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Abstract

We give a new proof showing that it is NP-hard to color a 3-colorable graph using just four
colors. This result is already known [19], but our proof is novel as it does not rely on the PCP
theorem, while the one in [19] does. This highlights a qualitative difference between the known
hardness result for coloring � -colorable graphs and the factor ��� hardness for approximating
the chromatic number of general graphs, as the latter result is known to imply (some form of)
PCP theorem [3].

Another aspect in which our proof is different is that using the PCP theorem we can show
that � -coloring of � -colorable graphs remains NP-hard even on bounded-degree graphs (this
hardness result does not seem to follow from the earlier reduction of [19]). We point out that
such graphs can always be colored using �
	��� colors by a simple greedy algorithm, while the
best known algorithm for coloring (general) � -colorable graphs requires ��������� colors. Our proof
technique also shows that there is an ������� such that it is NP-hard to legally � -color even a
	���� � �  fraction of the edges of a � -colorable graph.

1 Introduction

The graph coloring problem is to assign colors to vertices of a graph ! such that no two adjacent
vertices receive the same color; such a coloring is referred to as a legal coloring of ! . The minimum
number of colors required to do a legal coloring is known as the chromatic number of ! , and is
denoted "$#�!&% . Graph coloring is a fundamental and extensively studied problem, which besides
its theoretical significance as a canonical NP-hard problem [17], also arises naturally in a variety
of applications including register allocation and timetable/examination scheduling.

Coloring a graph ! with the minimum number "'#�!&% of colors is NP-hard [17], so the focus
shifts to efficiently coloring a graph with an approximately optimum number of colors. Garey
and Johnson [10] proved that it is NP-hard to approximate the chromatic number within a factor
of #)(+*-,�% for any ,/.10 . The best known algorithm for general graphs appears in [14] and colors
a graph using a number of colors that is within a factor of 23#546#87�9;:'7�9;:�4<%>=@?A7B9;:DC�4<% of the optimum
(here and elsewhere 4 refers to the number of vertices in the graph). There is strong evidence that
one cannot do substantially better than this for general graphs, as the recent connection between
Probabilistically Checkable Proofs (PCPs) and hardness of approximations [7, 2, 1], has led to
strong hardness results for graph coloring also. The first such result was established by Lund and
E
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Yannakakis [20] who proved that chromatic number is hard to approximate within 4�� for some
constant , . 0 . Feige and Kilian [8], using the powerful PCP constructions due to Håstad [15],
prove that unless

�������	�
�
one cannot approximate the chromatic number within a factor of

4��� � for any constant , . 0 .
However, none of these inapproximability results apply to the case when the input graph is � -

colorable for some small constant � . Indeed, better performance guarantees are known in this case.
For instance, a polynomial time algorithm that colors � -colorable graphs using �2�#54 C�� ��� % colors is
known [23, 5, 16, 6]. It is known that for every constant � there exists a large enough constant �
such that coloring � -colorable graphs using ��� colors is NP-hard [20, 19]; it is however not known
if the order of quantifiers above can be reversed. Khanna, Linial and Safra [19] proved that it is
NP-hard to color a � -colorable graph using only � colors, and to this date no improvement to this
hardness result has been obtained.

Our Results. Our main result in this paper is a new proof of the above result of [19], stated
formally below:

Theorem 1 (Main Theorem) It is NP-hard to color a � -colorable graph with only four colors.

The proof of Khanna et. al. [19] uses the result that MAX CLIQUE is NP-hard to approximate
within a factor of two, a consequence of the PCP theorem [2, 1]. An important distinguishing
aspect of our proof is that it does not require the PCP theorem and only relies on the NP-hardness
of the MAX CLIQUE problem. The hardness for � -colorable graphs is the most intricate of the
results in [19], and has not been improved upon or simplified ever since. Our work represents the
first progress on this important problem after the result of [19], and one which will hopefully spur
further improvements. Not relying on PCP machinery implies that this hardness result could have
been obtained almost three decades ago, long before the arrival of the PCP theorem. In contrast
the hardness result (for approximating within 4�� for example) for general graph coloring implies
some form of PCP [3]; our result therefore also highlights a qualitative difference between the
hardness of general graph coloring and coloring � -colorable graphs.

