Electronic Collogquium on Computational Complexity, Report No. 70 (2000)

Tracking the best digunction

Peter Auer*

Manfred K. Warmuth?

Department of Computer Science
University of Californiaat Santa Cruz
Santa Cruz, CA 95064 (USA)

Abstract

Littlestone developed a simple deterministic on-line
learning algorithmfor learning k-literal digunctions. This
algorithm(called Winnow) keeps one weight for each of the
n variables and does multiplicative updatesto its weights.
We develop a randomized version of Winnow and prove
bounds for an adaptation of the algorithm for the case
when the digunction may change over time. In this case
a possible target digunction schedule 7 is a sequence of
digunctions (one per trial) and the shift size is the total
number of literals that are added/removed from the dis-
junctions as one progresses through the sequence.

We develop an algorithm that predicts nearly as well
as the best digunction schedule for an arbitrary sequence
of examples. This algorithm that allows us to track the
predictions of the best disunction is hardly more complex
than the original version. However the amortized analysis
needed for obtaining worst-case mistake bounds reguires
new techniques. In some cases our lower bounds show that
the upper bounds of our algorithm have the right constant
in front of the leading term in the mistake bound and al-
most the right constant in front of the second leading term.
By combining the tracking capabilitywith existing applica-
tions of Winnow we are abl e to enhance these applications
to the shifting case aswell.

1 Introduction

One of the most significant successes of the Computa
tiona Learning Theory community has been Littlestone's
formalization of an on-linemodel of learning and thedevel -
opment of his algorithm Winnow for learning disunctions
[Lit89, Lit88]. The key feature of Winnow is that when
learning digunctions, the number of mistakes of the algo-
rithm grows only logarithmically with theinput dimension.

*P. Auer issupported by grant J01028-M AT of the Fonds zur Forderung
der wissenschaftlichen Forschung, Austria

tM. K. Warmuth acknowledges the support of the NSF grant IRI-
9123692.

For many other standard algorithms such as the Perceptron
Algorithm [Ros58], the number of mistakes can grow lin-
early in thedimension [KW95]. In the meantime anumber
of algorithms similar to Winnow have been developed that
also show the logarithmic growth of the loss boundsin the
dimension [LW94, Vov90, CBFH 94, HKW94, KW94].

In this paper we give arefined anaysis of Winnow, de-
velop a randomized version of the algorithm, give lower
bounds that show that both the deterministic and the ran-
domized version are close to optimal, and adapt both ver-
sions so that they can be used to track the predictionsof the
best disunction.

Consider the following by now standard on-line learn-
ing model [Lit89, Lit88, Vov90, CBFH*94]. Learning pro-
ceedsintriads. Intrial ¢ > 1theagorithmispresented with
aninstance Z; (in our case an n-dimensiona binary vector)
that is used to produce a binary prediction §;. The ago-
rithmthen receives abinary classification y, of theinstance
and incurs a misteke if §; # y:. The goal isto minimize
the worst-case number of mistakes of the algorithm for an
arbitrary sequence of examples ((#;, y:)). Thisisof course
a hopeless scenario. For any deterministic algorithm an
adversary can aways choose the sequence so that the al-
gorithm makes a mistake in each trial. A more reasonable
god is to minimize the number of mistakes of the algo-
rithm compared to the minimum number of mistakes made
by any concept from a comparison class.

In this paper we use monotonet k-literal disjunctionsas
thecomparison class. If thedimension (number of Boolean
attributed/literals) is n then such digunctions are Boolean
formulasof theformz;, vV z;, V...V z;,, wheretheindices
i; liein {1,...,n}. The number of classification errors
of such a digunction with respect to a sequence of exam-
ples is smply the total number of misclassifications that
this digjunction produces on the sequence. The god isto
devel op algorithmswhose number of mistakesisnot much
larger than the number of classification errors of the best
digunction on any sequence of examples.

Inthis paper we consider the case where the mistakes of

1By expanding the dimension to 2r, Learning non-monotonedisjunc-
tions reducesto the monotone case.

ISSN 1433-8092

thebest (“target”) digunctionare caused by attributeerrors.
The number of attribute errors of an example (Z,y) €
{0, 1} x {0, 1} with respect to a target digunction @ is
the minimum number of attributes/bits of & that have to
be changed so that for the resulting #, @(Z) = y. The
number of attribute errorsfor a sequence of exampleswith
respect to a target concept is simply the total number of
such errors for al examples of the sequence. Note that
if the target « is a k-literd monotone digunction then the
number of attribute errorsisat most & times the number of
classification errors with respect to (i.e. the number of
examples (#, y) in the sequence for which (%) # y).

Winnow can be tuned as a function of k& so that it
makes at most O(A + kIn(n/k)) mistekes on any se-
guence of examples where the best digunction makes at
most A attribute errors [Lit88]. We give a randomized
version of Winnow and giveimproved tuningsof the orig-
inal agorithm. The new agorithm can be tuned based
on k and A so that its expected mistake bound is at most
A+ (2+0(1))\/Ak In(n/k) on any sequence of examples
for which there is a monotone k-literal digunctionwith at
most A attribute errors. We dso show how the origina
deterministic algorithm can be tuned so that its number of
mistakes is a most 24 + (2v/2 4 o(1))\/Ak In(n/k) for
the same set of sequences.

