
deterministic algorithm can be tuned so that its number of
mistakes is at most 2 ��
 � 2 � 2
�� � 1 � � � � � ln � �� � � for
the same set of sequences.

Our lower bounds show that these bounds are very
close to optimal. We show that for any algorithm the
expected number of mistakes must be at least ��
 � 1
� � 1 ��� � � � ln � �� � � . So our upper bound has the correct
constant on the leading term and almost the optimal con-
stant on the second term. For deterministic algorithms our
lower bounds show that the constant on the leading term is
optimal.

Our lower bounds for both the deterministic and the
randomized case cannot be improved significantly because
there are essentially matching upper bounds achieved by
non-efficient algorithms with the correct factors on the first
and the second term. These algorithms use � ����� experts
[CBFH � 94]. Each expert simply computes the value of
a particular � -literal disjunction and one weight is kept
per expert. This amounts to expanding the � -dimensional
Boolean inputs into � ���� � Boolean inputs and then using
single literals (experts) [LW94, Vov90, CBFH � 94] as the
comparison class instead of � -literal monotone disjunc-
tions. The expected number of mistakes of the probabilistic
algorithm is at most ��
 � � � ln � �� � �
 � log2 � �� � � � 2
where � is a bound on the number of classification errors
of the best � -literal disjunction. The mistake bound of the
deterministic algorithm is exactly twice as high. Observe
that these algorithms have to use about � �

weights, and
that they need that much time in each trail to calculate their
prediction and update the weights. Thus their run time is

exponential in � .
In contrast, our algorithm uses only � weights. On the

other hand the noise in the upper bounds of our efficient
algorithm is measured in attribute errors rather than clas-
sification errors. This naturally arises since we are using
one weight per attribute. Recall that a classification error
with respect to a � -literal disjunction can equate to up to
� attribute errors. To capture errors that affect up to �
attributes efficiently the expansion to � ������ experts seems
to be unavoidable. Nevertheless, it is surprising that our
simple algorithm is able to get the right factor before the
number of attribute errors � and for the probabilistic ver-
sion almost the right factor before the square root term. In
some sense our algorithm compresses � ���� � weights to only� weights. At this point we don’t have a computational
interpretation of our weights. Such an interpretation was
only found for the single literal (expert) case [CBFHW94].

As Littlestone [Lit91] we use an amortized analysis with
an entropic potential function to obtain our worst-case loss
bounds. However besides the more careful tuning of the
bounds we take the amortized analysis method a significant
step further by proving mistake bounds of our algorithm as
compared to the best shifting disjunction. Assume that a
disjunction �� is specified by a � -dimensional binary vec-
tor, where the components with value 1 correspond to the
monotone literals of the disjunction. For two disjunctions
�� and ���� the Hamming distance � � ��"! ��#� � � 1 measures how
many literals have to be “shifted” to obtain �� � from �� .
A disjunction schedule � for a sequence of examples of
length $ is simply a sequence of $ disjunctions �� . The
(shift) size of the schedule � is %�& (' 1 � � �� *) 1

! �� � � 1 (�� 0 is
the all zero vector). In the original non-shifting case all ��
(�
	 1) are equal to some � -literal disjunction �� .

At trial � the schedule � predicts with disjunction �� .
We define the number of attribute errors of a sequence with
respect to a schedule � as the total number of attributes that
have to be changed in the sequence of examples to make it
consistent with the schedule � . Note that the loss bound
for the non-shifting case can be written as +��,
-� � � �/. � ,
where . � � � �0
 � ln � �� � ��� is the number of bits it takes
to describe a � -literal monotone disjunction, and where+ � 1 for the randomized and + � 2 for the deterministic
algorithm. Surprisingly, we were able to prove bounds of
the same form for the shifting disjunction case. . is now
the number of bits it takes to describe the best schedule �
and � is the number of attribute errors of this schedule. If1

is the size of the best schedule (essentially the number
of shifts of literals) then it takes � � 1 ln �	� �� 1 � � bits to
describe a target schedule in respect to a given sequence of
examples.2

2Essentially one has to describe when a shift occurs and which literal is
shifted. Obviously there is no necessity to shift if the current disjunction

Our worst-case mistake bounds are similar to bounds
obtained for “competitive algorithms” in that we compare
the number of mistakes of our algorithm against the num-
ber of attribute errors of the best off-line algorithm that
is given the whole sequence ahead of time. The off-line
algorithm still incurs � attribute errors and here we bound
the additional loss of the on-line algorithm over the number
of attribute errors of the best schedule (as opposed to the
less accurate method of bounding the ratio of on-line over
off-line).