As in essentially all previous reductions showing hardness of graph coloring, our reduction
too starts from the hardness of INDEPENDENT SET (MAX CLIQUE): it transforms an instance !
of INDEPENDENT SET to an instance � of graph coloring such that a large independent set in !
translates into a small collection of (in our case three) independent sets in � which together cover
all vertices in � . But in addition, our proof is based only on local gadgets and easily leads to
the hardness of � -coloring even bounded degree instances of � -colorable graphs, albeit only by
resorting to the PCP theorem:

Theorem 2 There is a constant � such that given a graph 3-colorable graph with maximum degree at most
� , it is NP-hard to color it using just 4 colors.

Note that since such graphs can be colored using 23#��@% colors (in fact #���� �@% colors) by a simple
greedy algorithm, while the best algorithm for general � -colorable graphs uses 4
!#"$�&% colors, this
hardness result is stronger than that of Theorem 1. Another strengthening of Theorem 1 which the
degree-bounded result enables us to deduce is the following:

Theorem 3 There is a constant ')( . 0 such that it is NP-hard to, given a graph ! , distinguish between
the case when ! is � -colorable and when any � -coloring of ! miscolors at least an ' ( -fraction of its edges.
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Both of these results do not seem to follow from the proof technique of [19] and therefore appear
to be new to our paper. Note that the latter claim also generalizes the result of Petrank [22] which
shows that there is an ' . 0 such that it is NP-hard to legally color a #�� * ' % fraction of the edges
of a � -colorable graph using only � colors.

We also note, using standard PCP techniques, a uniform hardness result that " � -coloring a
graph ! with "$#�!&%�� " is NP-hard for some (fixed) constant � . � , for chromatic numbers "
in the range ��� "�� 4	� for some constants ��
� . 0 . A similar result has earlier been shown
by Fürer [9], but our proof uses the simpler and more transparent transformations in [19], and
also does not use a randomized reduction (while the result in [9] is obtained under the stronger
assumption of

� ���� �#���
).

Inapproximability Results and PCPs. In light of our main result, it is natural to ask how far non
PCP techniques can go in proving hardness results for coloring � -colorable graphs. It turns out
that an inapproximability factor of �/#87�9;:�4<% does imply some form of PCP. This is by a result of
Blum [4] (see also [3]) which shows that if coloring a � -colorable graph using � 7�9;: 4 colors is hard
for every constant � , then for every ,+.10 , it is hard to approximate MAX CLIQUE within a factor
of 4 �� � ; and using the “reversal” of the FGLSS connection presented in [3], this implies the PCP
theorem (in fact a very strong version of it, see [3] for details).1 It, however, seems entirely possible
that any � #87B9;:64<% hardness bound can be proved for coloring � -colorable graphs without resorting
to PCP techniques.2 We hope our work will spur further investigation into these questions that
will eventually lead to improving the current results on the complexity of coloring � -colorable
graphs.

Expanding the scope of our investigation, it is natural to ask which inapproximability re-
sults really require PCPs. It is known for example that PCPs are inherent to obtaining (at least
strong) hardness results for approximating MAX SAT, MAX CLIQUE, Chromatic Number and Ver-
tex Cover. Recent work in [12] and [18] proves strong (in fact near-tight) inapproximability re-
sults for Disjoint Paths and Longest Path problems without requiring PCPs; prior results for these
problems always began with the PCP theorem, and yet turned out to be weaker. Together with
our result, these raise similar questions about the hardness results for certain other fundamental
problems like Set Cover, Nearest Codeword Problem, Shortest Vector Problem, etc, which while
currently relying on the PCP theorem, are not known to provably require PCPs. In each case it is
interesting to see if a reverse connection to PCPs exists or if PCPs are only an artifact of the current
proof techniques. Even more ambitiously, one can ask what aspect(s) of an optimization problem
cause its inapproximability results to necessarily imply some non-trivial PCP constructions.