Our lower bounds show that these bounds are very
close to optimal. We show that for any agorithm the
expected number of mistakes must be at least A + (1 +
0(1))\/AkIn(n/k). So our upper bound has the correct
constant on the leading term and amost the optimal con-
stant on the second term. For deterministic agorithms our
lower bounds show that the constant on theleading termis
optimal.

Our lower bounds for both the deterministic and the
randomized case cannot beimproved significantly because
there are essentialy matching upper bounds achieved by
non-efficient algorithmswith the correct factorson thefirst
and the second term. These algorithms use () experts
[CBFH194]. Each expert simply computes the vaue of
a particular k-literal digunction and one weight is kept
per expert. This amounts to expanding the n-dimensional
Boolean inputsinto () Boolean inputs and then using
single literas (experts) [LW94, Vov90, CBFH*94] as the
comparison class instead of k-literal monotone digunc-
tions. The expected number of mistakes of the probabilistic
agorithmisa most Q + /QkIn(n/k) + klogy(n/k)/2
where () is a bound on the number of classification errors
of the best k-literal digunction. The mistake bound of the
deterministic algorithm is exactly twice as high. Observe
that these algorithms have to use about n* weights, and
that they need that much timein each trail to calculate their
prediction and update the weights. Thus their run timeis

exponential in k.

In contrast, our agorithm uses only n weights. On the
other hand the noise in the upper bounds of our efficient
algorithm is measured in attribute errors rather than clas-
sification errors. This naturally arises since we are using
one weight per attribute. Recdll that a classification error
with respect to a k-literal digunction can equate to up to
k atribute errors. To capture errors that affect up to &
attributes efficiently the expansion to (,) experts seems
to be unavoidable. Nevertheless, it is Surprising that our
simple algorithm is able to get the right factor before the
number of attribute errors A and for the probabilistic ver-
sion amost the right factor before the square root term. In
some sense our agorithm compresses (',) weightsto only
n weights. At this point we don’t have a computational
interpretation of our weights. Such an interpretation was
only found for the singleliteral (expert) case [CBFHW94].

AslLittlestone[Lit91] we usean amortized analysiswith
an entropic potentia function to obtain our worst-case |0oss
bounds. However besides the more careful tuning of the
boundswe take the amortized analysismethod a significant
step further by proving mistake bounds of our algorithmas
compared to the best shifting digunction. Assume that a
disunction % is specified by a n-dimensional binary vec-
tor, where the components with value 1 correspond to the
monotone literals of the digunction. For two digunctions
@ and @' the Hamming distance || — 4'||1 measures how
many literals have to be “shifted” to obtain @’ from .
A digunction schedule 7 for a sequence of examples of
length T" is simply a sequence of T' digunctions ii;. The
(shift) size of the schedule 7 is Ethl ||td—1— Ut]]1 (Hois
theall zero vector). In the original non-shifting case al i,
(t > 1) are equal to some k-literal digunction .

At trial ¢ the schedule 7 predicts with digunction ;.
We define the number of attributeerrors of a sequence with
respect toaschedule7 asthetotal number of attributesthat
have to be changed in the sequence of examples to make it
consistent with the schedule 7. Note that the loss bound
for the non-shifting case can be writtenascA + O(vV/AB),
where B = O(k + k In(n/k)) isthe number of bitsit takes
to describe a k-litera monotone digunction, and where
¢ = 1 for the randomized and ¢ = 2 for the deterministic
algorithm. Surprisingly, we were able to prove bounds of
the same form for the shifting digunction case. B is how
the number of bitsit takes to describe the best schedule 7
and A isthe number of attribute errors of this schedule. If
7 isthe size of the best schedule (essentially the number
of shifts of literals) then it takes O(Z In(An/Z)) bits to
describe atarget schedule in respect to a given sequence of
examples.?

2Essentially onehasto describewhen ashift occursandwhichliteral is
shifted. Obviously there is no necessity to shift if the current disunction

Our worst-case mistake bounds are similar to bounds
obtained for “competitive algorithms’ in that we compare
the number of mistakes of our agorithm against the num-
ber of attribute errors of the best off-line algorithm that
is given the whole sequence ahead of time. The off-line
algorithm still incurs A attribute errors and here we bound
the additiond loss of the on-linealgorithm over the number
of attribute errors of the best schedule (as opposed to the
less accurate method of bounding the ratio of on-line over
off-line).

Winnow does multiplicative updates to its weights.
Whenever the algorithm makes a mistake then the weights
of al the literals for which the corresponding bit in the
current input instance is one are multiplied by afactor. In
the case of Winnow2, the version of Winnow this paper is
based on, this factor is either « or 1/, where o > 1is
a parameter of the agorithm. The multiplicative weight
updates might cause the weights of the algorithm to decay
rather rapidly. Since any literal might become part of the
disunction schedule even when it was misleading during
the early part of the sequence of examples, any agorithm
that is to predict well as compared to the best digunction
schedule must be able to recover weights quickly. Our
extension of Winnow2 simply adds a step to the origina
agorithm that resets a weight to 5/n whenever it drops
bel ow thisboundary. Similar methods for lower bounding
the weights were used in the algorithm WML of [LW94]
which was designed for predicting aswell asthe best shift-
ing single literal/expert. In addition to generdizing the
work of [LW94] to arbitrary size digunctionswewere gble
to optimize the constant in the leading term of the mistake
bound of Winnow and develop a probabilistic version of
the agorithm.