Winnow does multiplicative updates to its weights.
Whenever the algorithm makes a mistake then the weights
of all the literals for which the corresponding bit in the
current input instance is one are multiplied by a factor. In
the case of Winnow2, the version of Winnow this paper is
based on, this factor is either � or 1 � � , where ��� 1 is
a parameter of the algorithm. The multiplicative weight
updates might cause the weights of the algorithm to decay
rather rapidly. Since any literal might become part of the
disjunction schedule even when it was misleading during
the early part of the sequence of examples, any algorithm
that is to predict well as compared to the best disjunction
schedule must be able to recover weights quickly. Our
extension of Winnow2 simply adds a step to the original
algorithm that resets a weight to � � � whenever it drops
below this boundary. Similar methods for lower bounding
the weights were used in the algorithm WML of [LW94]
which was designed for predicting as well as the best shift-
ing single literal/expert. In addition to generalizing the
work of [LW94] to arbitrary size disjunctions we were able
to optimize the constant in the leading term of the mistake
bound of Winnow and develop a probabilistic version of
the algorithm.

In [HW95] the work of [LW94] was generalized in a
different direction. The focus there is to predict as well
as the best shifting expert, where “well” is measured in
terms of other loss functions than the discrete loss (count-
ing mistakes) which is the loss function used in this paper.
Again the basic buildingblock is a simple on-line algorithm
that uses multiplicative weight updates [Vov90, HKW94]
but now the predictions and the feedback in each trial are
real-valued and lie in the interval � 0 � 1� . The class of loss
functions includes the natural loss functions of log loss,
square loss and Hellinger loss. In this cases more sophis-
ticated methods are needed for recovering small weights
quickly [HW95] than simply lower bounding the weights.

is correct on the current example. Thus only in some of the trials in
which the current disjunction would make a mistake the disjunction is
shifted. Since the target schedule might make up to � mistakes due to
attribute errors and there are up to � shifts, we get �	�
� trials which
are candidates for shifts. Choosing � of them and choosing one literal for
each shift gives ������� � + � possibilities which need about � log ���� bits

to be encoded.

Besides doing experiments on practical data that ex-
emplify the merits of our worst-case mistake bounds, this
research also leaves a number of theoretical open prob-
lems. Winnow is an algorithm for learning arbitrary linear
threshold functions and our methods for tracking the best
disjunctionstill need to be generalized to learning this more
general class of concepts.

There is a natural competitor to Winnow which is the
well known Perceptron algorithm [Ros58] for learning lin-
ear threshold functions. This algorithm does additive in-
stead of multiplicative updates. The classical Perceptron
Convergence Theorem gives a mistake bound for this algo-
rithm [DH73, Hay93]. The proof of this theorem can also
be seen as an amortized analysis. However the potential
function needed for the perceptron algorithm is quite dif-
ferent from the potential function used for the analysis of
Winnow. If �� is the weight vector of the algorithm in trial
� and �� is a target weight vector, then for the perceptron
algorithm � � �� ! �� � � 22 is the potential function where � � � � 2
is the Euclidean length of a vector. In contrast the potential
function used for the analysis of Winnow [Lit88, Lit89] that
is also used in this paper is the following generalization3 of
relative entropy [Cov65]: % �� '

1 � � �! ���
 �#� ln � ��� ��� � � � .
In the case of linear regression a framework was devel-

oped [KW94] for deriving updates from the potential func-
tion used in the amortized analysis. The same framework
can be adapted to derive both the Perceptron algorithm and
Winnow. The different potential functions for the algo-
rithms lead to the additive and multiplicative algorithms,
respectively. The Perceptron algorithm is seeking a weight
vector that is consistent with the examples but otherwise
minimizes some Euclidean length. Winnow instead mini-
mizes a relative entropy and is thus rooted in the Minimum
Relative Entropy Principle of Kullback [KK92, Jum90].

We believe that the techniques developed here for learn-
ing how to predict as well as the best shifting disjunction
will be useful in other settings such as developing algo-
rithms that predict nearly as well as the best shifting linear
combination. Now the discrete loss has to be replaced by
a continuous loss function such as the square loss, which
makes this problem more challenging.

Why are disjunctions so important? Whenever a richer
class is built by (small) unions of a large number of sim-
ple basic concepts, our methods can be applied. Simply
expand the original input into as many inputs as there are
basic concepts. Since our mistake bounds only depend log-
arithmically on the number of basic concepts, we can even
allow exponentially many basic concepts and still have
polynomial mistake bounds. This method was previously
used for developing noise robust algorithms for predicting

3For this potential function the weights must be positive. Negative
weights are handled via a reduction [Lit88, Lit89, KW94].

nearly as well as the best discretized � -dimensional axis-
parallel box [MW95, Aue93] or as well as the best pruning
of a decision tree [HS95]. In these cases a multiplicativeal-
gorithm maintains one weight for each of the exponentially
many basic concepts. However for the above examples,
the multiplicative algorithms with the exponentially many
weights can still be simulated efficiently. Now, for ex-
ample, the methods of this paper immediately lead to an
efficient algorithm for predicting as well as the best shift-
ing � -dimensional box. Thus by combining our methods
with existing algorithms, we can design efficient learning
algorithms with provably good worst-case loss bounds for
more general shifting concepts than disjunctions.