Notation. We use the standard notation to denote graph-theoretic parameters. For a graph ! , we
denote by "'#�!&% , � #�!&% , � #�!&% and �a#�!&% , the chromatic number of ! , the size of a largest independent
set in ! , the size of a largest clique in ! and the clique cover number of ! (the minimum number
of cliques to cover all the vertices of ! ) respectively. Clearly � #�!&%���� #��!&% and "'#�!&%����a#��!&% where
�! is the complement of the graph ! .

Organization. We present the proof of our main theorem (Theorem 1) in Section 2. Section 3
describes the hardness result for bounded degree � -colorable graphs and sketches the proof of
Theorem 3. Section 4 describes the uniform " � hardness bound for coloring " -chromatic graphs.

1Since the reduction from � -coloring to finding large cliques is only a Turing reduction, strictly speaking we can only
conclude that every language in ��� Turing reduces to a language in a certain PCP class.

2Actually, such a hardness result does imply the existence of very good covering PCPs, a notion recently introduced
in [13] for the purpose of studying minimization problems like Coloring. Constructing a “good” covering PCP without
resorting to the PCP theorem appears very difficult, so such a PCP-free hardness result for coloring � -colorable graphs
might be hard to come-by.
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Figure 1: High-level structure of each ���

2 Proof of the Main Theorem

We describe a reduction from the INDEPENDENT SET problem. Specifically, we start with instances
of the following form: we are given a graph ! along with a partition of the vertices of ! into �
cliques � � , � ��� ��� , each with exactly � vertices. Clearly, �'#�!&% ��� . It is NP-hard to determine
if �'#�!&% ��� on instances with this structure even when the partition into the �	� ’s is given as part
of the input. This hardness even holds with � � � – the standard reduction for NP-hardness of
INDEPENDENT SET in fact produces such instances [11]. Thus the proof of Theorem 1 only requires
us to consider the case � � � . However, we will present here a construction for any arbitrary � .
This is because the starting point for Theorems 2 and 3 are INDEPENDENT SET instances that are
generated by PCP constructions and � is a suitably large constant in this case.

Starting with such an instance ! , we construct (in polynomial time) a graph � which will
have the property that "'# � % � � if � #�!/% �
� and "'# � %��� otherwise. This will clearly prove
Theorem 1.

2.1 Overview of the Reduction

Let ! be a graph with vertices partitioned into � cliques � � , � ��������� , with exactly � vertices in
each clique, i.e., let ��� �
������� ( 
������ 
�� ��� � 	�

 
for � �!� �!� . The graph � comprises of � “tree-like”

structures, say � � 
�"�"�" 
#�%$ , one for each clique ��� of ! , together with a specific interconnection
pattern between the leaves of the different tree-structures based on the adjacency of vertices in ! .
There are two key properties satisfied by the construction of the �&� ’s:

' Any 4-coloring of a �(� can be interpreted as “selecting” a unique vertex �)��� * in the clique ���
of graph ! (Section 2.2).

' The edges between the �(� ’s are such that no 4-coloring is feasible if two vertices that are
adjacent in ! are selected from two different trees (Section 2.3).

In other words, any 4-coloring of � can be interpreted as selecting a vertex in each of the �
cliques �+� of ! such that the selected vertices induce an independent set of size � in ! , ensuring
that if �'#�!&%-,.� , then in fact "'# � % . � . The other part, viz. � is 3-colorable if �'#�!&% ��� , will also
be easily seen to hold for our reduction.
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Figure 2: The basic template