In [HW95] the work of [LW94] was generalized in a
different direction. The focus there is to predict as well
as the best shifting expert, where “well” is measured in
terms of other loss functions than the discrete | oss (count-
ing mistakes) which isthe loss function used in this paper.
Againthebasic buildingblock isasimpleon-lineagorithm
that uses multiplicative weight updates [Vov90, HKW94]
but now the predictions and the feedback in each tria are
real-vaued and liein theinterva [0, 1]. The class of loss
functions includes the natural loss functions of log loss,
square loss and Hellinger loss. In this cases more sophis-
ticated methods are needed for recovering small weights
quickly [HW95] than simply lower bounding the weights.

is correct on the current example. Thus only in some of the trials in
which the current disjunction would make a mistake the disjunction is
shifted. Since the target schedule might make up to A mistakes due to
attribute errors and there are up to Z shifts, we get A + Z trials which
are candidatesfor shifts. Choosing Z of them and choosing oneliteral for
each shift gives (“},”)n” possibilitieswhich need about Z log 42 bits
to be encoded.

Besides doing experiments on practical data that ex-
emplify the merits of our worst-case mistake bounds, this
research aso leaves a number of theoretical open prob-
lems. Winnow is an agorithm for learning arbitrary linear
threshold functions and our methods for tracking the best
digunctionstill need to be generalized tolearning thismore
general class of concepts.

There is a natura competitor to Winnow which is the
well known Perceptron agorithm [Ros58] for learning lin-
ear threshold functions. This agorithm does additive in-
stead of multiplicative updates. The classica Perceptron
Convergence Theorem gives amistake bound for thisa go-
rithm [DH73, Hay93]. The proof of this theorem can aso
be seen as an amortized analysis. However the potential
function needed for the perceptron agorithm is quite dif-
ferent from the potentia function used for the anaysis of
Winnow. If w; istheweight vector of thealgorithmin tria
t and is atarget weight vector, then for the perceptron
agorithm ||@ — @, ||3 is the potentia function where |[.||2
isthe Euclidean length of avector. In contrast the potential
functionused for theanaysisof Winnow [Lit88, Lit89] that
isalso used in this paper isthefollowing generalization? of
relative entropy [Cov65]: > 7 [wi — u; + u; In(u; /w;)].

In the case of linear regression a framework was devel-
oped [KW94] for deriving updates from the potential func-
tion used in the amortized analysis. The same framework
can be adapted to derive both the Perceptron algorithm and
Winnow. The different potential functions for the ago-
rithms lead to the additive and multiplicative algorithms,
respectively. The Perceptron algorithmis seeking aweight
vector that is consistent with the examples but otherwise
minimizes some Euclidean length. Winnow instead mini-
mizes arelative entropy and isthusrooted in the Minimum
Relative Entropy Principle of Kullback [KK92, Jum9Q].

We believe that the techniques devel oped herefor learn-
ing how to predict as well as the best shifting diunction
will be useful in other settings such as developing algo-
rithmsthat predict nearly as well as the best shifting linear
combination. Now the discrete |oss has to be replaced by
a continuous loss function such as the sguare loss, which
makes this problem more challenging.

Why are digunctions so important? Whenever aricher
class is built by (small) unions of a large number of sim-
ple basic concepts, our methods can be applied. Simply
expand the origina input into as many inputs as there are
basic concepts. Since our mistake boundsonly depend log-
arithmically on the number of basic concepts, we can even
allow exponentially many basic concepts and still have
polynomia mistake bounds. This method was previoudy
used for devel oping noise robust algorithmsfor predicting

3For this potential function the weights must be positive. Negative
weightsare handled viaareduction [Lit88, Lit89, KW94].

nearly as well as the best discretized d-dimensional axis-
paralel box [MW9I5, Aued3] or aswell asthe best pruning
of adecision tree[HS95]. Inthese casesamultiplicativeal-
gorithm maintains one weight for each of the exponentialy
many basic concepts. However for the above examples,
the multiplicative a gorithms with the exponentialy many
weights can till be simulated efficiently. Now, for ex-
ample, the methods of this paper immediately lead to an
efficient algorithm for predicting as well as the best shift-
ing d-dimensiona box. Thus by combining our methods
with existing algorithms, we can design efficient learning
algorithms with provably good worst-case |oss bounds for
more general shifting concepts than digunctions.

1.1 Notations

A target schedule 7 = (iy,...,dr) iS a sequence
of digunctions represented by n-ary bit vectors @; =
(us1, ..., usn) € {0,1}”. The size of the shift from dis-
junction @;_; to digunction @; is z; = ||td;—1 — U|]1 =
S 1|ut 1, — uz,;|. Thetotal shift size of schedule 7 is
7 = Zt 1% where we assume that @y = (0, ...,0). If
ulz _uT thenZ =k = ||LL0—U1||1—Z?:1U17Z'.