1.1 Notations

A target schedule � � �!�� 1
� ! � �� & � is a sequence

of disjunctions represented by � -ary bit vectors �� �
� �#�� 1 � ! ! � ���� � � � (0 � 1)�� . The size of the shift from dis-
junction ���) 1 to disjunction �� is � � � � ��#*) 1

! ��� � � 1 �
% �� '

1 � ��) 1
� � ! �#�� � � . The total shift size of schedule � is1 � %�& 	' 1 � where we assume that �� 0

� � 0 � ! � 0 � . If
�� 1

��������� �� & then
1 � � � � � �� 0

! �� 1 � � 1 � % �� '
1

�
1
� � .

A sequence of examples 	 � ������ 1
� �

1
� � ! � ���� & � � & � �consists of attribute vectors �� � � � �� 1 � ! ! � � �� � � �

(0 � 1)�� and classifications � �� (0 � 1) . The prediction
of disjunction �� for attribute vector �� is �� ���� � � 1 if
�� � �� � % �� '

1
� �� � � �� � 	 1 and �� ���� � � 0 if �� � �� � 0.

The number of attribute errors
 at trial � with respect to a
target schedule � is the minimal number of attributes that
have to be changed, resulting in ˜�� , such that ��� � ˜�# � � �! .
That is
 � min ˜���� 0 � 1 ��� (� � ˜�� ! ��� � � 1 : ��� � ˜�� � � �!) .
The total number of attribute errors of sequence 	 with
respect to schedule � is � � % & (' 1
 . We denote by� � 1 � � � � � the class of example sequences 	 with � at-
tributes which are consistent with some target schedule �
with shift size at most

1
and with at most � attribute errors.

By
� 0 � � � � � � � we denote the class of example sequences	 with � attributes which are consistent with some non-

shifting target schedule � � �!�� � ! � �� � of size at most �
(i.e. % �� '

1
� ��� �) and with at most � attribute errors.

The loss of a learning algorithm � on an example se-
quence 	 is the number of misclassifications

� ��� � 	 � � &�
	'

1

� ˆ�! ! �! �

where ˆ� is the prediction of the learning algorithm � in
trial � .

2 The algorithm

We present algorithm SWIN, see Figure 1, an extension
of Littlestone’s Winnow2 algorithm [Lit91]. Our extension
incorporates a randomization of the algorithm, and it guar-
antees a lower bound on the weights used by the algorithm.
The algorithm maintains a vector of � weights for the � at-
tributes. By �� � � � �� 1 � ! � � �� ��� we denote the weights
at the end of trial � , and �� 0 denotes the initial value of the
weight vector. In trial � the algorithm predicts using the
weight vector ��) 1. The prediction of the algorithm de-
pends on � � ��) 1

� ��� � % �� '
1
�)

1
� �"�#�� � , and a function� : R � � 0 � 1� . The algorithm predicts 1 with probability� ��� � , and it predicts 0 with probability 1 !�� ��� � . (To ob-

tain a deterministic algorithm one has to choose a function� : R � (0 � 1) .) Then it receives the classification �
and updates the weights, obtaining �� . The updates of the
weights are performed in two steps. The first step is the
original WINNOW update, and the second step guarantees
that no weight is smaller than � for some parameter � (the
same approach was taken in [LW94]). Observe that the
weights are changed only if the probability of making a
mistake was non-zero. For the deterministic algorithm this
means that the weights are changed only if the algorithm
made a mistake. Furthermore the

%
-th weight is modified

only if ���� � � 1. The weight is increased (multiplied by �)
if � � 1, and it is decreased (divided by �) if � � 0. The
parameters � , � , � 0, and the function � � � � , have to be set
appropriately. Good choices of the parameters and the cor-
responding mistake bounds are given in the next section,
and the proofs are given in Section 4. Corresponding lower
bounds are shown in Section 5.

3 Results

In this section we give bounds on the (expected) number
of mistakes for specific choices of � , � , � 0, and � � � � . We
will always choose some �"! ln ##)

1 and function � � � � as

� ��� � �%$ 0 if � � # ln # �'& #)
1 � # 2

)
1

1 if � � # ln # �'& #)
1 � # 2

)
1

� DET �

for the deterministic version of the algorithm, and as

� ��� � �)(*+ *,
0 if � � �&.-) � & #)

1 �
ln #) & #)

1 � if �"!/�0! ln ##)
1

1 if � 	 ln ##)
1

� PROB �

for the probabilistic version of the algorithm. Observe that� ��� � � 1 if � 	 1 for both choices of � � � � .
At first we give results on the number of mistakes of

SWIN, if no information besides � , the total number of
attributes, is given.

