Electronic Colloquium on Computational Complexity, Report No. 76 (2000)

Measures of Nondeterminism in
Finite Automata

*

Juraj Hromkovi¢! T Juhani Karhumaki? f Hartmut Klauck?
Georg Schnitger? Sebastian Seibert!

!Lehrstuhl fiir Informatik I, RWTH Aachen,
Ahornstrafle 55, 52074 Aachen, Germany
2Department of Mathematics, University of Turku, Finland
3FB Informatik, Johann-Wolfgang-Goethe-Universitit,
60054 Frankfurt am Main, Germany

*An extended abstract of this paper has been presented at ICALP 2000.

tSupported by DFG grant Hr-1413-2 and the project “Descriptional Complexity and Efficient
Transformations of Formal Languages over Words, Trees, and Graphs” (common grant 864524 of
DAAD and of the Academy of Finland).

1 ISSN 1433-8092

Abstract

While deterministic finite automata seem to be well understood, surprisingly
many important problems concerning nondeterministic finite automata (nfa’s)
remain open.

One such problem area is the study of different measures of nondeterminism in
finite automata and the estimation of the sizes of minimal nondeterministic finite
automata. In this paper the concept of communication complexity is applied in
order to achieve progress in this problem area. The main results are as follows:

1. Deterministic communication complexity provides lower bounds on the size
of unambiguous nfa’s. Applying this fact, the proofs of several results about
nfa’s with limited ambiguity can be simplified.

2. For an nfa A we consider the complexity measures advice4(n) as the num-
ber of advice bits, ambiga(n) as the number of accepting computations,
and leafa(n) as the number of computations for worst case inputs of size
n. These measures are correlated as follows (assuming that the nfa A is
minimal):
advicey(n),ambiga(n) <leafa(n) < O(advice4(n) - ambiga(n)).

3. leafa(n) is always either a constant, between linear and polynomial in n,
or exponential in n.

4. There is a family of languages K ON,2 with an exponential size gap between
nfa’s with polynomial leaf number/ambiguity and nfa’s with ambiguity k.
This partially provides an answer to the open problem posed by Ravikumar
and Ibarra [SIAM J. Comput. 18 (1989), 1263-1282], and Hing Leung
[STAM J. Comput. 27 (1998), 1073-1082].

Keywords: finite automata, nondeterminism, limited ambiguity, descriptional
complexity, communication complexity.

1 Introduction

In this paper the classical models of one-way finite automata (dfa’s) and their non-
deterministic counterparts (nfa’s) [RS59] are investigated. While the structure and
fundamental properties of dfa’s are well understood, this is not the case for nfa’s. For
instance, we have efficient algorithms for constructing minimal dfa’s, but the com-
plexity of approximating the size of a minimal nfa is still unresolved (whereas finding
a minimal nfa solves a PSPACE complete problem). Hromkovi¢, Seibert and Wilke
[HSW97] proved that the gap between the length of regular expressions and the number
of edges of corresponding nfa’s is between nlog?n and nlogn, but the exact relation
is unknown. Another principal open question is to determine whether there is an
exponential gap between two-way deterministic finite automata and two-way nonde-
terministic ones. The last partially successful attack on this problem was done in the
late seventies by Sipser [S80], who established an exponential gap between determin-
ism and nondeterminism for so-called sweeping automata (the property of sweeping is
essential [M80]).

Our main goal is to contribute to a better understanding of the power of nondetermin-
ism in finite automata (see [RS59], [MF71], [Mo71], [Sc78] for very early papers on this
topic). We focus on the following problems:

1. The best known method for proving lower bounds on the size of minimal nfa’s
is based on nondeterministic communication complexity [Hr97]. All other known
methods are special cases of this method. Are there methods that provide better
lower bounds at least for some languages? How can one prove lower bounds
on the size of unambiguous nfa’s (unfa’s), that is nfa’s which have at most one
accepting computation for every word?

2. It is a well known fact [MF71], [Mo71] that there is an exponential gap between
the sizes of minimal dfa’s and nfa’s for some regular languages. This is even
known for dfa’s and unfa’s [Sc78], [SH85], [RI89], for unfa’s and nfa’s with con-
stant ambiguity [Sc78], [RI89], and for ufa’s with polynomial ambiguity and nfa’s
[HLI8] (We apologize that we made the mistake in the extended abstract of this
paper [HKKO0O], where we state also the above results as our contribution instead
of referring to [Sc78], [SH85], [RI89], [HLI8]). But, it is open [RI89], [HLIS]
whether there exists an exponential gap between the sizes of minimal nfa’s with
constant ambiguity and nfa’s with polynomial ambiguity.

3. The degree of nondeterminism is measured in the literature in three different
ways. Let A be an nfa. The first measure advice 4(n) equals the number of advice
bits for inputs of length n, i.e., the maximum number of nondeterministic guesses
in computations for inputs of length n. The second measure leaf4(n) determines
the maximum number of computations for inputs of length n. ambigs(n) as
the third measure equals the maximum number of accepting computations for
inputs of length at most n. Obviously the second and third measure may be
exponential in the first one. The question is whether the measures are more
specifically correlated.

To attack these problems we establish some new bridges between automata theory and
communication complexity. The communication complexity of two-party protocols was
introduced by Yao [Y79] (and implicitly considered by Abelson [Ab78], too). The initial
goal was to develop a method for proving lower bounds on the complexity of distributive
and parallel computations (see, for instance, [Th79, Th80, Hr97, KN97]). Due to the
well developed, nontrivial mathematical machinery for determining the communication
complexity of concrete problems (see, for instance [AUY83, DHS96, Hr97, Hr00, KN97,
L90, NW95, PS82]), communication complexity has established itself as a sub-area of
complexity theory. The main contributions of the study of communication complexity
lie especially in proving lower bounds on the complexity of specific problems, and in
comparing the power of different modes of computation.