A sequence of examples S = ((Z1, 1), ..., (Zr, y7))
congists of etribute vectors &; = (2:1,...,2:40) €
{0, 1}" and classifications y; € {0,1}. The prediction
of digunction #; for atribute vector #; is @;(#;) = 1if
ﬂt . ft = Z?:l'utyil‘t’i Z 1and ﬁt(ft) =0 |fth . ft =0.
The number of attributeerrors a; at tria ¢ with respect toa
target schedule 7 isthe minimal number of attributes that
have to be changed, resultingin #;, such that @:(%:) = y;.
That is a; = MiNzego1y-1l|Z: — Z4ll1 © @(Z:) = e}
The total number of attribute errors of sequence S with
respect to schedule 7 is A = S.._, a,. We denote by
8(Z, A, n) the class of example sequences S with n at-
tributes which are consistent with some target schedule 7
with shift sizeat most Z and with at most A attributeerrors.
By S°(k, A, n) we denote the class of example sequences
S with n attributes which are consistent with some non-
shifting target schedule 7 = (i, ..., @) of size a most &
(i.e -7, u; < k) andwithat most A attributeerrors.

The loss of alearning agorithm 7. on an example se-
guence S isthe number of misclassifications

~

M(L,S) =" 9 — il

t=1

where g, is the prediction of the learning algorithm L in
trial ¢.

2 Thealgorithm

We present algorithm SWIN, see Figure 1, an extension
of Littlestone’sWinnow2 algorithm[Lit91]. Our extension
incorporates a randomization of the agorithm, and it guar-
antees alower bound on theweights used by the algorithm.
The agorithm maintains a vector of n weightsfor the n at-
tributes. By @; = (w1, ..., w; ») We denote the weights
at the end of trial ¢, and wy denotes the initial value of the
weight vector. In tria ¢ the agorithm predicts using the
weight vector w;_1. The prediction of the agorithm de-
pendsonr; = Wy_1 Ty = Y ., wy—1,2¢;, andafunction
p : R — [0, 1]. The agorithm predicts 1 with probability
p(r:), and it predicts O with probability 1 — p(r;). (To ob-
tain a deterministic a gorithm one has to choose a function
p : R — {0,1}.) Then it receives the classification y;
and updates the weights, obtaining ;. The updates of the
weights are performed in two steps. The first step is the
original WINNOW update, and the second step guarantees
that no weight is smaller than % for some parameter 3 (the
same approach was taken in [LW94]). Observe that the
weights are changed only if the probability of making a
mistake was non-zero. For the deterministic algorithmthis
means that the weights are changed only if the agorithm
made a mistake. Furthermore the i-th weight is modified
only if 2; ; = 1. Theweightisincreased (multiplied by «)
if y, = 1, and it isdecreased (divided by «) if y; = 0. The
parameters «, 3, wo, and the function p(-), have to be set
appropriately. Good choices of the parameters and the cor-
responding mistake bounds are given in the next section,
and the proofsare givenin Section 4. Correspondinglower
bounds are shown in Section 5.

3 Reaults

Inthis section we give bounds on the (expected) number
of mistakes for specific choices of «, 3, wo, and p(-). We
will aways choose some 8 < 2 and function p(-) as

0 if r< alnoz-l-(oz 1)
(r) = {

1 if T>MQ_1L (DET)

for the deterministic version of the algorithm, and as

0 if »r<g
p(r) =1 f8lesd if g<r< % (PROB)
1 if r> L“_al

for the probabilistic version of the algorithm. Observe that
p(r) = 1if r > 1 for both choices of p(-).

At first we give results on the number of mistakes of
SWIN, if no information besides n, the tota number of
attributes, is given.

Parameters:
The agorithm uses parameters «, 8, wo and a functionp : R — [0, 1].
These parameters must satisfy:

Initialization:

Prediction:

Yt =

Update:

2. w;; = max {wéw g}

a>1 and Ogégwo.
n

Set theweightstoinitial valueswg 1 = - - - = wo n = wo.

Ineachtria t > 1setr, = w;_1 - ¥; and predict

. 1 with probability p(r:)
0 with probability 1 — p(r;) -

Receive the binary classification y;.
Ify; = p(?“t) then set w; = w;_1.

If y: # p(r;) thenforali=1,... ,nsat

! (2yi—1
1. wy ;= w1 ;0% (2y:=1)

Figure 1: Algorithm SWIN

Theorem3.1 Letn > 8, & = 2.7, = 2, wo = £, and
p(-) beasin (DET). Thenfor all S € S(Z, A, n)

M(SMN, 5) < 11.9ZInn + 11.84 + 4.8.

Letn <7,a =25 3= 2, wy= -, andp(-) beasin
(DET). Thenfor all S € S§(Z, A, n)

M(SMIN, S) < 19.3Z + 9.34 + 3.9.