Parameters:
The algorithm uses parameters � � � � � 0 and a function � : R � � 0 � 1� .
These parameters must satisfy:

� � 1 and 0 � � � � �
0

Initialization:
Set the weights to initial values � 0

�
1
� ������� �

0
� � � �

0.

Prediction:
In each trial � 	 1 set � � ��) 1

� �� and predict

ˆ� �
�

1 with probability � ��� ��
0 with probability 1 ! � ��� �

Update:
Receive the binary classification � .
If � � � ��� � then set �� � ��) 1.
If � �� � ��� � then for all

% � 1 � ! � � set

1. � ��� � � �)
1
� � � ������� & 2 � �) 1 � ,

2. � �� � � max 	 �0��� � � ��
 .

Figure 1: Algorithm SWIN

Theorem 3.1 Let � 	 8, � � 2 7, � � 2
5 , � 0

� � , and� � � � be as in (DET). Then for all 	 � � � 1 � � � � �� � SWIN � 	 ��� 11 9 1
ln �
 11 8 �-
 4 8

Let � � 7, � � 2 5, � � �� 2 # , � 0
� 1� 2 # , and � � � � be as in

(DET). Then for all 	 � � � 1 � � � � �� � SWIN � 	 � � 19 3 1
 9 3 �-
 3 9
Let � � 2 4, � � 0, � 0

� 2
5 � , and � � � � be as in (DET).

Then for all 	 � � 0 � � � � � � �� � SWIN � 	 � � 3 9 � ln �
 3 4 �
 1 6
In Section 5 we will show that these bounds are optimal
up to constants. If � and

1
are known in advance then

the parameters of the algorithm can be tuned to obtain even
better results. If for example in the non-shifting case the
number � of attributes in the target concept is known we
get

Theorem 3.2 Let � �� , � � 0, � � � � , � 0
� �� , and � � � �

be as in (DET). Then for all 	 � � 0 � � � � � � �� � SWIN � 	 � � �
 1 ��� � ln
�
�
-��� �

and with � � � � as in (PROB)

E
� � SWIN � 	 � � � � ln

�
�
-���

If � 	 � � we get with � 0
� 1�� � SWIN � 	 ��� �
 1 ��� �
���� �

and
E
� � SWIN � 	 � � �
 �

Of particular interest is the case when � is the dominant
term, i.e. ��� � ln � � .

Theorem 3.3 Let � � 1
�� 2
�� ln � � , � � 0, � � � � , � 0

��� , and � � � � be as in (DET). Then for all 	 � � 0 � � � � � � �� � SWIN � 	 �� 2 �
 2 � 2 � � ln
�
��� 1
�� � 1 ��� �

and with � � 1
 � �� ln � � and � � � � as in (PROB)

E
� � SWIN � 	 �

� �
 2 � � � ln
�
� � 1
�� � 1 � � �

for
��
ln �$ ��� .

In the shifting case we get for dominant ��� 1
ln �

Theorem 3.4 Let � � � 2 �� ln
� �� , � � 1
�� , � � �

ln ��� 1 ,
�

0
� � , and � � � � be as in (DET). Then for all 	 �� � 1 � � � � �� � SWIN � 	 �� 2 �
 2 � 2 � 1

ln
� �1

�
1
�� � 1 �
	 �

and for � � � �� ln
� �� and � � � � as in (PROB)

E
� � SWIN � 	 �� �
 2 � � 1

ln
� �1

�
1
�� � 1 ��	 �

for
�� ln � ��� .

In Section 5 we will show that in Theorems 3.3 and 3.4 the
constants on � are optimal. Furthermore we can show for
the probabilistic algorithm that also the magnitude of the
second order term in Theorem 3.3 is optimal.