Here, for the first time, communication complexity is applied for the study of nonde-
terministic finite automata, with the emphasis on the tradeoff between the size and
the degree of nondeterminism of nfa’s. Our procedure is mainly based on the following
facts:

(i) The theory of communication complexity contains deep results about the na-
ture of nondeterminism (see, e.g. [KNSW94, HS96]) that use the combinatorial
structure of the communication matrix as the computing problem representation.

(ii) In [DHRS97, Hr97], the non-uniform model of communication protocols for com-
puting finite functions was extended to a uniform model for recognizing languages
in such a way that several results about communication complexity can be suc-
cessfully applied for uniform computing models like automata.

Combining (i) and (ii) with building of new bridges between communication complexity
and nfa’s we establish the following main results.

1. Let cc(L) resp. ncc(L) denote the deterministic resp. nondeterministic commu-
nication complexity of L. It is well known that 2¢(Z) and 27°(Z) are lower bounds
on the sizes of the minimal dfa for L and a minimal nfa for L respectively. First
we show that there are regular languages L for which there is an exponential gap
between 2"“(L) and the minimal size of nfa’s for L. This means, that the lower
bound method based on communication complexity may be very weak. Then we

show as a somewhat surprising result that 2V (X/% — 2 is a lower bound on the
size of nfa’s with ambiguity & for L. We furthermore show that Rank(M)Y* — 1
is a lower bound for the number of states for nfa’s with ambiguity k, where M is
a communication matrix associated with L. It is possible that this lower bound
is always better than the first one (see [KN97] for a discussion of the quality of
the so-called rank lower bound on communication complexity).

As a corollary we present a sequence of regular languages NI1D,, such that the
size of a minimal nfa is linear in m, while the size of every unfa for NID,, is
exponential in m. This substantially simplifies the proofs of similar in [Sc78],
[SH85].

2. We establish the relation
advices(n),ambig(n)a < leafs(n) < O(advices(n) - ambiga(n))

for any minimal nfa A. Observe that the upper bound on leaf(n) implies that
minimal unambiguous nfa’s may have at most O(advicea(n)) C O(n) different
computations on any input of size n, and an exponential gap between advice4(n)
and leafa(n) is possible only if the degree of ambiguousity is exponential in n.

Furthermore we show that leafs(n) is always either bounded by a constant, at
least linear but polynomially bounded, or at least exponential in the input length.

3. We present another sequence of regular languages than in [HL98] with an expo-
nential gap between the size of nfa’s with exponential ambiguity, and nfa’s with
polynomial ambiguity. This result is obtained by showing that small nfa’s with
polynomial ambiguity for the Kleene closure (L#)* imply small unfa’s that work
correctly on a polynomial fraction of inputs. Our technique is more general than
proof method of Hing Leung [HL98| and provides an essentially shorter proof.

Furthermore we describe a sequence of languages KON;: such that there is an
exponential gap between the size of nfa’s with polynomial ambiguity and nfa’s
with ambiguity k. This provides a partial answer to the open question [RI89],
[HL98] whether there is an exponential gap between minimal nfa’s with constant
ambiguity and minimal nfa’s with polynomial ambiguity. Our language KONy
is a candidate for proving a gap even separating between the size of nfa’s with
polynomial ambiguity and nfa’s with constant ambiguity.

This paper is organized as follows. In section 2 we give the basic definitions and fix
the notation. In order to increase the readability of this paper for readers who are
not familiar with communication complexity theory, we give more details about com-
munication protocols and build the basic intuition of their relation to finite automata.
Section 3 is devoted to the investigation of the relation between the size of nfa’s and
communication complexity. Section 4 studies the relation between different measures
of nondeterminism in finite automata, and presents the remaining results.

2 Definitions and Preliminaries

We consider the standard one-way models of finite automata (dfa’s) and nondeter-
ministic finite automata (nfa’s). For every automaton A, L(A) denotes the language
accepted by A. The number of states of A is called the size of A and denoted size,.
For every regular language L we denote the size of the minimal dfa for L by s(L) and
the size of minimal nfa’s accepting L by ns(L).

For any nfa A and any input = we use the computation tree T, to represent all
computations of A on z. Obviously the number of leaves of T4, is the number of
different computations of A on z.

The ambiguity of an nfa A on input x is the number of accepting computations of A
on z, i.e., the number of accepting leaves of T4 ;.. If the nfa A has ambiguity one for all

5

inputs, then A is called an unambiguous nfa (unfa) and uns(L) denotes the size of a
minimal unfa accepting L. More generally, if an nfa A has ambiguity at most k& for all
inputs, then A is called a k-ambiguous nfa and nsi(L) denotes the size of a minimal
k-ambiguous nfa accepting L.

For every nfa A we measure the degree of nondeterminism as follows. Let ¥ denote
the alphabet of A. For every input x € ¥* and for every computation C of A on x we
define advice(C') as the number of nondeterministic choices during the computation C,
i.e., the number of nodes on the path of C' in T4 ,, which have more than one successor.
Then

advice4(z) = max{advice(C) | C is a computation of A on z}

and advices(n) = max{advice(x) | x € ¥"}.

For every z € ¥* we define leafs(z) as the number of leaves of T4, and set

leafs(n) = max{leaf(z) | z € X"}

For every z € ¥* we define ambiga(z) as the number of accepting leaves of T4, and
set

ambig,(n) = max{ambig(z) | z € ="},

Since a language need not contain words of all lengths we define ambiguity over all
words of length at most » which makes the measure monotone. Observe that the leaf
and advice measures are monotone as well.

Note that different definitions have been used by other authors; see e.g. [GKW90],
[GLW92], where the number of advice bits is maximized over all inputs and minimized
over all accepting computations on those inputs. In this case there are nfa’s which
use more than constant but less than linear (in the input length) advice bits, but this
behavior is not known to be possible for minimal nfa’s.

