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Abstract

Computing the Hermite Normal Form of an n x n matrix using the best current algorithms
typically requires O(n®log M) space, where M is a bound on the length of the columns of
the input matrix. Although polynomial in the input size (which is O(n?log M)), this space
blow-up can easily become a serious issue in practice when working on big integer matrices.
In this paper we present a new algorithm for computing the Hermite Normal Form which uses
only O(n?log M) space (i.e., essentially the same as the input size). When implemented using
standard integer arithmetic, our algorithm has the same time complexity of the asymptotically
fastest (but space inefficient) algorithms. We also suggest simple heuristics that when incorpo-
rated in our algorithm result in essentially the same asymptotic running time of the theoretically
fastest solutions, still maintaining our algorithm extremely practical.

1 Introduction

The Hermite Normal Form is a standard form for matrices that is useful in many applications. For
the special case of square matrices (see next section for general definition), a matrix A is in Hermite
Normal Form if it is lower triangular, all of its nonzero entries are positive, and each off-diagonal
entry is reduced modulo the corresponding diagonal entry on the same row. A classical result of
Hermite [9] says that every integer matrix A is (column) equivalent to a matrix H which is in
Hermite Normal Form. Here, by (column) equivalent we mean that H can be obtained from A by
a sequence of elementary columns operations, or, equivalently, the two matrices generate the same
set of vectors as integer linear combinations of their columns.

The Hermite Normal Form plays a fundamental role in many applications because of its triangu-
lar structure. In particular, it has been used in solving systems of linear Diophantine equations [6],
algorithmic problems in lattices [7], cryptographic schemes [13], integer programming [10], loop
optimizations techniques [14]. Not surprisingly, finding efficient algorithms for computing the Her-
mite Normal Form has been a very active research area, and lot of progress has been made since
the discovery of the first HNF algorithm. The simplest way to compute HNF is a variant of the fa-
miliar Gaussian elimination algorithm (sometime called integer column reduction), where divisions
are replaced by greatest common divisor computations. Unfortunately, it has been observed (and
recently proved for a particular elimination strategy [4]) that although this algorithm performs a
polynomial number of arithmetic operations, the complexity is exponential in general, because the
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size of the numbers involved in the intermediate computations can grow exponentially during the
execution of the algorithm.

The first polynomial time algorithm for computing the Hermite Normal Form is due to Frumkin
[5]. Since then, the time complexity of HNF computation has been widely investigated, finding
better reduction strategies and incorporating ideas from fast matrix multiplication (see next section
for a description of previous work). The currently fastest algorithm to compute HNF [8, 16], as
well many other previous algorithms, are based on the idea of performing all arithmetic modulo
the determinant of the matrix. Although this represents a tremendous improvement over the
exponential time and space complexity of the simple Gaussian elimination algorithm, it should be
noted that the determinant can be much bigger that the entries of the original matrix, so that even
using modulo determinant arithmetic the space requirement for computing HNF can be quite big.

Consider for example an n xn matrix all of whose columns have norm at most M. It can be easily
shown that both the input matrix and the corresponding Hermite Normal Form have O(n?log M)
bit-size. Nevertheless, the determinant of the matrix can be as big as M™ and algorithms using
modulo determinant arithmetic require O(n?log M) bits for the intermediate computations.

In this paper we show that it is possible to compute the HNF of an integer matrix using only
O(n?log M) space also for the intermediate computations. When implemented using standard
arithmetic and matrix multiplication, our algorithm has O(n® - polylog(n, M)) time complexity,
i.e., the same of the algorithms based on modular arithmetic. This time complexity translates to
O(mn* - polylog(n, m, M)) for nonsquare matrices. Moreover, fast matrix multiplication can be
easily incorporated in our algorithm leading to time improvements analogous to those in [8, 16].
Only when implemented using asymptotically fast integer multiplication algorithms, previously
known approaches are asymptotically faster than our new algorithm, but at the cost of a polyno-
mially big space penalty. We also describe a simple heuristic based on the techniques developed
in this paper that can be used to substantially improve the time complexity of our algorithm to
O(n* - polylog(n)), essentially matching the time bound of asymptotically fastest algorithms, but
without the complications of using fast integer multiplication.