4 Amortized analysis

The analysis of the algorithm proceeds by showing that
the distance between the weight vector of the algorithm
�� , and vector �� representing the disjunction at trial � ,

decreases, if the algorithm makes a mistake. The poten-
tial/distance function used for the previous analysis of Win-
now [Lit88, Lit89, Lit91] is the following generalization of
relative entropy to arbitrary non-negative weight vectors:� � �� � �� � �

��
� '

1 � � !-� �
 � � ln
�#�
� ���

By taking derivatives it is easy to see that the distance is
minimal and equal to 0 if and only if �� � �� . With
the convention that 0 ln 0 � 0 and the assumption that
�� � (0 � 1) � the distance function simplifies to� �*�� � �� � �

��
� '

1

[� �!-�#�! ��� ln � �]

The following analysis is mainly for the probabilistic algo-
rithm with shifting target disjunctions. The other cases will

be derived easily from this analysis. We start by calculating
how much the distance

� � �� � ��� � changes between trials:� � �� *) 1
� ���) 1

� ! � �*�� � ��� �
� � �*��) 1

� ��) 1
� ! � �*��) 1

� �� � (1)

 � �*��) 1
� ��� � ! � �*�� � � ��� � (2)

 � �*�� � � �� � ! � �*�� � �� � (3)

Observe that term (1) might be non-zero in any trial, but
that terms (2) and (3) are non-zero only if the weights are
updated in trial � . For any� 	 max (� 1
 ln � �� � � : 0 � � � $! 1 � 1 � % � �*)

we can lower bound term (1) by� � ��) 1
� ��#) 1

� ! � � ��) 1
� ��� �

� ��
� '

1

� � �� � ! �)
1
� � � � 1
 ln �) 1

� � �
	 ! �
�

If the weights are updated in trial � , term (2) is bounded by� �*��) 1
� �� � ! � �*�� � � �� �

� ��
� '

1 �) 1
� � ! � ��� �
 � �� � ln

� ��� �
�)

1
� � �

� ��
� '

1

�)
1
� � � 1 ! � � ����� & 2 � �) 1 � �

��
� '

1

� �� � � �� � � 2 � ! 1 � ln �

� ��
� '

1

�)
1
� � �#�� � � 1 ! � 2 � �) 1 �

��
� '

1

� �� � � � �� � ! ˜� �� � � � 2 � ! 1 � ln �

��
� '

1

���� � ˜���� � � 2 �! ! 1 � ln �

	 � � 1 ! � 2 � �) 1 �
!
 ln �

 � � 2 � ! 1 � ln �

Remember that ˜� is obtained from �� by removing the at-
tribute errors from �� . The last inequality follows from the
fact that % �� '

1
���� � ˜���� � 	 1 if �! � 1 and % �� '

1
�#�� � ˜�#�� � � 0

if � � 0.
At last observe that � �� � �� � ��� � only if � � 0 and

� ��� � ! � . In this case � ��� � � �)
1
� � �)

1 	 # � and we get

for term (3)� � �� � � ��# � ! � �*�� � ��� �
� ��

� '
1 � � ��� � ! � �� �
 ���� � ln

� �� �
� ��� ���

	 ! � � 1 ! �
)

1 �
Summing over all trials we have to consider the trials where
the weights are updated and we have to distinguishbetween
trials with � � 0 and trials with � � 1. Let�

0
� (1 � � � $: � � 0 � � ��� � � 0) ��

1
� (1 � � � $: � � 1 � � ��� � ! 1) �

denote these trials. Then by the above considerations we
have

&�
	'

1

� � ��) 1
� ��) 1

� ! � �*�� � �� �

	 &�
	'

1

[! � � !
 ln �]

 �
 ���

0 � � � 1 ! �
)

1 � ! � � 1 ! �
)

1 ���

 �
 ���

1 � � � 1 ! � �
 ln � �
Now we want to lower bound the sum over

�
0 and

�
1 by

the expected (or total) number of mistakes of the algorithm.
We can do this by choosing an appropriate function � � � � .
We denote by � the probability that the algorithm makes a
mistake in trial � . Then the expected number of mistakes is% & 	' 1

�� . Observe that �� � 0 for any � �� �
0 	 � 1, since

in this case � � � ��� � . Furthermore � � � ��� � if � � �
0

and �� � 1 ! � ��� � if � � �
1. Thus it is sufficient to find

a function � � � � and a constant
 with� � : � ��� � � 0 : � � 1 ! �
)

1 � ! � � 1 ! �
)

1 � 	�
 � ��� � � 4 �
and� � : � ��� � ! 1 : � � 1 ! � �
 ln � 	
 � 1 !�� ��� � � � 5 �
For such a function � � � � satisfying (4) and (5) we get

&�
	'

1

� � �� *) 1
� ��) 1

� ! � �*�� � �� �
	 ! 1 � ! � ln �
�
 E

� � SWIN � 	 � �
assuming that 	 � � � 1 � � � � � . Since

&�
('

1

� � �*��) 1
� ��#) 1

� ! � � �� � ��# � �
� � �*�� 0

� �� 0
� ! � � �� & � �� & �� � �

0

we can upper bound the expected number of mistakes by

E
� � SWIN � 	 � � 1 �
-� ln �
 � �

0

Hence we want to choose � � � � and
 such that
 is as big
as possible. Some calculations show that the best choice is
 � ln � ! � � ! 1 � �

�
which satisfies (4) and (5) for � � � � as in (PROB). Of course
we have to choose � small enough such that ��� ! 1 � � !
ln � . Putting everything together we have the following
lemma.