To prove lower bounds on the size of finite automata we shall use two-party commu-
nication complexity. This widely studied measure was introduced by Yao [Y79] and is
the subject of two monographs [Hr97], [KN97].

First, we introduce the standard, non-uniform model of (communication) protocols for
computing finite functions. A (two-party communication) protocol P consists
of two computers C; and Cy; of unbounded computational power (sometimes called
Alice and Bob in the literature) and a communication link between them. P computes
a finite function f : U x V — Z in the following way. At the beginning C] gets
an input o € U and Cj; obtains an input f € V. Then C; and Cf; communicate
according to the rules of the protocol by exchanging binary messages until one of them
knows f(«,3). Cr and C;; may be viewed as functions in this communication, where
the arguments of C7 (Cjy) are its input « () and the whole previous communication
history (the sequence c1,ca, ... , ¢ of all messages exchanged between C; and Cp; up
until now), and the output is the new message submitted. We also assume that C; (Cy;)
completely knows the behavior of Cr; (Cy) in all situations (for all arguments). Another
important assumption is that every protocol has the prefix-freeness property. This
means, that for any 6,7 € U [V], and any communication history ¢, co, ... ,ck, the

6

message Cr(0, (¢1,¢a, - .. ,cx)) is no proper prefix of C7(7, (¢1,¢2, - .. ,cx)) [the message
Cr1(9, (c1,¢2, ... ,c)) is no proper prefix of Crr(7, (¢1,¢2, --. ,cx))]- Informally, this
means that the messages are self-delimiting and we do not need any special symbol
marking the end of the message.

Formally, the computation of a protocol (Cy, Cyr) on an input is a sequence c1, ¢a, ... , Cm, 7,
where ¢; € {0,1}" for 4 = 1, ... ,m are the messages and v € Z is the result of the
computation. The communication complexity of the computation of P on an
input (a, 3) is the sum of the lengths of all messages exchanged in the communica-
tion. The communication complexity of the protocol P, cc(P), is the maximum
of the communication complexities over all inputs from U x V.

Due to the prefix-freeness property of messages we have that if, for two computations
€1,C2y --- yc,y and dy,ds, ... ,d, 0, cica...cp = dids,...d,, then | = r, and ¢; = d;
fori=1 ... 1. So,if Z ={0,1} and a protocol allows m different computations, then
its communication complexity must be at least [log, m]| — 1.

The communication complexity of f, cc(f), is the communication complexity of
the best protocol for f, i.e.,

ce(f) = min{cc(P) | P computes f}.

The protocols whose computations consist of one message only (i.e. C sends a message
to Cr; and then C7; must compute the result) are called one-way protocols. For every
finite function f,

cc1(f) = min{cc(P) | P is a one-way protocol computing f}

is the one-way communication complexity of f.

The representation of a finite function f : U x V' — {0, 1} by the so called communica-
tion matrix is very helpful for investigating the communication complexity of f. The
communication matrix of f is the |U| x |V| Boolean matrix M[u,v] defined by

M¢lu,v] = f(u,v)

forallu € U and v € V. So, M{[u, v] consists of |U| rows and |V'| columns. If one wants
to fix this representation (which is not necessary for the relation to the communication
complexity of f), one can consider some kind of lexicographical order for elements in U
and V. But, the special order of rows and columns does not matter for our applications.
Figure 1 presents the communication matrix M for the Boolean function f : {0,1}3 x
{0,1}3® — {0, 1} defined by

f((@1, 22, 23) (Y1, Y2, ¥3)) =21 D T2 D 13 D Y1 D Y2 D U3,

where @ is addition modulo 2.

Definition 1 Let U = {ay, ... ,ou}, V = {b1, --. ,Bm} be two sets and let f :
UxV —{0,1}. Let My = [anglacvpev- For every a € U, the row of o in My is

Towy, = (aaﬂlvaaﬂza R aaﬂm)'

7

000 001 010 011 100 101 110 111
000 0 1 1 0 1 0 0 1
001 1 0 0 1 0 1 1 0
010 1 0 0 1 0 1 1 0
011 0 1 1 0 1 0 0 1
100 o 0 [1] 0 o
101 0 1 1 0 1 0 0 1
110 0 1 1 0 1 0 0 1
111 0 0 [1]0 :

Figure 1:

For every B € V, the column of B in My is
columng = (Ao g; Qs - »Gayp) -

Row(My) is the number of different rows of M;.

A submatrix of My is any intersection of a non-empty set of rows with a non-empty set
of columns. A d-monochromatic submatrix, § € {0,1} of M; is any submatriz of
My whose elements are all equal to § (Figure 1 depicts the 1-monochromatic submatriz
that is the intersections of rows 001, 010, 100 and 111 with the columns 000, 011, 101
and 110).

Let S = {My, Ms, ... , M} be a set of monochromatic submatrices of a Boolean matrix
M;. We say that S is a cover of My if, for every element ans of My, there exists an
m € {1, ... ,k} such that a,s is an element of M,,. We say that S is an exact cover
of My if S is a cover of My and M, "My =0 for everyr # s, r,s € {1, ... ,k}. The
tiling complexity of My is

Tiling(Mp) = min{|S| | S is an exact cover of My}
O

The work of a protocol (Cr, Ci;) for f can be viewed as a game on the communica-
tion matrix M;. Cp with input o knows the row row,, Cr; with input 8 knows the
column columng, and they have to determine f(a,3). ! A communication message
c¢1 submitted from C; to Cy; can be viewed as the reduction of My to a submatrix
M¢(c1) consisting of rows for which C; sends ¢; because Cr; knows the behavior of
Cr. Similarly the second message ¢, sent from Cp; to Cy restricts My(ci) to My (c1, c2)
which consists of the columns of My (c;) for which Cr; with the second argument ¢
sends co. Whenever row, (columng) of My(ci,ca, ... ,¢x) is monochromatic, Cr (Cry)
knows the result. So, every computation of (C7, Cyr) that finishes with 1 (0) defines
a 1-monochromatic (0-monochromatic) submatrix of M. This means that all inputs

!Note that they do not need to estimate the coordinates of the intersection of row, and columng.