Let o = 2.4, 3 = 0, wo = &, and p(-) beas in (DET).
Thenfor all S € SOk, A, n)

M(SWIN, S) < 3.9kInn + 3.44 + 1.6.

In Section 5 we will show that these bounds are optimal
up to constants. If A and 7 are known in advance then
the parameters of the d gorithm can be tuned to obtain even
better results. If for example in the non-shifting case the
number k of attributesin the target concept is known we
get

Theorem 3.2 Leta =¢, =0,k < 2,wo = £, andp(-)
be asin (DET). Thenfor all S € S%(k, A, n)

M(SMN, S) < (e + 1) (kln% —|—A> ,

and with p(-) asin (PROB)
EM(SWIN, S) < e (]cln% +A) .

Ifk > 2 weget withw = 1

M(SMIN,S) < (e +1) (= + 4),

and
EM(SWMN,S) < n+eA.

Of particular interest is the case when A is the dominant
term,i.e. A > kInZ.

Theorem 3.3 Letar = 144/ZIn2, =0,k < 2, wo =
£ and p(-) beasin (DET). Thenfor all S € 8%k, A, n)

M(SMN, S)

< 2442 ,/2Ak|n%<l+o(l)),

andwitha =1+ (/£ In2 and p(-) asin (PROB)
EM(SMN, S)

< A+2 ,/Akln%<l+0(l)),

A

In the shifting case we get for dominant A > 7 Inn

Theorem 3.4 Lete = m,a: 1+6f= 5,

wo = 2, and p(-) be as in (DET). Then for all S €
S8(Z,A,n)

M(SMN, S)

2442 \/2AZ|h%<l+o(l)) ,

and for e = \/Z In4% and p(-) asin (PROB)
EM(SMN, S)

< A42 \/AZIh%(l—l—o(l)) ,

A

IN

In Section 5 wewill show that in Theorems 3.3 and 3.4 the
congtants on A are optimal. Furthermore we can show for
the probabilistic algorithm that also the magnitude of the
second order term in Theorem 3.3 isoptimal.

4 Amortized analysis

The anaysis of the algorithm proceeds by showing that
the distance between the weight vector of the agorithm
wy, and vector i; representing the digunction at trid ¢,
decreases, if the agorithm makes a mistake. The poten-
tial/distancefunction used for the previousanaysisof Win-
now [Lit88, Lit89, Lit91] isthefollowing generdization of
relative entropy to arbitrary non-negative weight vectors.

n ws

D(w, i) = wi — u; + u;In—

(w0,) ;[w u; + u nwi

By taking derivativesit is easy to see that the distance is

minimal and equa to O if and only if W, = #;. With

the convention that 0In0 = 0 and the assumption that
@ € {0, 1}" the distance function simplifiesto

n
D(@, @) =Y [w; —u; — u; Inw;] .
i=1

Thefollowinganaysisismainly for the probabilistica go-
rithmwith shifting target disunctions. The other cases will

be derived easily fromthisanalysis. We start by calculating
how much the distance D(w;, ;) changes between trids:

D(‘U_;t—l; 'L_[t—l) - D('lﬁz; 'L_[t)

= D('lz;t_]_, 'L_[t—l) — D('lBt—l: Jt) (1)
+D(U_f;i—la L_[l) - D(U_,;;, L_[l) (2)
+D(u_;;: L_Zf) - D(u_;t: L_Zf) (3)

Observe that term (1) might be non-zero in any trial, but
that terms (2) and (3) are non-zero only if the weights are
updated intrid ¢. For any

y>max{|l+Inw;;|:0<t<T—-11<i<n}
we can lower bound term (1) by

D(u_;t—l: 'Jt—l) - D(u_;t—la 'L_[t)

n

= Z(Ut,i — 1)L+ Inwe—1y)
i=1
> —a.

If theweightsare updated intria ¢, term (2) is bounded by

D('Jt_l, Jt) — D(LI)';, ﬂt

7 /

_ . R, w | Wy ;
— We_14 — wt,i + Ut g n

Wi_1 ;
i=1 t—1¢

n
Y v e
i=1

+ Z Ut,il‘t,i(z'yt — 1) Ina
i=1

n
= D wiipimi(l- ol
i=1

+ Z ug (€15 — T1,0)(2y — 1) Ine
=1

+ Z ut,iit,i(zyt — 1) Ina
i=1

ri(1— azy*_l)

—a;lno

+y:(2y — 1) Inex.

v

Remember that #, isobtained from z; by removing the at-
tributeerrorsfrom z;. Thelast inequality followsfrom the
f&:t that Z?:lulyiilyi 2 1|fyt = 1and Z?:l'ut,ii;t,i =0

At last observe that w;; # wy; only if y; = 0 and
wy; < 2. Inthiscase w) ; = wy_1,071 > £ and we get

o

for term (3)
D(U_}Z, Jf) - D(lﬁt: L_[f)
- / Wi g
= Z Wy — Wi+ Ug In —
=1 wtyi

> —p(l—a™h).