Lemma 4.1 Let �"! ln ##)
1 and assume that� 	 max (� 1
 ln � �� � � : 0 � � � $! 1 � 1 � % � �*)

where � �� � are the weights used by algorithm SWIN. Then
for all 	 � � � 1 � � � � �

E
� � SWIN � 	 ��� � 1 �
�� ln �
 � �

0

ln � ! � � ! 1 � �
if SWIN uses the function � � � � given by (PROB).

For the deterministic variant we have to use a function� : R � (0 � 1) and therefore cannot use (PROB). The
optimal choice satisfying (4) and (5) is
 � ln � ! � � ! 1 � �

�
 1

with � � � � as in (DET), and we get

Lemma 4.2 Let �"! ln ##)
1 and assume that� 	 max (� 1
 ln � �� � � : 0 � � � $! 1 � 1 � % � �*)

where � �� � are the weights used by algorithm SWIN. Then
for all 	 � � � 1 � � � � �

� � SWIN � 1 � � ��� � �
 1 �
1 �
-� ln �
 � �

0

ln � ! � � ! 1 � �
if SWIN uses the function � � � � given by (DET).

Now we are going to calculate a bound � on � 1
 ln � �� � � .
We get this bound by lower and upper bounding � �� � . Ob-
viously � �� � 	 � for all � and

%
. The upper bound on � �� �

is derived from the observation that � �� � � �)
1
� � only if�! � 1, � ��� � ! 1, and ���� � � 1. Since � ��� � � 1 for � 	 1

with the � � � � as in (PROB) or (DET), and � 	 �)
1
� � � �� �

we find that � �� � � � . Thus ln �� 	�� 1
 ln � �� � � whenever
� � �� 2 # .

Lemma 4.3 If � � �
0
� � then for all � � 0 � ! � $

and
% � 1 � ! � � the weights � �� � of algorithm SWIN with

function � � � � as in (PROB) or (DET) satisfy

� � � � �� � � �
Furthermore � 1
 ln � �� 1 � � ln

� �
for � � �� 2 # .

4.1 The non-shifting case

In the non-shifting case where �� 1
� ����� � �� & � �� and

�� 0
� � 0 � ! � 0 � term (1) is 0 for all � 	 2, and it is� �*�� 0

� �� 0
� ! � � �� 0

� �� 1
�

� �
 � ln � 0

for � � 1 where � � % �� '
1

� � is the number of attributes in
the target disjunction �� . Thus in the non-shifting case the
term

1 � in the upper bounds of Lemmas 4.1 and 4.2 can
be replaced by � ln 1���

0
, provided that � 0

� 1, and we get

Lemma 4.4 Let � ! ln ##)
1 and �

0
� 1� . Then for all	 � � 0 � � � � � � �

E
� � SWIN � 	 �� � � ln 1���

0

 � ln �
 � �

0

ln � ! ��� ! 1 � �
if SWIN uses the function � � � � given by (PROB), and� � SWIN � 	 �� � �
 1 � � ln 1���

0

�� ln �
 � �

0

ln � ! ��� ! 1 � �
if SWIN uses the function � � � � given by (DET).

4.2 Proofs of the upper bounds

The bounds given in Theorems 3.1–3.4 are derived from
the lemmas above. After plugging in the parameters given
in the theorems, some tedious calculations yield the upper
bounds.

5 Lower bounds

We start by proving a lower bound for the shifting case.
We show that for any learning algorithm � there are exam-
ple sequences 	 for which the learning algorithm makes
“many” mistakes. Although not expressed explicitly in the

following theorems we will show that these sequences 	
can be generated by target schedules � � �!�� 1

� ! � �� & �where each disjunction �� consists of exactly one literal,
i.e. ��� � � & for some

�
where � & is the

�
th unit vector.

Theorem 5.1 For any deterministic learning algorithm � ,
any � 	 2, any

1 	 1, and any � 	 0, there is an example
sequence 	 � � � 1 � � � � � such that� ��� � 	 � 	 2 �

� 1
 1
2 ��� log2

�	�
Proof. For notational convenience we assume that � � 2
 ,� 	 1, and

1 � 2 � ! 1, � 	 1. We construct the example
sequence 	 depending on the predictions of the learning
algorithm such that the learning algorithm makes a mistake
in each trial. We partition the trials into � rounds. The
first � ! 1 rounds have length � , the last round has length�
 2 � . Attribute errors will occur only within the last
2 ��
 1 trials. We choose the target schedule such that
during each round the target disjunction does not change
and is equal to some � & .