8

(0,) contained in this monochromatic submatrix have the same computation of the
protocol Cr and Cp;. So, (Cr, Cpr) unambiguously determine an exact cover of My by
monochromatic submatrices. More precisely, a protocol with &k different computations
determines an exact cover of cardinality k. The immediate consequence is:

Fact 1 For every finite function f : U x V — {0,1},
ce(f) > [logy(Tiling(My))].

Another important consequence is the following fact.

Fact 2 For every finite function f:U xV — {0,1},

cey(f) = [logy(Row(My))].

PRrROOF: For no two different rows row, and rows, a one-way protocol computing f can
send the same message ¢ because C; cannot determine the result for any p such that
column,, has different values on the intersections with row, and rows. On the other
hand, Row(M;) different messages are enough (one message for a group of identical
rows) to construct a one-way protocol for f. O
Since the number of 1-monochromatic matrices in any exact cover of all ones in My is
a trivial upper bound on the rank of M, Fact 1 implies:

Fact 3 For every finite function f : U x V. — {0,1}, and every field F' with neutral
elements 0 and 1,

ce(f) = [log,(Rankp(Mj))].

Let @ be the set of rational numbers. Since it is well-known that
Rankq(M) = maz{Rankpr(My) | M is a field with neutral elements 0 and 1}

we formulate Fact 3 as
cc(f) > [logy(Rankq(My))]

for every finite function f.

Now, we consider nondeterministic communication complexity and its relation to some
combinatorial properties of M;. A nondeterministic protocol P computing a finite
function f : U x V. — {0,1} consists of two nondeterministic computers C; and Cp;
that have a nondeterministic choice from a finite number of messages for every input
argument. For any input (o, 3) € U x V, we say that P computes 1 (or that P
accepts (a, 3)) if there exists a computation of P on (a, 3) that ends with the result
1. So, P computes 0 for an input (o, 3) (rejects (o, 3)) if all computations of P on
(a, B) end with the result 0. The nondeterministic communication complexity
of P, denoted nce(P), is the maximum of the communication complexities of all
accepting computations of P. The nondeterministic communication complexity
of fis

ncc(f) = min{ncc(P) | P is a nondeterministic protocol computing f}

9

Let neeq (f) denote the one-way nondeterministic communication complexity
of f.

Similarly as in the deterministic case, every accepting computation of P for f unam-
biguously determines a 1-monochromatic submatrix of M; and the union of all such
1-monochromatic submatrices must cover all the 1’s of My but no 0 of M. The differ-
ence to the deterministic case is that these 1-monochromatic submatrices may overlap,
which corresponds to the fact that P may have several different accepting computations
on a given input.

Definition 2 Let M be a Boolean matriz, and let S = {My, M, ... , My} be a set
of 1-monochromatic submatrices of M. We say that S is a 1-cover of My if every 1
of My is contained in at least one of the 1-submatrices of S. We define

cover(Mg) = min{|S| | S is a 1-cover of M}.

Fact 4 For every finite function f: U x V — {0,1},

neer(f) = nee(f) = [logy(Cover(My))].

Proor: The above consideration showing that a nondeterministic protocol with m
accepting computations determines a 1-cover of My of cardinality m implies

[logy(Cover(My))| < nce(f).

Since nee(f) < neey (f) for every f, it is sufficient to prove neey (f) < [log,(Cover(My))].
Let S = {My, ... ,M,,} be a 1-cover of M;. A one-way nondeterministic protocol
(Cy, Cyr) can work on an input (a, 3) as follows. C; with input o nondeterministically
chooses one of the matrices of S with a non-empty intersection with row, and sends
the binary code of its index 2 to Cp;. If columng has a non-empty intersection with M;,
then Cyr accepts. Since [log, m| message length suffices to code m different messages,
nee(Cr, Crr) = [logy, m]. O
The first trivial bridge [Hr86] between automata and communication complexity says
that

s(L) > 2¢1fent) and ns(L) > 2neet(fen.r) (1)

for every regular language L C ¥* and every positive integer n, where f5,, 1 : X" x X" —
{0,1}, fonr(a,B) =1iff af € L. The argument for this lower bound is very simple.
Let A be a dfa (nfa) accepting L with s(L) (ns(L)) states. Then a one-way protocol
can compute fs, 1 as follows. For an input «, C; simulates the work of A on o and
sends the name of the state g reached by A after reading o to Cy;. Cj; continues in
the simulation of the suffix 8 from the state q. If A accepts a3, then (C;, Cyr) accepts
(a, B).

Unfortunately, the lower bound (1) may be arbitrarily bad for both s(L) and ns(L)
because this non-uniform approach cannot completely capture the complexity of the
uniform acceptance of L. We shall overcome this difficulty in the next section.

10

3 Communication Complexity and Finite Automata

To improve lower bounds on s(L) and ns(L) by communication complexity, Duri,
Hromkovi¢, Rolim, and Schnitger [DHRS97] (see also [Hr86]) introduced uniform pro-
tocols and communication matrices of regular languages as follows. For every regular
language L C ¥*, we define the infinite Boolean matrix My = [anp]acs+ gex+, Where

aqp =1 iff aB € L.

Since every regular language has a finite index (Myhill-Nerode theorem), the number
of different rows of M is finite. So, we can again use the protocols as finite devices for
accepting L.