We present in Section 2 some of the previous algorithms and techniques used for computing
HNF. Section 3 lists a series of facts we use in the analysis of our algorithm, which is presented
in 4 for the particular case of square matrices. In Section 5 we show how the algorithm can be
extended to nonsquare matrices and how to incorporate fast matrix multiplication algorithms in
order to obtain better asymptotic running time.

2 Previous algorithms

Numerous researchers have previously given algorithms for computing the Hermite normal form
of integer matrixes by using different techniques to cope with the coefficient explosion. The first
polynomial time algorithm, due to Frumkin [5], uses an algorithm for solving linear Diophantine
equations combined with modular reduction. In [12], Kannan and Bachem prove a polynomial
bound on the size of the entries that arise during the execution of an algorithm that performs only
basic column operations over the integers. Their procedure is successively improved by Chou and
Collins [1], who prove better bounds for both the time and space used, and Iliopoulos [11] who
extends this procedure with modular techniques.

For the case of square matrices, Domich, Kannan and Trotter [3], limit the size of the entries
by using computation modulo suitably chosen numbers. Essentially, they describe an algorithm
which in a first stage performs Gaussian elimination modulo the determinant, and later from the
result that is obtained it recovers the Hermite normal form of the original matrix. A technique



useful to improve the space efficiency of all these algorithms is introduced [2] for the case when a
factorization of the determinant of the input matrix is known.

Hafner and McCurley [8] extend the results of [3] to nonsquare matrix, but the main result
of their paper is an algorithm for matrix triangularization based on fast matrix multiplication.
However, it is not shown how to efficiently compute the Hermite normal form of such a matrix.
Storjohann [16] gives a fast procedure which does this, and obtains the fastest running algorithm for
HNF. The running time of this algorithm is O(n(*% log? M), if a matrix multiplication algorithm
that runs in O(nf) is used. Although the space efficiency is not explicitly analyzed, it follows from
the triangularization procedure that is used that the space is of order O(n®log M). The same
space requirement seems to hold for all previous algorithms and this can be a serious bottleneck for
practical applications. Our algorithm improves on this limitation still maintaining a good running
time.

3 Preliminaries

Let A be a n x n matrix with integer entries. We denote by A (i) the ith principal minor of A, i.e.
the i x i submatrix of A obtained by selecting its first 7 rows and columns. Let also a” (i) be the
i+ 1 row of A truncated to the first i elements, i.e., a’ (i) = (@i41,1,i+1.2,--,@i+1,4). The lattice
generated by A is the set £(A) of all integer linear combinations over the columns of A.

Definition [Column equivalence] Let A,B € Z"*™. Then A and B are column equivalent iff
L(A) = L(B).

Definition [Hermite Normal Form] We say that a matrix B is in Hermite normal form iff
e There exists 1 <14y <... <1, such that b; ; # 0 = i > i; (strictly decreasing column height).

e Forallk < j,0 <bjk <bi,; (the top non-zero element of each column is the greatest element
in the row).

Then, the Hermite normal form of square nonsingular matrices is a matrix in lower triangular form
such that the offdiagonal entries are smaller than the diagonal entries of their respective row.

Proposition 1 Let A be a matriz of size n and M an upperbound on the length of its columns.
Then det(A) < M™.

Proposition 2 (Chinese Reminder Theorem) Let my,...,my be pairwise coprime integers, i.e.
such that gcd(m;,m;) = 1 when i # j. Then, for any integers x; there exists an integer x unique
modulo [[m;, such that x = z; (mod m;) for 1 <i<k.

The following propositions combined with the Chinese Reminder Theorem gives a procedure to
compute the determinant using modular arithmetic:

Proposition 3 Let A be a square matriz and let p1,...,ps be a sequence of distinct primes such
that their product exceeds twice the Hadamard bound for det(A). Suppose that det(A) = q;
(mod p;),1 <4 < s. Then, det(A) is the integer d with smallest absolute value satisfying d = a;
(mod p;) for all i.



Proof: Let b be the Hadamard bound for £. The numbers ¢;,1 < 7 < s determine the determi-
nant of £ modulo p1, po, ..., ps. Since 2b < p1ps...ps, no two integers between —b and b are congruent
modulo p1,pa, ..., Ps-

Proposition 4 Let A be a nonsingular matriz. Then there exists a permutation of the columns
such det(A(i)) #0 for all 1 <i <mn.