2.2 The Structure of each � �
Each �%� will have the structure of a binary tree with � leaves, ���)��� ��� 0 ��� ,��  , one for each
of the � vertices of ! in the clique � � (see Figure 1). It also has #�� * �@% additional internal nodes
��� ��� � �<0 ��� , � * �  with � ��� ( being the “root” � � ; by � ��� � 	� we mean the leaf node � ��� � 	� . (The
subscript � is omitted in Figure 1 for sake of readability. The exact “shape” of the tree � � is not
important; any binary tree with � leaves and with all internal nodes having exactly two children
will suffice for our purposes.) Each individual node of ��� itself comprises of the template shown in
Figure 2. This basic template, denoted �
	������� , may be viewed as a ��� � grid such that the vertices
in each row and in each column of the grid induce a 3-clique. The vertices in the first column of
any such template are referred to as ground vertices and are in fact shared across all such templates
in all the tree-structures. Since the ground vertices form a clique, any legal coloring will assign
three distinct colors to them; we refer to these colors as 1, 2 and 3.

The connection pattern between the template at an internal node � ��� * and its children templates
����� * and � ��� *�� � is best understood by the schematic depicted in Figure 3. (Nodes � , � and � will
play the roles of �#��� * , ����� * and � ��� *�� � respectively.) In addition to the templates at these nodes, there
are two 3-cliques that are connected to templates at � ��� * 
�� ��� * and � ��� *�� � via appropriate edges. All
nodes in the schematic are labeled as 3-tuples of the form ������� � where �	
!��
"�$# � � 
T( 
 �  . The edges
(not shown) between the various vertices are given by the simple rule: two vertices are adjacent if
and only if their labels differ in all three coordinates.

2.2.1 Node Selection

A node of the tree is called selected if at least one of the three rows in its template has colors which
reading from left to right form an even permutation of � � 
T( 
 �  (i.e the first row has colors 1,2,3;
the second one has 2,3,1; or the third one has 3,1,2). Similarly, we say that a row is not selected if at
least one of the three rows in its template has colors which reading from left to right form an odd
permutation. It is easy to see that in any legal 4-coloring a node can never be simultaneously la-
beled selected as well as not selected. Moreover, in any 4-coloring a node is always either selected
or not selected.

2.2.2 Enforcing Selection of a Leaf Node

Our goal now is to enforce that for any legal � -coloring of the tree-structure �&� , at least one leaf
node is selected. Broadly speaking, our approach here will be to “hardwire” selection of the root
node and then introduce gadgets to ensure that whenever a node is selected, one of its two children
is selected as well. In other words, our construction propagates selection from the root to some
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Figure 3: The connection pattern between the templates at a node and its children
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Figure 4: Enforcing selection at a root

leaf node. While one can imagine, at least for the case � � � , that one can construct a “direct”
� -out-of- � gadget which will ensure that one of three nodes is always selected, this “top-down”
approach works for any value of � , and is also more modular and easier to present.

Root Selection: In each tree � � , � � � � � , we enforce selection of the root using the gadget
shown in Figure 4. It is obtained by adding, for each � # � � 
T( 
 �  , edges from the ground vertex
colored � to the first vertex in row number # � mod � ���@% of the copy of � 	��� ��� at the root node
� � of � � . This ensures that in any 4-coloring of � , there will be one row of (each) root which will
be selected (and hence the root itself will be selected). Indeed, there must exist one row whose
vertices are not colored using � , say for concreteness the third row is such. But since we added
an edge between ground vertex colored ( to the first vertex in the third row, this vertex cannot be
colored ( , and it follows that the third row of the root must be colored #�� 
 � 
T( % , as desired.

Propagating the Selection: Next we show how selection of a node in the tree can be propagated
to at least one of its children. This ensures that in each tree at least one leaf node must be selected.
Consider again the schematic in Figure 3 and assign the following interpretation to the node labels:

' Colors in the first coordinate of each node correspond to the situation where � ��� � is selected
and it enforces selection at � ��� � .

' Colors in the second coordinate of each node correspond to the situation where � ��� � is selected
and it enforces selection at � ��� � � � .

' Colors in the third coordinate of each node correspond to the situation where � ��� � is not
selected and it does not enforce any selection at its children.