Definition 3 Let ¥ be an alphabet and let L C ¥*. A one-way uniform protocol
over X is a pair (Cr, Cyr), where

(i) Cr: ¥* — {0,1}* is a function with the prefix freeness property, and {Ci(a) | a €
¥*} is a finite set, and

(i) Crr: ¥* x {0,1}* — {accept, reject} is a function.
We say that D = (C;, Cy1) accepts L, L(D) = L, if, for all o, 3 € ¥*:
Cr(8,Cr(w)) = accept iff af € L.
The message complexity of the protocol D s
me(D) = [{Ci(a) | o€ X7}
(i.e. the number of the messages used by D), and the message complexity of L is
me(L) = min{mc(D) | D is a one-way uniform protocol accepting L}.
The communication complexity of D is
cc(D) = max{|Cr(a)] | a € X*},
and the one-way communication complexity of L is
cc1(L) = min{ce(D) | D is a one-way uniform protocol accepting L}.
O

If one wants to give a formal definition of a one-way nondeterministic protocol
over ¥, it is sufficient to consider C; as a function from ¥* to a finite subset of {0, 1}*.
The acceptance criterion of L changes to

(3c € Cr(a) such that accept € Cr(B,¢)) < af € L.

11

Let nmcy (L) [ncei(L)] denote the one-way nondeterministic message [commu-
nication] complexity of L. We observe that the main difference between uniform
protocols and (standard) protocols is the way the input is partitioned between C; and
Crr. If a protocol D computes a Boolean function f : {0,1}" x {0,1}* — {0, 1}, one
can view this as the partition of inputs of f (from {0,1}"**) into the prefix of r bits
and a suffix of s bits (i.e. assigning the first 7 bits to C; and the rest to Cyy), and a
communication between C; and C7; in order to compute the value of f. A uniform
protocol over ¥ considers, for every input @ = ajas...q, € X", n + 1 partitions of

a (A a), (o, an. .. ap), (qag,as ... ay), .. ,(Q1...05 1,0,), (a, A)] and for each of
these partitions it must accept (reject) if @« € L (o € L). This means, that the matrices
M, = [aa,p] are special Boolean matrices with a) a;..00 = Gar,00.0n = -+ = Gay..am\

and a uniform protocol D for L must recognize the membership of o to L for every
partition of o between C; and Ci;.

The following result from [DHRS97] shows in fact that one-way uniform protocols are
nothing else than deterministic finite automata.

Fact 5 Let 3 be an alphabet. For every reqular language L C ¥,
s(L) = me(L) = Row(Myp).

THE IDEA OF PROOF: s(L) = Row(Mp) is just a reformulation of the Myhill-Nerode
theorem. In Section 2 we have already observed that Row(My) is exactly the number
of different messages used by an optimal one-way protocol.? O
Following the idea of the simulation of a finite automaton by a protocol in the nonde-
terministic case, we have the following obvious fact [Hr97].

Fact 6 For every alphabet ¥ and every reqular language L C X%,
nmc(L) < ns(L).

Fact 6 provides the best known lower bound proof technique on the size of minimal
nfa’s. All previously known techniques like the fooling set approach are special cases
of this approach. Moreover the fooling set method, which covers all previous efforts in
proving lower bounds on ns(L), can (for some languages) provide exponentially smaller
lower bounds than the method based on nondeterministic communication complexity
[DHS96].

The first question is therefore whether nmc(L) can be used to approximate ns(L).
Unfortunately this is not possible. Note that a result similar to Lemma 1 was also
independently established by Jirdskova [Ji99].

Lemma 1 There exists a sequence of reqular languages {PART,}5° , such that

ns(PART,) > 9Qy/nme(PART,)).

2The fact that My is infinite does not matter because M has a finite number of different rows.

12

ProOF: Let PART, = {zyz : |x| = |y| = |2| = n, and x # 2 V = y}. For the next
considerations it is important to observe that the condition z # 2z Vx = y is equivalent
to the condition © # 2z Vx = y = z. First we describe a nondeterministic uniform
protocol (Cy, Cyy) for PART, which uses O(n?) messages.

Players C; and C; compute the lengths Iy, l;; of their inputs. C; communicates [; and
C11 rejects when I + ;7 # 3n. So we assume that I; + [;; = 3n in the following.
Case 1: [; < n.

C7 chooses a position 1 < ¢ < [; and communicates ¢, x;,l;. Cjr accepts, if x; # z;.
Otherwise Crr accepts if and only if y = 2.

Observe that if x # z, then there is an accepting computation because there exists 4
such that x; # z;. If however = z, then C}; accepts iff y = z, that is iff x = y.

Case 2: n <l; < 2n.

C'r chooses a position 1 < ¢ < n and communicates 7, z;, ;. Furthermore, C'; compares
Z1,...,%,—n With yy,...,y,_, and sends the bit 1, if the strings are equal and the
bit 0 if the strings are different. Cj; accepts if z; # z;. Otherwise (if z; = 2;) Crr
COMPATeS Yi,—n+1,-- -, Yn With 21, _,41,..., 2,. If the two strings are equal and the bit
1 was received, then C; accepts and rejects otherwise.

Note that if © # 2z then there is an accepting computation. If not, then Cy; accepts if
and only if x =y = 2.

Case 3: 2n < I; < 3n.

C chooses a position I} — 2n < ¢ < n and communicates ¢, x;,[;. Furthermore C;
compares x with y. If x =y or x; # z; for 1 < j <I; —2n, then C; accepts. Otherwise
Crr accepts if and only if z; # z;.

The protocol uses O(n?) messages, so nmc(PART,) = O(n?).