Summing over dl trialswe haveto consider thetria swhere
thewel ghtsare updated and we haveto di stinguish between
trialswithy; = Oand trialswithy; = 1. Let

Mo = {1<t< Ty =0,p(r:) >0},

le = {lStSTyt:lap(rt)<l}a
denote these trids. Then by the above considerations we
have

T
Z D(U—J‘t—l, ﬂt—l) - D(U_)'t, ﬂt)
t=1

T
> Z [—z:y —asIna]
1=1

+ Z [T't(l —a™h - p(1- a_l)]

teMpo
+ Z [rt(l— a) + |na] .
teEM1
Now we want to lower bound the sum over M and M by
the expected (or total) number of mistakes of thea gorithm.
We can do this by choosing an appropriate function p(-).
We denote by p; the probability that the algorithm makes a
mistakeintrid ¢. Then the expected number of mistakesis
ST, p:. Observethat p, = Oforany t ¢ MoU.My, since
inthiscase y; = p(r;). Furthermorep, = p(r;) if t € Mo
andp; = 1— p(ry) ift € My. Thusitissufficient to find
afunction p(-) and a constant C' with
Vrip(r)>0:r(1- a_l) - /(11— a_l) > Cp(r) (4)
and
Vrip(r)<lir(l—a)+Ina>C(A—-p(r)). (5

For such afunction p(-) satisfying (4) and (5) we get

T
Z D(‘ll_;t—la 'L_[t—l) - D('lBt; 'L_[t)
t=1

> —Zvy— Alna+ CEM(SWIN, S),
assuming that S € S(Z, A, n). Since

T
Z (D(U_f;t—l: 'Jt—l) - D(U—;t; 'Jt))
t=1
= D(Wy, do) — D(Wr, dr)
< nwo

we can upper bound the expected number of mistakes by

Zy 4+ Alna 4+ nwg
- .

EM(SWIN, S) <

Hence we want to choose p(-) and C' such that C' isas big
aspossible. Some cal culations show that the best choiceis

_ Ina — (e —1)8

«

which satisfies (4) and (5) for p(-) asin (PROB). Of course
we have to choose 3 small enough such that (o — 1)5 <
Ine. Putting everything together we have the following
lemma.

C

Lemmad4.l Let 3 < 12 and assume that

o

y>max{|1+Inw;;|:0<t<T—-11<i<n}

where w;, ; are the weights used by algorithm SWIN. Then
forall S e S(7Z, A, n)

Zy + Alna + nwg
Ina — (e —1)8

EM(SMN, S) < o

if SMIN uses the function p(-) given by (PROB).

For the deterministic variant we have to use a function
p : R — {0,1} and therefore cannot use (PROB). The
optimal choice satisfying (4) and (5) is

C_ Ina — (e —1)8
a+1
with p(-) asin (DET), and we get
Lemma4.2 Let # < "2 and assume that
y>max{|1+Inw;;|:0<t<T—-11<i<n}

where w;, ; are the weights used by algorithm SWN. Then
forall S e S(Z,A,n)

Zy+ Alna + nwo
Ina — (@ —1)8

M(SWIN, Z, A) < (a + 1)

if SMIN uses the function p(-) given by (DET).

Now we aregoingto calculateaboundy on [1+Inw; ;|.
We get this bound by lower and upper bounding w; ;. Ob-
viously w; ; > £ for dl ¢ and i. The upper bound on w ;
is derived from the observation that w; ; > w;_1; only if
v+ =1,p(r;) <l andzs; = 1. Sincep(r) =1forr > 1
withthe p(-) asin (PROB) or (DET), and r; > w¢_1 2+
wefind that wy ; < «. ThusIn e”—ﬁ > |1+ Inw;y ;| whenever
B< A

Lemmad3 If 2 < wy < athenforalt =0,...,T
and: =1,...,ntheweightsw, ; of algorithm SMN with
function p(-) asin (PROB) or (DET) satisfy

— < w; <o
n

Furthermore n

14+ 1In: <In—
|-|- wt,1|_ B

for g < .
4.1 Thenon-shifting case

In the non-shifting case where iy = - - - = ip = ¥ and
o= (0,...,0)term (1) isOforadl ¢t > 2,anditis

D(wo, ilo) — D(Wo, U1)

=]C—l—k’ln‘wo

fort = 1wherek = >, u; isthe number of attributesin
the target digunction . Thus in the non-shifting case the
term 7~ in the upper bounds of Lemmas 4.1 and 4.2 can
be replaced by k In -2, provided that ewo < 1, and we get

ewo

Lemma44 Let 3 < "% and wo < L. Then for all
S e 8%k, A, n)
EM(SWIN, S)

klnﬁ—{—Alna—}—nwo
< « 0
- Ine — (e —1)8

if SMIN uses the function p(-) given by (PROB), and

M(SWIN, S)
klnmlo—i—Alna—l—nwo

< (a4 Ina — (e —1)8

if SMIN uses the function p(-) given by (DET).
4.2 Proofsof the upper bounds

Theboundsgivenin Theorems 3.1-3.4 are derived from
thelemmas above. After plugging in the parameters given
in the theorems, some tedious calculations yield the upper
bounds.