Proof: A constructive proof that gives an efficient algorithm to find such a permutation is given
in [12].

Proposition 5 Let A € Z™*" be a nonsingular, lower triangular matriz with integer entries, and
let d = det(A). Then there exists a matric B with integer entries such that AB = dI,,.

Proposition 6 (Prime Number Theorem) p, = O(nlogn), where p,, represents the nth prime
number.

4 QOur Algorithm

In this section we present our algorithm for the particular case when the input matrix A is a
square nonsingular matrix. We will show how to extend the algorithm to arbitrary matrices in
a later section. We also assume without loss of generality (see Proposition 4) that all principal
minors of A are nonsingular. We first give an informal description of the algorithm. Let n be the
dimension of the input matrix, B be the principal minor of rank n — 1, a” the row vector given by
the first (n — 1) elements of the last row of A, and b the nth column of A, i.e., we decompose the
input matrix as follows:
A= [ B ‘ b ] |

Our algorithm works in three major steps:

1. First, we (inductively) compute the Hermite normal form Hp of B. (Notice that by assump-
tion matrix B and all of it principal minors are non-singular.)

2. Then, we extend Hg to the Hermite normal form of B’ = [ :?T ] Notice that the Hermite

normal form of B’ is necessarily of the form H' = [ qu? ] This step is implemented by a
procedure AddRow (B,Hp,a”) that on input a square matrix B, its Hermite normal form

Hp, and a row vector a’, computes the row vector x? such that H’ is the Hermite normal
form of B'.

3. Finally, given H' and b, we compute the Hermite normal form of [H'|b] using a procedure
AddColumn . Notice that since H' is the Hermite normal form of B’, the two matrices H’'
and B’ generate the same lattice. Therefore also [H'|b] and A = [A’|b] generate the same
lattice and the Hermite normal form of [H'|b] is also the Hermite normal form of the original
input matrix A.



We now give a precise description of the algorithm, using the two procedures AddRow and
AddColumn , and prove its correctness. Procedures AddRow and AddColumn will be described
in the next two subsections.

Algorithm: (Hermite Normal Form)
Input: A nonsingular matrix A € Z™*" such that d; = det(A (7)) # 0 for all 1 < i < n.
Output: H, The Hermite Normal Form of A

(1) xT(1) « (az,:); H(1) < A(1);
(2) fori+2ton
(3)  xT(i) « AddRow (A(i), H(i),E;{T((’;)
(4) H(i+1) + AddColumn ( [

x" (i)

a1 341
,
Q41,541

Correctness of the algorithm We use an inductive argument to prove that H(4) is the Hermite
normal form of A(i). This obviously holds for i = 1. For the inductive step assume that H(7) is
the Hermite normal form of A(i), and let b be the vector (ai41,...,ai+1,+1)7 at iteration i.

(5) return H(n)

Then, after step (4) is executed, H(i + 1) is the Hermite normal form of [ X7 (4) ‘ b ] Since

Ali
this matrix generates the same lattice as A(i + 1) = [ aT((Zfi)) ‘ b ], (from the correctness of the
AddRow procedure), it follows from the uniqueness of Hermite normal form that H(i + 1) is the
Hermite normal form of A(: 4 1).

The main result of our paper is stated in the following

Theorem 7 There exists a linear space algorithm that on input A, returns its Hermite normal
form H.

Proof: It should be clear from the description of the algorithm that the space used is the maximum
between the space used in the AddColumn and AddRow . The running time is n times the running
time of these procedures. To complete the proof, we further analyze the complexity of the two
procedures.

4.1 The AddRow procedure

The AddRow procedure takes as input a non-singular square matrix A, its Hermite normal form H

and a row vector a’. The output is a vector x” such that the H' = [ <7 ] is the Hermite normal

A

form of A" = [ al ] To compute x, observe that vector x’

must satisfies al U = xT, where

U is a unimodular transformation such that AU = B. It is important to notice that explicitly
computing the transformation matrix U would be extremely space consuming. However, we notice
that since A is non-singular, the transformation matrix U = A 'H is uniquely defined and we
can express the vector x! = al’ A~1H directly in terms of A, H and a’. Notice also that although
a’ A~! is not generally an integer vector, the final result x = (a” A~1)H is always integral. So, we
can compute x?  (mod p;) modulo small primes p; that do not divide det(A), and then combine
the results using the Chinese Reminder Theorem. For each prime p; this can be done as follows:



e First compute a solution y; to the system of equations ATy; =a (mod p;)
e Then compute x; = HTy; (mod p;).