Now, we prove that ns(PARTy) > 22. Obviously, every nfa B accepting PART,, must
have the following properties:

(i) Ly = {zzz | z € {0,1}"} C L(B), i.e. there is an accepting computation of B
on every word zzzx or z € {0,1}", and

(ii) L(B)N Ly = 0 for Ly = {zyz | z,y € {0,1}",x # y}, i.e. there is no accepting
computation of B on any word zyx with x # y, =,y € {0,1}".

We prove that every nfa satisfying (i) and (i) must have at least 2% states. Let us
assume the opposite. Let A be a nfa with fewer than 2> states that satisfies (i) and
(ii). Since L; C L(B), there exists an accepting computation C, on zzz for every
z € {0,1}". Let Pattern(C,) = (p,q), where p is the state of C, after reading = and ¢
is the state of C, after reading xx. Since the number of states is smaller than 2%, the
number of different patterns is smaller than 2" = [{0,1}|". So, there exist two words
u,v € {0,1}", u # v, such that Pattern(C,) = Pattern(C,) = (r, s) for some states
r,s. This means that starting to work from r on u as well as on v one can reach s after
reading v or v. The immediate consequence is that there are accepting computations
of B on uvu and vuv as well. Since u # v, uvu and vuv belong to Lo, a contradiction
with condition (ii). O
To find lower bound methods for ns(L) that provide results at most polynomially
smaller than ns(L) is one of the central open problems on finite automata. In the

13

following, we concentrate on lower bounds for nfa’s with constant ambiguity. Even
for unambiguous automata no nontrivial general method for proving lower bounds has
been known up to now.

To introduce our method for proving lower bounds on nfa’s with bounded ambiguity
we have to work with the communication matrices for regular languages. In Fact 5 we
have observed that every matrix My has a finite number of different rows, which is the
index s(L) of the regular language L (this means that there exists a s(L) x s(L) (finite)
submatrix M of My, such that Row(M) = Row(Mp), Rankp(M) = Rankp(My) for
every field F' with neutral elements 0 and 1, Tiling(M) = Tiling(My) and Cover(M) =
Cover(Mp)). Thus, instead of introducing the general two-way uniform communication
protocols), we define the communication complexity of L, denoted cc(L), as the
communication complexity of the best protocol for the communication matrix M.
Because of the definition of M, this approach covers the requirement that the protocol
correctly decides membership of any input to L for any prefix-suffix partition of the
input.

Before formulating the main result of this section we build our intuition about the
connection between cc(L) and uns(L). If one simulates an unambiguous automaton
by a nondeterministic one-way protocol in the standard way described above, then the
resulting protocol is unambiguous, too. This means that every one in M| is covered
by exactly one accepting computation, i.e. the unfa A determines an exact cover of
all 1’s in My, of cardinality size,. The similarity to the deterministic communication
complexity is that any such protocol determines an exact cover of all elements of the
communication matrix by monochromatic submatrices. Some nontrivial results from
communication complexity theory [KNSW94| are needed to relate cc(L) and uns(L)
via the outlined connection.

Theorem 1 For every reqular language L C 3%,
a) uns(L) > Rankg(My)

b) nsy(L) > Rankqg(Mp)'/* —1.

c) nsy(L) > 2VeD/k g

PrROOF: Let A be an optimal unfa for L. A can be simulated by a one-way nonde-
terministic protocol as follows: C; simulates A on its input and communicates the ob-
tained state. Cy; continues the simulation and accepts/rejects accordingly. Obviously
the number of messages is equal to size4 and the protocol works with unambiguous
nondeterminism.

It is easy to see that the messages of the protocol correspond to size 4 many submatrices
of the matrix My covering all ones exactly once. Hence the rank is at most size4 and
we have shown a), which is the rank lower bound on communication complexity [MS82]
(see Fact 3 in Section 2).

For b) observe that the above simulation induces a cover of the ones in M}, so that each
one is covered at most k times. By the following fact from [KNSW94] we are done:

Fact 7 Let k.(M) denote the minimal size of a set of submatrices covering the ones
of a Boolean matriz M so that each is covered at most r times. Then

14

(14 &,(M))" > Rank(M).

For the other claim again simulate A by a one-way k-ambiguous nondeterministic
protocol with size4 messages.

Results of [KNSW94| (see also [L90], [Y91]) imply that a k-ambiguous nondetermin-
istic one-way protocol with m messages can be simulated by a deterministic two-way
protocol with communication log(m* + 1) - k - log(m + 2). Thus

ce(L) <log sizet +1 -k -log(sizes + 2 Slog2 sizeq + 2)F
A

and c) follow. 0
Before giving an application of the lower bound method we point out that neither

2veel) por Rankq(My) is a lower bound method capable of proving polynomially
tight lower bounds on the minimal size of unfa’s for all languages. In the first case this
is trivial, in the second case it follows from a modification of a result separating rank
from communication complexity (see [KN97]). But the gap between Rankq (M) and
uns(L) may be bounded by a pseudo-polynomial function.

Now we apply Theorem 1 in order to present an exponential gap between ns(L) and
uns(L) for a specific regular language. Let, for every positive integer m, NID,, =

{U € {0,].}* | di : U; 75 ui+m}.

Theorem 2 For every positive integer m

(i) NID,, can be recognized by an nfa A with ambiguity O(m) and size O(m)

(ii) Any nfa with ambiguity k for NID,, has size at least 2™/* — 1, and in particular
any unfa for NID,, must have 2™ — 1 states.

(iii) No nfa with ambiguity o(m/logm) for NID,, has polynomial size in m.

PROOF:

(i) First the nfa guesses a residue ¢ modulo m, and then checks whether there is a
position p = ¢ mod m with u, # upym.

(ii) Observe that the submatrix spanned by all words v and v with u, v € {0,1}™ is the
“complement” of the 2™ x 2™ identity matrix. The result now follows from assertions
a) and b) of Theorem 1.