It is easy to verify that for any � # � � 
T( 
 �  , if we assign colors 1, 2 and 3 to the nodes as specified
by their � th coordinate, it forms a feasible coloring. Moreover, for any choice of a leaf node to be
selected in �%� , coloring the nodes along the unique root-leaf path as selected (i.e coloring the three
rows of the corresponding templates as � � 
T( 
 �  , �M( 
 � 
 �  and � � 
 � 
T(  ), and the remaining nodes
in � � as not selected (i.e coloring the three rows of the corresponding templates as � � 
 � 
T(  , �M( 
 � 
 �  
and � � 
T( 
 �  ), yields a legal � -coloring of � � . The following is thus evident for our construction:

Lemma 2.1 For each � , � � � � � , and
� � , 0 � � , � , there is a 3-coloring of the vertices in the tree-

structure �(� such that the leaf corresponding to � ��� � is the only selected leaf in � � .
We can now establish the following key lemma:

Lemma 2.2 In any 4-coloring of a tree � � , whenever an internal node is selected, one of its two children
must be selected.
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Proof. Consider again the schematic of Figure 3, with � being the parent whose selection we want
to argue implies the selection of one of its children � and � . We consider two cases:

Case 1: Both vertices in one of the pairs � ��� ��( � 
���� � � �  , � �)(;( ��� 
��)(;( � �  , and � ��� � ��� 
���� �;( �  receive
color � in the � -coloring of � .

Suppose it is the pair � ��� � ��� 
���� �;( �  that receives color � . Since � is selected, the third row of �
must be colored #�� 
 � 
T( % in this case. We now claim that one of � and � will in fact be selected with
their third row being colored #�� 
 � 
T( % . Indeed, none of the vertices ����(;( � , �)( � ��� , �)( ��( � and ����( ��� (the
third row non-ground vertices of � and � ) get the color 4 as they are all adjacent to one of ��� � ���
or ��� �;( � . Thus if neither of � 
 � is selected, ����(;( � 
��)( ��( � get colored ( and �)( � ��� 
�����( ��� get colored
� . Now it is easy to see that each of the vertices ����( � � , �)( � ��� and ��� ��( � have color 1 as well as color
2 neighbors (for instance ����( � � is adjacent to �)( � ��� and �)( ��( � ), and this implies that all these three
must be colored either � or � . But this is impossible as these three vertices form a clique. Thus, one
of � 
 � must be selected.

Exactly similar arguments will hold when both of the vertices ��� ��( � 
���� � � � receive color � or if
both the vertices �)(;( ��� 
��)(;( � � receive color � . So it remains to consider the following case.

Case 2: At most one of the vertices in each of the pairs � ��� ��( � 
���� � � �  , � �)(;( ��� 
��)(;( � �  , and � ��� � ��� 
���� �;( �  
receives color � in the � -coloring of � .
In this case we first claim:

Claim 1 At least one of the vertices ��� ��( � 
���� � � � gets colored � , one of �)(;( ��� 
��)(;( � � gets colored ( , and one
of ��� � ��� 
���� �;( � gets colored � .
To see this, note that � is selected, so we may assume without loss of generality, that the third row
of � is colored #�� 
 � 
T( % . Thus the above claim is trivially verified for the colors � and ( (since ��� ��( �
is colored � , and �)(;( ��� is colored ( ). Now if neither ��� � ��� nor ��� �;( � is colored � , then in fact they
must both be colored � (since, for instance, ��� �;( � cannot be colored either � or ( since it is adjacent
to ��� � ��� and �)(;( ��� respectively). But this contradicts the hypothesis of this case, and therefore our
claim holds. �

We are now ready to finish the proof for Case 2 also. Suppose � is selected, but neither of � 
 �
is selected. We will call a row of a node pure if none of its vertices are colored � . Clearly at least
one of the rows of both � and � is pure. Since the entire gadget is totally symmetric, assume for
definiteness that the third row of � is pure, so that it is colored #�� 
T( 
 �@% (recall that � is not selected,
so it cannot be colored #�� 
 � 
T( % ). Now if the third row of � is pure, then it will also be colored
#�� 
T( 
 �@% , and we will get a contradiction exactly as we obtained in the analysis of Case 1. So one of
the first or second rows of � is pure, say without loss of generality again, that the first row of � is
pure so that it is colored #�� 
 � 
T( % . The upshot of all this is that the vertices ����(;( � 
��)( � ��� 
����;( � � 
���� (;( �
receive colors ( 
 � 
 � 
T( respectively.

Now consider the vertex �)( � ��� . It is adjacent (among other vertices) to ����(;( � (which is colored
( ), ���;( � � (which is colored � ), and to both ��� ��( � 
���� � � � one of which is colored � by Claim 1. It
follows therefore that �)( � ��� is colored � . An exactly similar argument shows that ����( � � must also
be colored � — indeed ����( � � is adjacent to �)( � ��� (colored � ), to ���;(;( � (colored ( ), and to both
��� � ��� 
���� �;( � one of which is colored � by Claim 1. But now �)( � ��� and ����( � � are both colored � and
they are adjacent, a contradiction. This completes the analysis for Case 2 as well, and the proof is
now complete. �
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Figure 5: The Leaf-level Gadget: “Same Row Kind”
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Figure 6: The Leaf-level Gadget: “Different Rows Kind”

2.3 The Structure Across the Trees

We now specify how the nodes across different � � ’s are connected. For every pair of leaf nodes
����� * # � � and ��� � � #!� � such that � ��� * and ��� � � are adjacent in ! , we insert a gadget (actually a
combination of more than one gadget) that prevents both of these leaf nodes from being selected
simultaneously in any legal 4-coloring of � . Observe that this would immediately imply that if
� is 4-colorable, then there must be an independent set of size at least � in ! . This follows from
Lemma 2.2 which shows that in any 4-coloring of � , every tree has at least one selected leaf, and
the fact that no two vertices of ! corresponding to selected leaves can be adjacent in ! .

The leaf-level gadget consists of two parts, as shown in Figures 5 and 6. Given two nodes, each
a copy of the basic template � 	������� , we use two kinds of gadgets. The one of the first kind, shown
in Figure 5, prevents both nodes being selected because of the same row (for example because the
third row of both nodes is colored #�� 
 � 
T( % ) – we use three such gadgets, one for each row. It is
easy to check that the gadget in Figure 5 is 3-colorable as long as at least one of the two third rows
are colored #�� 
T( 
 �@% , but is not even 4-colorable if both the third rows are colored #�� 
 � 
T( % .

The second kind of leaf-level gadget, shown in Figure 6, ensures that the two nodes are not
both selected because of different rows, and is even simpler than the first. Once again it is com-
pletely straightforward to check that the gadget works as desired; for instance for the gadget
shown, there exists a valid 3-coloring as long either the third row of the left hand side node is
#�� 
T( 
 �@% or the first row of the right hand side node is #�� 
 � 
T( % (i.e at least one is not selected), but
there is no valid 4-coloring if these rows are colored #�� 
 � 
T( % and #�� 
T( 
 � % (i.e if both are selected).
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The preceding discussion has thus established the following:

Lemma 2.3 If the graph � constructed as above is � -colorable, then � #�!/% � � .

Lemma 2.4 If � #�!&%�� � , then � is � -colorable.

Proof. Let
� � ������� *�� � � ��� ���  be an independent set of size � in ! , where 0 ���(� , � for

each � . By Lemma 2.1, we can legally color all the vertices of the tree structures �&� using only three
colors such that for each tree � � , the leaf corresponding to � ��� *�� is the only one that is selected. It
remains only to color the vertices used in the leaf-level gadgets. By the argument above we can
color the vertices of any leaf-level gadget using just three colors provided at least one of the two
leaf nodes it “connects” is not selected. But this condition is met for every leaf-level gadget in our
case, since

�
is an independent set, and therefore there is no leaf-level gadget between any two of

our selected leaf nodes. The entire graph � is thus � -colorable. �

Theorem 1 now follows from Lemmas 2.4 and 2.3 since the construction of � can be clearly ac-
complished in polynomial time.