At the beginning of each round there are � � 2
 dis-
junctions consistent with the examples of this round. After

trials in this round there are still 2
)�� consistent disjunc-
tions: we construct the attribute vector by setting half of the
attributes which correspond to consistent disjunctions to 1,
and the other attributes to 0. Furthermore we set � � 1 ! ˆ�
where ˆ� is the prediction of the algorithm for this attribute
vector. Obviously half of the disjunctions are consistent
with this example, and thus the number of consistent dis-
junctions is divided by 2 in each trial. Thus in each of the
first � ! 1 rounds there is a disjunction consistent with all� examples of this round.

After � ! 1 trials in the last round there are two dis-
junctions consistent with the examples of this round. For
the remaining 2 �
 1 trials we fix some attribute vector
for which these two disjunctions predict differently, and
again we set � � 1 ! ˆ� . Thus one of these disjunctions
disagrees at most � times with the classifications in these
2 �
 1 trials. This disagreement can be seen as caused by� attribute errors, so that the disjunction is consistent with
all the examples in the last round up to � attribute errors.�
Remark 5.2 Observe that a lower bound for deterministic
algorithms like � ��� 	 :

� ��� � 	 � 	��
implies the following lower bound on probabilistic algo-
rithms: � ��� 	 : E

� ��� � 	 � 	 �
2

This follows from the fact that any probabilistic learning
algorithm can be turned into a deterministic learning al-
gorithm which makes at most twice as many mistakes as
the probabilistic algorithm makes in the average. This
means that Theorem 5.1 implies for any probabilistic al-
gorithm � that there are sequences 	 � � � 1 � � � � � with
E
� ��� � 	 � 	��
�� �4 � � log2

�	� .
Now we turn to the non-shifting case. For � � 1 there

are already lower bounds known.

Lemma 5.3 ([LW94]) For any deterministic learning al-
gorithm � , any � 	 2, and any � 	 0, there is an example
sequence 	 � � 0 � 1 � � � � � such that� ��� � 	 � 	 2 �
 log2

�
A slight modification of results in [CBFH � 94] gives

Lemma 5.4 ([CBFH � 94]) There are functions � ��� � and� � � � � � such that for any � � 0, any probabilistic learning
algorithm � , any � 	 � ��� � , and any � 	�� � � � � � , there is
an example sequence 	 � � 0 � 1 � � � � � such that

E
� ��� � 	 � 	���
 � 1 ! � � � � ln �

We extend these results and obtain the following theorems.

Theorem 5.5 For any deterministic learning algorithm � ,
any � 	 1, any � 	 2 � , and any � 	 0, there is an example
sequence 	 � � 0 � � � � � � � such that� ��� � 	 � 	 2 ��
 � log2 � � ���
Theorem 5.6 There are functions � ��� � and � � � � � � such
that for any � � 0, any probabilistic learning algorithm � ,
any � 	 1, any � 	 � � ��� � , and any � 	 � � � � � � � , there
is an example sequence 	 � � 0 � � � � � � � such that

E
� ��� � 	 � 	��
 � 1 ! � � � � � ln � � ���

Proof of Theorems 5.5 and 5.6. The proof is by a reduction
to the case � � 1. The � attributesare divided into � groups� � , % � 1 � ! � � , such that each group consists of � � 	 � � � �
attributes. Furthermore we choose numbers
 � 	 � � � � ,% � 1 � ! � � , with % �� '

1
 � � � . For each group
� �

we choose a sequence 	 � � � 0 � 1 �
 � � ��� � , accordingly to
Lemmas 5.3 and 5.4, respectively, such that for any learning
algorithm � � � ��� � � 	 � � 	 2
 �
 log2

� � � 6 �
and

E
� ��� ��� 	 � � 	
 �
 � 1 ! � � �
 � ln � � � 7 �

These sequences 	 � can be extended to sequences 	 �� with� attributes by setting all the attributes not in group
%

to
0. Concatenating the expanded sequences 	 �� we get a
sequence 	 . It is easy to see that 	 � � � � � � � � � . On
the other hand any learning algorithm for sequences with �
attributes can be transformed into a learning algorithm for
sequences with a smaller number of attributes by setting
the missing attributes to 0. Thus on each subsequence 	 ��
of 	 learning algorithm � makes at least as many mistakes
as given in (6) and (7). Hence� ��� � 	 � 	 2 �
 � log � � � �
and

E
� ��� � 	 � 	 2 �
 � 1 ! � � ��

� '
1

	 � �
� � ln � � � �

	 2 �
 � 1 ! � � � � � ln � � � �
! �
	

ln � � � �� � ! 1

	 2 �
 � 1 ! 2 � � � � � ln � � � �
if the function � � � � � � is chosen appropriately.