(iii) is an immediate consequence of (ii). O
We see that the proof of Theorem 2 is a substantial simplification of the proofs of
similar results presented in [Sc78], [SH85].

4 Degrees of Nondeterminism in Finite Automata

It is easy to see that advices(n) < leafa(n) < 20@dvicea(®)) and also that ambiga(n) <
leafs(n) for every nfa A. The aim of this section is to investigate whether stronger
relations between these measures hold.

15

Figure 2:

Lemma 2 For all nfa A either .
a) advices(n) < sizea and leafa(n) < size’** or
b) advicea(n) > n/sizea — 1 and leafa(n) > n/sizeq — 1.

PRrOOF: If some reachable state g of A belongs to a cycle in A and if ¢ has two edges
with the same label originating from it such that one of these edges belongs to the
cycle, then advicea(n) > (n — sizea)/sizea > n/sizes — 1. Otherwise for all words all
states with a nondeterministic decision are traversed at most once. O
Our next lemma relates the leaf function to ambiguity. The initial idea is that a
computation tree of any minimal unfa A on any input w could look like the tree from
Figure 2. There is exactly one path P from the root to a leaf (a computation) with
several nondeterministic guesses and all paths having only one vertex in common with
P do not contain any nondeterministic branching. In other words, if a computation
branches into two computations P; and Ps, then at least one of P; and P, should be
completely deterministic. We are not able to verify this nice structure, but the next
result shows that any computation tree of a minimal unfa A is very thin because every
level of this tree can contain at most sizey + 1 different computations.

In what follows a state ¢ of an nfa A is called terminally rejecting, if there is no word
and no computation of A, such that A accepts when starting in ¢, i.e., 0*(¢, v) contains
no accepting state for any word v. Clearly there is at most one terminally rejecting
state in a minimal automaton, because otherwise these states can be joined reducing
the size. Call all other states of A undecided.

Lemma 3 FEvery nfa A with at most one terminally rejecting state satisfies
leafa(x) < ambiga(|z| + sizeq) - |z| - sizea + 1

for all x.

16

PROOF: Let k = ambiga(|z| + sizes). If the computation tree consists only of nodes
marked with the terminally rejecting state, then the tree has just one leaf and the
claim is trivial. For the general case, consider a level of the computation tree of A on
z that is not the root level. Assume that the level contains more that & - size4 nodes
labeled with undecided states (called undecided nodes). Then one undecided state ¢
must appear at least k + 1 times on this level. There are k + 1 computations of A on
a prefix of x such that ¢ is reached. If ¢ is accepting, then the prefix of x is accepted
with £ + 1 computations, a contradiction, since ambig, is monotone. If ¢ is rejecting,
but undecided, then there is a word v of length at most size4 such that v is accepted
by some computation of A starting in ¢q. But then the prefix of x concatenated with v
is accepted by at least £ 4+ 1 computations, a contradiction.

Thus each level of the tree that is not the root level contains at most k- sizes undecided
nodes. Overall there are at most |z| - k - size4 + 1 undecided nodes.

Observe that each node has at most one terminally rejecting child. Thus the number
of terminally rejecting leaves is equal to the number of undecided nodes that have a
terminally rejecting child. Hence the number of terminally rejecting leaves is at most
the number of undecided nodes minus the number of undecided leaves. Thus the overall
number of leaves is at most the number of terminally rejecting leaves plus the number
of undecided leaves which is at most the number of undecided nodes. So overall there
are at most k - |z| - sizeq + 1 leaves. O

Theorem 3 Fvery nfa A with at most one terminally rejecting state satisfies
advices(n), ambiga(n) < leafa(n) < O(ambiga(n) - advices(n)).
FEspecially for any such unfa: advices(n) = ©(leafs(n)).

ProOOF: Observe that for all n: ambigs(n) = Q(ambiga(n + O(1))), since ambigy is
monotone and at most exponential. O
Next we further investigate the growth of the leaf function. Lemma 4 is a variation of
a result in [IR86].

Lemma 4 For every nfa A, either leafs(n) < (n - sizeq)® 4 or leafa(n) > 290,

ProOOF: Assume that an nfa A contains some state g, such that ¢ can be reentered on
two different paths starting in ¢, where each path is labeled with the same word w. It
is not hard to show that in this case there are two different paths from ¢ to ¢ labeled
with a word w of length size% — 1. Then the computation tree of uw™ (where u leads
from the starting state to ¢) has at least 2™ > 2(n—sizea)/size} Jeafs where n = |uw™|.
Now assume that A does not contain such a state. Then, for each nondeterministic state
q (i.e., a state with more than one successor for the same letter) and any computation
tree, the following holds: If ¢ is the label of a vertex v, then ¢ appears in each level of
the subtree of v at most once.

We prove by induction over the number k (k < sizey) of different nondeterministic
states in a computation tree that the number of leafs is at most (n-size4)*. The claim
is certainly true if there are no nondeterministic states.

17

Assume that there are k£ nondeterministic states, with some state ¢; appearing first in
the tree. Observe that no level in the entire computation tree contains ¢; more than
once.

For each occurrence of ¢; in the computation tree fix some child, so that the overall
number of leaves is maximized. We get a tree with one nondeterministic state less, and
by the induction hypothesis this tree has at most (n - size4)*~! leaves.

Since ¢; appears at most once on each level and since there are at most sizey children
of g1 on each level, there are at most (n - sizes)* leaves. O
Lemma 2 and 4 give us

Theorem 4 For every nfa A: leafs(n) is bounded by a constant, or is between linear
and polynomial in n, or is 290,

Now, we consider the difference between polynomial and exponential ambiguity resp.
polynomial and exponential leaf number. We show that languages which have small
automata of polynomial ambiguity are related to the concatenation of languages having
small unfa’s. If the language is a Kleene closure, then one unfa accepts a large subset.
Compare this to [GKW90], where Kleene closures are shown to be recognizable as
efficient by nfa’s with constant advice as by dfa’s.