We point out here that the graph � constructed in the reduction above is always � -colorable.
Indeed one can legally color all nodes in the tree-structures using three colors, and legally color
all nodes in the leaf-level gadgets using three different colors, for a total of six colors.

3 Hardness for degree-bounded � -colorable graphs

We now show that the result of Theorem 1 holds even if the input graph ! has degree bounded by
some constant � , thus establishing Theorem 2. Unlike Theorem 1, however, we do not see how to
prove the result below without using the PCP Theorem. Specifically we use Proposition 3.1 below
which follows from the PCP theorem and MAX SNP-hardness of MAX 3-SAT instances where each
variable appears in at most a constant number of, say  , clauses [21].

Proposition 3.1 For every constant � . � there exist constants � 
 � such that given a graph ! whose
vertices can be partitioned into � cliques each containing exactly � vertices, and in which each vertex has
degree at most � , it is NP-hard to distinguish between the cases �'#�!&% � � and �'#�!&% , � ? � .

Proof of Theorem 2: We employ (essentially) the same reduction as in the proof of Theorem 1,
except that we now start from a hard instance of INDEPENDENT SET as in Proposition 3.1 with a
“gap” (in independent set size) of � � ( � . The graph � thus constructed will satisfy "'# � % � � if
�'#�!&% � � while "$# � %+�� if � #�!&% , � . By the nature of the reduction presented in Section 2, and
the fact that the maximum degree of ! is at most � , it is easy to see that all vertices in � have very
small degree except the three ground vertices which are shared across all the � tree-like structures
in � (that correspond to the � cliques in ! ). We get around this by simply using a distinct set of
three ground vertices in each of the � tree-structures to give a new degree-bounded graph �	� . By
a pigeonhole argument, since there are only ( � different colorings of a (labeled) � -clique using �
colors, there are at least � ? ( � of the tree-structures whose ground vertices in rows � 
T( 
 � are colored
using the same three colors � � 
 � = 
 � C ; we just label these colors as � 
T( 
 � respectively. Now applying
the argument used in the proof of Lemma 2.3 to the subgraph of ! induced by the vertices in the
� ? ( � cliques corresponding to these tree-structures, we conclude that if � � is � -colorable, then
�'#�!&% � � ? ( � . Of course in the case when �'#�!&%�� � , the same coloring used to establish Lemma 2.4
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with all copies of the ground vertices being colored as � 
T( 
 � properly implies that �	� is � -colorable.
Combining this reduction with Proposition 3.1, therefore, gives us our claimed result. �

It turns out that the above argument also suffices to establish Theorem 3.
Proof of Theorem 3 (Sketch): Use the same reduction to get a graph � as in the above proof,
except now start from a hard instance of INDEPENDENT SET with a “gap” of � � ��� . If 4 
�� are
respectively the number of vertices and edges in � , then we have 4 �123#�� % , and since � is degree-
bounded, � �123#54<% . Thus � �12 #�� % � � ( � for some absolute constant � ( . Now define ' ( ���@? � � ( .
If a � -coloring of � miscolors at most ' ( � edges, then since ' ( � � $

� , there are at least � ? ( tree-like
structures such that they, and the leaf-level gadgets associated with them, are all legally colored
using only � colors. Arguing as in the proof of Theorem 2, we can now conclude � #�!&% � � ? ��� .
Thus when � #�!/% , � ? ��� , every � -coloring of � legally colors at most #��<* ' ( % fraction of the edges.