�
Acknowledgments

We would like to thank Mark Herbster and Nick Little-
stone for valuable discussions.

References

[Aue93] P. Auer. On-line learning of rectangles in
noisy environments. In Proceedings of the
Sixth Annual ACM Conference on Compu-
tational Learning Theory, pages 253–261.
ACM Press, New York, NY, 1993.

[CBFH � 94] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold,
D. Haussler, R. E. Schapire, and M. K. War-
muth. How to use expert advice. Technical
Report UCSC-CRL-94-33, Univ. of Calif.
Computer Research Lab, Santa Cruz, CA,
1994. An extended abstract appeared in
STOC ’93.

[CBFHW94] N. Cesa-Bianchi, Y. Freund, D. P. Helm-
bold, and M. Warmuth. On-line predic-
tion and conversion strategies. In Computa-
tional Learning Theory: Eurocolt ’93, vol-
ume New Series Number 53 of The Institute

of Mathematics and its Applications Confer-
ence Series, pages 205–216, Oxford, 1994.
Oxford University Press.

[Cov65] T. Cover. Behavior of sequential predictors
of binary sequences. In Proceedings of the
4th Prague Conference on Information The-
ory, Statistical Decision Functions and Ran-
dom Processes, pages 263–272. Publishing
House of the Czechoslovak Academy of Sci-
ences, 1965.

[DH73] R. O. Duda and P. E. Hart. Pattern Classifi-
cation and Scene Analysis. Wiley, 1973.

[Hay93] S. Haykin. Neural Networks: a Comprehen-
sive Foundation. Macmillan, New York, NY,
1993.

[HKW94] D. Haussler, J. Kivinen, and M. K. War-
muth. Tight worst-case loss bounds for pre-
dicting with expert advice. Technical Report
UCSC-CRL-94-36,University of California,
Santa Cruz, Computer Research Laboratory,
November 1994. An extended abstract ap-
peared in Eurocolt 1995. To appear subject to
revision in IEEE Transaction on Information
Theory.

[HS95] D. P. Helmbold and R. E. Schapire. Pre-
dicting nearly as well as the best pruning of
a decision tree. In Proc. 6th Annu. Conf.
on Comput. Learning Theory, pages 61–68.
ACM Press, New York, NY, July 1995.

[HW95] M. Herbster and M. K. Warmuth. Tracking
the best expert. In Machine Learning: Pro-
ceedings of the Twelfth International Con-
ference, San Francisco, CA., 1995. Morgan
Kaufmann Publishers.

[Jum90] G. Jumarie. Relative information. Springer-
Verlag, 1990.

[KK92] J. N. Kapur and H. K Kesavan. Entropy
Optimization Principles with Applications.
Academic Press, Inc., 1992.

[KW94] J. Kivinen and M. Warmuth. Using experts
for predictingcontinuous outcomes. In Com-
putational Learning Theory: Eurocolt ’93,
volume New Series Number 53 of The In-
stitute of Mathematics and its Applications
Conference Series, pages 109–120, Oxford,
1994. Oxford University Press.

[KW95] J. Kivinen and M. K. Warmuth. The per-
ceptron algorithm vs. winnow: linear vs.
logarithmic mistake bounds when few input
variables are relevant. In Proc. 8th Annu.
Conf. on Comput. Learning Theory, pages
289–300. ACM Press, New York, NY, 1995.

[Lit88] N. Littlestone. Learning when irrelevant
attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318,
1988.

[Lit89] N. Littlestone. Mistake Bounds and Log-
arithmic Linear-threshold Learning Algo-
rithms. PhD thesis, Technical Report UCSC-
CRL-89-11, University of California Santa
Cruz, 1989.

[Lit91] N. Littlestone. Redundant noisy attributes,
attribute errors, and linear threshold learning
using Winnow. In Proc. 4th Annu. Workshop
on Comput. Learning Theory, pages 147–
156, San Mateo, CA, 1991. Morgan Kauf-
mann.

[LW94] N. Littlestone and M. K. Warmuth. The
weighted majority algorithm. Information
and Computation, 108(2):212–261, 1994.

[MW95] M. Maass and K. Warmuth, M. Efficient
learning with virtual threshold gates. In Proc.
12th International Conf. on Machine Learn-
ing, pages 378–386, San Francisco, CA, July
1995. Morgan Kaufmann.

[Ros58] F. Rosenblatt. The perceptron: A probabilis-
tic model for informationstorage and organi-
zation in the brain. Psych. Rev., 65:386–407,
1958. (Reprinted in Neurocomputing (MIT
Press, 1988).).

[Vov90] V. Vovk. Aggregating strategies. In Proc.
3rd Annu. Workshop on Comput. Learning
Theory, pages 371–383. Morgan Kaufmann,
1990.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