Notice that the absolute value of the entries in x” = (al’ A=1)H is at most V = n?M?"*!  where
M is an upperbound on the length of the columns of A, and n is its dimension. Then, if we
compute x; = x (mod p;) for log(2n?M?"*+1) = O(nlog M) distinct primes, we can recover
using the Chinese Reminder Theorem. It follows that the space used to compute x’ is of order
O(n?log M). For the time analysis notice that the dominant part of the procedure is solving the
system of equations, and this can be done in O(n? log? p;) by using standard Gaussian elimination
procedure over GF(p;). Using the Prime Number Theorem(6), we get that the time complexity of
AddRow is O(n?log V log?log V) = O(n* - polylog(n, M)).

4.2 The AddColumn Procedure

The AddColumn procedure takes as inputs a matrix A € Z"*("~1) in Hermite normal form and a
vector b € Z™. The output should be the Hermite normal form H € Z"*" of [A|b]. This is done
as follows. First we extends A to a square matrix Hy = [A|c] in Hermite normal form such that
[Hy|b] generates the same lattice as [A|b]. This is simply done setting ¢ = (0,...,d)” where d is
the determinant of matrix [A|b]. We then compute a sequence of matrix-vector pairs H;, b; (for
j=0,...,n), such that

e bO = b

e H; is in Hermite normal form

o L([H,|bs]) = L([H;1|bj+1])

e the first j elements of vector b are 0

It immediately follows by induction that H = H,, is the Hermite normal form of [A|b]. Each
pair H; 1, b1 is obtained from the previous one H;, b; as follows. If the (j+1)th element of b; is
zero, then we simply set H; 1 = H; and bj;; = b;. Otherwise, we replace the (j + 1)th column of
H; and b; with two other columns obtained applying a unimodular transformation that clears the
(4 + 1)th element of b;. This is done executing the extended Euclidean algorithm to the top two
elements of the two columns. Once this is done, the remaining elements of the two columns might
be bigger than the diagonal elements of H;. So, we reduce the two columns modulo the diagonal
elements of H; using the last n — j columns of H;. During this modular reduction stage, entries
are kept bounded performing the arithmetic modulo the determinants my of the trailing minors
of H;. Matrix H; and vector b; correspond to the values of H and b at the jth iteration of the
following algorithm. Procedure (AddColumn )

Input: A matrix A € Z"*"! in Hermite normal form and a vector b.
Output: The Hermite Normal Form H of the matrix [A|b].

(0) Set H to the matrix [A|c] where ¢ = [0,...,det([A|b])]”
(1) mp < hpp;

(2) for i< n—1downto 1 do m; < mjq1 - hi;

(3) for j <+ 1tondo

(4)  find k,1, g such that kh; ; + lb; = g = ged(h; ;,b;);

(5) for i< jtondo



) hij < kh;ij + 1b; (mod m;);
) bz' — bih]"j/g — hi,jbj/g (mod mZ)
) fork+«+ j+1tondo
9) q <— hk,j div hk,k;
0) for [ + k ton do
1) hij < hyj —qhig  (mod my);

Given the matrix A and the column vector b the procedure eliminates the entries of b by per-
forming column operations and reducing elements at row & modulo my. In order to prove that
these operations do not change the lattice we have to show that they correspond to sequences of
elementary column operations. Regarding the modular reduction operations, notice that my is the
determinant of the submatrix corresponding to the non-zero rows of the last n — k 4+ 1 columns
of H; (for all k > j). So, the vector (0,...,0,my,0,...,0)T belongs to the lattice generated by
the last m — k + 1 columns of H;. So reducing the kth entry of a vector modulo mj correspond
to subtracting appropriate multiples of the last n — k + 1 columns of H;. Finally, notice that the
column operations in step (4,5,6,7) correspond to the linear transformation

e ]

which has determinant equal to 1 by definition of &, [, g. So, this transformation is unimodular and
corresponds to a sequence of elementary column operations.

This proves that the lattice generated by [H,|b,] at the end of the algorithm is the same as
the original lattice [A|b]. Moreover, H,, is in Hermite normal form and b,, = 0, so the H = H,, is
the Hermite normal form of [A|b].