5 Lower bounds

We start by proving alower bound for the shifting case.
We show that for any learning agorithm L there are exam-
ple sequences S for which the learning algorithm makes
“many” mistakes. Although not expressed explicitly inthe

following theorems we will show that these sequences S
can be generated by target schedules 7 = (iy,...,dr)
where each digunction @, consists of exactly one literal,
i.e i; = ¢; for some j where ¢} isthe jth unit vector.

Theorem 5.1 For any deterministiclearning algorithm Z,
anyn > 2,any Z > 1,andany A > 0, thereisan example
sequence S € S(Z, A, n) such that

Z+1

M(L,S) > 24+ {TJ [log, n] .

Proof. For notationd convenience weassumethat n = 27,
v>1landZ =2R—1, R > 1. Weconstruct theexample
sequence S depending on the predictions of the learning
algorithm such that the learning a gorithm makes amistake
in each tria. We partition the trials into R rounds. The
first R — 1 rounds have length v, the last round has length
v + 2A. Attribute errors will occur only within the last
2A + 1 trids. We choose the target schedule such that
during each round the target digunction does not change
and isequal to some €.

At the beginning of each round there are n = 2 dis-
junctions consistent with the exampl es of thisround. After
I tridlsin thisround there are still 2V~ consistent disjunc-
tions: we construct the attributevector by setting half of the
attributeswhich correspond to consistent digunctionsto 1,
andtheother attributesto 0. Furthermorewesety; = 1—¢;
where g, isthe prediction of the agorithm for this attribute
vector. Obviously hdf of the digunctions are consistent
with this example, and thus the number of consistent dis-
junctionsisdivided by 2 in each tria. Thusin each of the
first R — 1roundsthereisadisunction consistent with al
v examples of thisround.

After v — 1 trids in the last round there are two dis-
junctions consistent with the examples of this round. For
the remaining 24 + 1 trials we fix some attribute vector
for which these two digunctions predict differently, and
againwe set y; = 1 — g;. Thusone of these digunctions
disagrees at most A times with the classifications in these
2A + 1trids. Thisdisagreement can be seen as caused by
A attribute errors, so that the digunction is consistent with
all the examples in the last round up to A attribute errors.

O

Remark 5.2 Observe that alower bound for deterministic
algorithmslike

VL 3S: M(L,S)>m

implies the following lower bound on probabilistic algo-

rithms:
m

VL3S EM(L,S) 2 .

This follows from the fact that any probabilistic learning
algorithm can be turned into a deterministic learning al-
gorithm which makes at most twice as many mistakes as
the probabilistic algorithm makes in the average. This
means that Theorem 5.1 implies for any probabilistic al-
gorithm L that there are sequences S € S(Z, A, n) with
EM(L,S)> A+ |Z] |log,n].

Now we turn to the non-shifting case. For k£ = 1 there
are aready lower bounds known.

Lemma5.3 ([LW94]) For any deterministic learning al-
gorithm Z, anyn > 2, andany A > 0, thereisan example
sequence S € 8%(1, A, n) such that

M(L,S)>2A+log,n.
A dight modification of resultsin [CBFH*94] gives

Lemma5.4 ([CBFH*94]) There are functions n(n) and
A(n,n) suchthat for anyn > 0, any probabilisticlearning
algorithm L, any n > n(n), andany A > A(n,n), thereis
an example sequence S € S°(1, A, n) such that

M(L,S)> A+ (1—n)VAlnn.
We extend these results and obtain the following theorems.

Theorem 5.5 For any deterministiclearning algorithm L,
anyk > 1,anyn > 2k,andany A > 0, thereisan example
sequence S € 8%k, A, n) such that

M(L, S) > 2A + klog, [%J .

Theorem 5.6 There are functions n(n) and A(n,n) such
that for any > 0, any probabilisticlearning algorithm L,
any k > 1, anyn > kn(n), andany A > kA(n,n), there
isan example sequence S € Sk, A, n) such that

M(L,S) > A+ (1—p) Akln{%J.

Proof of Theorems5.5and 5.6. Theproof isby areduction
tothecasek = 1. Then attributesaredividedinto £ groups
G;,i=1,...,k,suchthat eachgroup consistsof n; > |2 |
attributes. Furthermore we choose numbers a; > |4],
i =1,...,k with YF_ a4, = A. For each group G;
we choose a sequence S; € 891, a;, n;), accordingly to
Lemmas5.3 and 5.4, respectively, such that for any learning
algorithm L;

M(L;, S;) > 2a; + log, n; (6)

and
EM(L;, S;) > a; +

(1=n)v/a;Inn;. (7)

These sequences S; can be extended to sequences S, with
n atributes by setting al the attributes not in group i to
0. Concatenating the expanded sequences S; we get a
sequence S. It iseasy to seethat S € S(k, A,n). On
theother hand any learning al gorithm for sequences with n
attributes can be transformed into a learning a gorithm for
sequences with a smaler number of attributes by setting
the missing attributesto 0. Thus on each subsequence S
of S learning algorithm L. makes at | east as many mistakes
asgivenin (6) and (7). Hence

M(L,S) > 24 + klog [%J

and
1A
EM(L,S) > 24+(1-nY hJ |n[J
=1
> 24+ (1-n) Akln[%J
In|z
4_1
> 2A+(1—2n),/Ak|n{%J
if thefunction A(n, n) ischosen appropriately. O

Acknowledgments

We would liketo thank Mark Herbster and Nick Little-
stone for valuable discussions.