�

4 Hardness of the form �
�

for coloring

In this section we sketch the proof of a uniform inapproximability result of " � for coloring in terms
of the chromatic number " for a wide range of values of " (for a constant �1. � ). Using more
complicated techniques, the same hardness result was established in [9] under the assumption��� �� �	�
�

. Our proof, based on transformations in [19], is simpler and also shows hardness
under the weaker assumption

� � �� � . By using more recent PCP constructions in the proof,
we can prove the claimed hardness with any � , � ?� . Our focus here is not on the quantitative
aspects, but to illustrate the fact that a uniform " � hardness can be shown to hold over a large
range of values of " .

Theorem 4 There exist constants � , � . 0 and � . � such that for chromatic numbers in the range
� � "$#�!&% � 4 � , it is NP-hard to "$#�!&% � color a graph ! on 4 vertices with chromatic number "'#�!/% .

Proof. The proof of this result follows by combining existing results in [3] and [19]. We assume
familiarity with the terminology of PCPs like free bit complexity [3] and the construction of the
FGLSS graph from a proof system [7].

We start with the PCP theorem [2, 1] which gives a PCP construction for NP that uses a log-
arithmic number of random bits, � free bits for some constant � , has perfect completeness and
soundness �@? ( , i.e we use

���������
	 �
� � � � =

� 7�9;: 4 
��� . This, together with [3][cf. Proposition 11.4]
implies that, for every , . 0 and every admissible function � ��� ��� � � ,

��� ��� �
	 �
� � =����

� 2 #87�9;:64<%	�1#)( � ,>%�"�� 
@#���� ,>%�"������� (1)

Using the FGLSS transformation from proof systems to layered graphs with gaps in clique
size [7], Equation (1) above (with the choice , � � ) implies that in a graph ! layered into � �
4�� "$�&%�( C�� rows each being an independent set of size � �1(D= ��� , it is NP-hard to distinguish whether
� #�!&% � � or if � #�!&% ��� " � � (  � � .

We now further map ! to a graph � as in the reduction of Section 3 of [19] with parameter
� � ( � � � � � = � . For sake of completeness we briefly sketch this mapping. The transformation from
! to � is best described through an intermediate #���" �/% -partite graph ! � . For each row � of ! ,
there is a block ��� of � rows in ! � such that the � �"! row in �+� is simply the �#�$! row of ! shifted by
# ��* �@% columns to the right in a wraparound manner. Thus each vertex of ! has � copies in ! � . For
each edge #$%	
���% in G (here we also treat #$%�
�% % to be an edge of ! for every vertex % ), we insert an
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edge between every copy of % and � in ! � . The graph � is now obtained from ! � by applying an
appropriate injection � � � �  � � � �  (with � � ��� � , see [19] for details) to the vertices of each row of
! � . For every edge #$%	
���% in ! � , we have an edge #�� #$% % 
#� #�� % % in � , and the edge set is extended by
including all the wraparound rotations of these edges. Hence the graph � has

� � � � � � vertices
in all, organized as � blocks corresponding to the � rows in ! , with � rows in each block and each
row having exactly � � � � � vertices.

This transformation can be shown to satisfy the following two properties (see [19]). First, if
� #�!&% ��� , then �a# � %��1"'# �� % ��� � . Second, we have � # � % � � � #�!&% � � , and hence if � #�!&% � � � ,
� # � % � � � � � � , so that

"$#	�� % ���a# � % �
�

� # � % �
� � � �
� � � � �

� � � � � � = �
� ( � � � �

� � � � � = �
(

. � � � � � � � ( � ? � . � �
�

for any � , � � �@? �R0 � (if � � is greater than a sufficiently large constant). Now � � � ( � ( ��� � (
� " � %

and the total number of vertices in �� is
� � 4 � " �&% " ( � " � % � 4

� " �&% (assuming � � 2 #87�9;:64<% ); and
it is NP-hard to distinguish between the cases "$# �� % � � � and "$# �� %�. � � � . By choosing � in the
range of 2 #��@% to 23#87�9;: 4<% we get the claimed range in � � , the chromatic number of � , in terms of
the number of vertices

�
. �
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