To analyze the space complexity of AddColumn , assume that the size of the input matrix A,
and consequently the size of H, is of order O(n?log M). It is easy to see that this assumption holds
during the execution of our algorithm. During one iteration of the for in line (3) we only modify H;;,
the jth column of H and the vector b. All computations on the elements of these vectors are done
modulo mm;, so, the total space needed to store b and Hj is of order log m +...4+log m,, = log [[m; =
log(det(H,)) = n?log M. Because of the triangular reduction of lines (8)-(11), the matrix [H|b]
needs O(n?log M) storage space at the beginning at the next iteration. All computations are done
inplace, so the total space needed by AddColumn is of order O(n?log M).

The main computational part of the the procedure consists of lines (8)-(11). This is essentially
the “Triangular Reduction” procedure of [15], where the running time is proved to be O(n3 log® M).
Since the execution of the for loop in line (6) takes O(n®log? M), the total execution time of
AddColumn is O(n*log? M).

5 Discussion

We presented an algorithm to compute the Hermite normal form of a square non-integer matrix
with O(n?log M) space complexity and O(n® log? M) running time, where n is the dimension of the
matrix and M is a bound on the length of the column vectors. Notice that the bit-size of the input
is O(n?log M), so our algorithm has linear space complexity. In this section we first show how our
algorithm can be easily adapted to work on any (possibly non-square) matrix. Then we also describe
various ways to speed up our algorithm. In particular we describe both a theoretical improvement
that can lower the running time to O(n*376 log? M), and a simple heuristics that results in a running
time approximately of the order of O(n*log? M), when input is chosen uniformly at random. . We



remark that while the first improvement gives a provably better worst case asymptotic upper bound
on the running time, it is only of theoretical interest because of the big hidden constants. On the
other hand, the second improvement, although only heuristics, can be quite effective in practice.

Our algorithm can be easily extended to non-square matrices using the AddRow and AddColumn
procedures described in section 4. In particular, if A € Z"*™ is a non-square full rank matrix,
one can first run the algorithm on the square matrix consisting of the first n linearly independent
columns of A. (These columns can be easily found using a strightforward generalization of Propo-
sition 3.) The matrix that is obtained is of the form [H|A'] where H is in Hermite normal form,
and it is column equivalent to A. Next, run the AddColumn procedure to add the columns of
A’ to H. Tt is easy to see that the space complexity of the algorithm does not change, while the
running time becomes O(mn*log? M). For the general case of not necessarily full rank matrices,
one can first find a maximal set of linearly independent rows, then find the Hermite normal form of
the corresponding full rank matrix, and finally extend it to the Hermite normal form of the input
matrix using the AddColumn procedure. Notice that the entries of these last rows of the Hermite
normal form can be quite big, and in order to keep the space complexity of the algorithm low, these
rows should be computed one at a time and immediately output.

We now consider two ways to speed up our algorithm. A better running time can be obtained
by incorporating fast matrix multiplication algorithm in the AddRow procedure. Since matrix
multiplication and matrix inversion are problems of the same complexity, solving the linear system
in the procedure can be done in O(n?log? M), where O(n?) is the running time of a matrix mul-
tiplication algorithm. Thus, we obtain an algorithm with complexity O(n2+9 log? M ). In practice
one can obtain even better running time by using the following heuristic algorithm:

1. decompose A as [ BT ¢ d ], with B € Z(n=2x(n-1) ¢ d € z" 1 bT € Z" 2

b Gpn—1 | Gn,n
2. compute d; = det([B|c]) and d2 = det([B|d]) and find k,[ such that kdy + lde = ged(dy, dy);
3. compute the Hermite normal form of [ l:]?f kan,lzcl—:{(;an,n ];

4. run AddColumn twice to add the columns [ ¢ ] and [ d ]
Qn,n—1 an.n
Notice that the determinant of the matrix at step (3) is d = gecd(di, d2) which is tipically very
small for randomly chosen matrices. So, the Hermite normal form at step (3) can be computed
directly using for example the modular HNF algorithm from [3] with O(n?log?d) running time.
The dominant part of the running time will become a single execution of the AddRow procedure
resulting in a (heuristic) O(n*logZ M) bound on the running time.
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