References

[Aued3] P. Auer. On-line learning of rectangles in
noisy environments. In Proceedings of the
Sxth Annual ACM Conference on Compu-
tational Learning Theory, pages 253-261.

ACM Press, New York, NY, 1993.

[CBFHT94] N. Cesa-Bianchi, Y. Freund, D. P Helmbold,
D. Hausder, R. E. Schapire, and M. K. War-
muth. How to use expert advice. Technica
Report UCSC-CRL-94-33, Univ. of Calif.
Computer Research Lab, Santa Cruz, CA,
1994. An extended abstract appeared in
STOC '93.

[CBFHW94] N. Cesa-Bianchi, Y. Freund, D. P Helm-
bold, and M. Warmuth. On-line predic-
tion and conversion strategies. In Computa-
tional Learning Theory: Eurocolt '93, vol-
ume New Series Number 53 of The Ingtitute

[Cov65]

[DH73]

[Hay93]

[HKW94]

[HSO5]

[HWO5]

[Jum9Q]

[KK92]

[KW94]

of Mathematicsand its Applications Confer-
ence Series, pages 205-216, Oxford, 1994.
Oxford University Press.

T. Cover. Behavior of sequential predictors
of binary sequences. In Proceedings of the
4th Prague Conference on Information The-
ory, Satistical Decision Functionsand Ran-
dom Processes, pages 263-272. Publishing
House of the Czechosl ovak Academy of Sci-
ences, 1965.

R. O. Dudaand P, E. Hart. Pattern Classifi-
cation and Scene Analysis. Wiley, 1973.

S. Haykin. Neural Networks: a Comprehen-
sive Foundation. Macmillan, New York, NY,
1993.

D. Hausder, J. Kivinen, and M. K. War-
muth. Tight worst-case loss boundsfor pre-
dictingwith expert advice. Technical Report
UCSC-CRL-94-36, University of Cdifornia,
Santa Cruz, Computer Research Laboratory,
November 1994. An extended abstract ap-
peared in Eurocolt 1995. To appear subject to
revisionin|EEE Transaction on Information
Theory.

D. P Hedmbold and R. E. Schapire. Pre-
dicting nearly as well as the best pruning of
a decision tree. In Proc. 6th Annu. Conf.
on Comput. Learning Theory, pages 61-68.
ACM Press, New York, NY, July 1995,

M. Herbster and M. K. Warmuth. Tracking
the best expert. In Machine Learning: Pro-
ceedings of the Twelfth International Con-
ference, San Francisco, CA., 1995. Morgan
Kaufmann Publishers.

G. Jumarie. Relativeinformation. Springer-
Verlag, 1990.

J. N. Kapur and H. K Kesavan. Entropy
Optimization Principles with Applications.
Academic Press, Inc., 1992.

J. Kivinen and M. Warmuth. Using experts
for predicting continuousoutcomes. In Com-
putational Learning Theory: Eurocolt '93,
volume New Series Number 53 of The In-
stitute of Mathematics and its Applications
Conference Series, pages 109-120, Oxford,
1994. Oxford University Press.

[KWO5]

[Lit88]

[Lit89]

[Lit91]

[LW94]

[MW5]

[Ros58]

[VovoO]

J. Kivinen and M. K. Warmuth. The per-
ceptron algorithm vs. winnow: linear vs.
logarithmic mistake bounds when few input
variables are relevant. In Proc. 8th Annu.
Conf. on Comput. Learning Theory, pages
289-300. ACM Press, New York, NY, 1995,

N. Littlestone. Learning when irrelevant
attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285-318,
1988.

N. Littlestone. Mistake Bounds and Log-
arithmic Linear-threshold Learning Algo-
rithms. PhD thesis, Technical Report UCSC-
CRL-89-11, University of California Santa
Cruz, 1989.

N. Littlestone. Redundant noisy attributes,
attributeerrors, and linear threshold learning
using Winnow. In Proc. 4th Annu. Workshop
on Comput. Learning Theory, pages 147—
156, San Mateo, CA, 1991. Morgan Kauf-
mann.

N. Littlestone and M. K. Warmuth. The
weighted majority agorithm. Information
and Computation, 108(2):212—261, 1994.

M. Maass and K. Warmuth, M. Efficient
learningwithvirtual threshold gates. In Proc.
12th International Conf. on Machine Learn-
ing, pages 378-386, San Francisco, CA, July
1995. Morgan Kaufmann.

F. Rosenblatt. The perceptron: A probabilis-
ticmodel for information storage and organi-
zationinthebrain. Psych. Rev., 65:386-407,
1958. (Reprinted in Neurocomputing (MIT
Press, 1988).).

V. Vovk. Aggregating strategies. In Proc.
3rd Annu. Workshop on Comput. Learning
Theory, pages 371-383. Morgan Kaufmann,
1990.

ECCC ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