Theorem 5 a) Let L be an infinite reqular language and A some nfa for L with
polynomial ambiguity. Then there are d < size, languages L; such that L --- Ly C L,
L; is recognizable by an unfa with O(sizey) states, and

|Ly---LgN 7|
|L N X"

= Q(1)

for infinitely many n.

b) Let L = (K#)* for a reqular language K not using the letter # and let A be some
nfa for L with polynomial ambiguity. Then, for all m, there is an unfa A" with O(size)
states that decides L' C L such that for infinitely many n

L' (X" N K)#)"|
[(Z™ N K)#)"|

PROOF: a) Define the ambiguity graph of A in the following way: the nodes are the
(reachable) states of A and there is an edge from ¢; to ¢; if there are two paths from g¢;
to ¢; in A, with the same label sequence. Note that the ambiguity graph is acyclic iff
the ambiguity of A is polynomially bounded as we have seen in the proof of Lemma 4.
Now we construct a unfa A; ; which accepts those words that lead in A from g¢; to g;
and then via one edge to g;. Here, we assume that the longest path from ¢; to g in
the ambiguity graph consists of one edge and g; is reachable from g; in A, but not in
the ambiguity graph. Moreover, we demand that there is an edge in A from ¢; to gj.
The states of A; ;) are the states reachable in A from ¢;, but not reachable in the
ambiguity graph from ¢;, plus the state ¢x. The edges are as in A except that the only
edges to g come from g¢;. g; is the start. Accepting state is g;. L;; is the language
accepted by A; ;.

= Q(1/poly(n)).

18

Now consider the words w € L N X". Each such word is accepted on some path
in A leading from ¢, to some accepting state g,. Fix one such accepting state so
that a constant fraction of all words w is accepted and make the other accepting
states rejecting. On an accepting path for w the states appear without violating the
topological ordering of the ambiguity graph. So, we may fix a sequence of states
40, Qiys - - -, qa Such that w € Lo, i, Liyigig - - L Since there are only finitely
many such sequences we are done.

b) Similar to a), we get k languages Ly, ..., Ly decidable by small unfa’s A;, such that

i9k—2,i2k—1,0"

| Ly --- Ly N (™ 0 K)#)"|
[(E™ N K)#)"|

= ()

for infinitely many n.
A partition of the letters of words in (X™#)" is given by mapping the nm letters to the k
unfa’s. There are at most (kfl) -(m+1)*¥1 possible partitions. So some partition must
be consistent with accepting paths for a fraction of 1/poly(n) of ((X™NK)#)". Fix one
such partition. Then for each words w € (X™#)™ an unfa is responsible for some prefix
u, followed by a concatenation of words of the form #X™, and finally a word of the
form #wv. For all i we fix a prefix u;, a suffix v;, and states ¢;, ¢, entered when reading
the first and final occurrence of #, such that as many words from ((X™ N K)#)" as
possible are accepted under this fixing. At least a fraction of size™* /200" = 1 /poly(n)
of (3™ N K)#)" has accepting paths consistent with this fixing.
If any A; accepts less than a polynomial fraction (compared to the projection of (3™ N
K)#)™ to the responsibility region of A;) then overall less than a polynomial fraction
is accepted. Hence one A; can be found, where from ¢; a polynomial fraction of words
in (X™ N K)#)"/* leads to non-terminally rejecting states in A;. Making one non-
terminally rejecting state reached by a # edge accepting and removing the original
accepting states yields an unfa that accepts the desired subset for infinitely many n.
O
Applying Theorem 5 we can prove an exponential gap between nfa’s and nfa’s with
polynomial ambiguity. This proof is also substantially simpler® than the proof of an
exponential gap between polynomial ambiguity and exponential ambiguity for the lan-
guage (0 + (01%)"710)* in [HLIS].

Theorem 6 There is a family of languages K Ly, such that KL, can be recognized by
an nfa with advice ©(n), leaf 2°™ and size poly(m), while every nfa with polynomial
leaf number/ambiguity needs size at least 2™ to recognize K L,,.

PROOF: Let LNDISJ,, = {x1* Ty Y1 * - Ym|Ts, ¥; encode elements from a size m3?
universe and the sets U;z; and U;y; intersect non-trivially}. Moreover, let KL,, =
(LNDIS J,#)*.

Given a polynomial ambiguity nfa for KL,,, we get an unfa accepting a fraction of
1/poly(n) of (LNDIS J,,#)" for infinitely many n by Theorem 4b). Then we simulate

31f the known results about communication complexity are for free (i.e., not included in the mea-
surement of the proof difficulty).

19

the unfa by a nondeterministic communication protocol, where player C receives all
and player C7; all y inputs. The protocol needs O(n - log size) bits to work correctly
on a 1/poly(n) fraction of (LNDIS J,,#)" and has unambiguous nondeterminism. A
result from [HS96] implies that this task needs communication 2(nm) and thus size4 >
28Hm)_ O
Thus, we have another strong separation between the size of automata with polynomial
ambiguity and the size of automata with exponential ambiguity. The situation seems to
be more complicated, if one compares constant and polynomial ambiguity. Ravikumar
and Ibarra [RI89] and Hing Leung [HL98| considered it as the central open problem
related to the degree of ambiguity of nfa’s. Here, we can only show that there is a
family KON, of languages with small size nfa’s of polynomial ambiguity, while nfa’s
of ambiguity y/m are exponentially larger. In the following theorem we describe a
candidate for a language that has efficient nfa’s only when ambiguity is polynomial.
Furthermore the language exhibits an almost optimal gap between the size of unfa’s
and polynomial ambiguity nfa’s. In the proof the rank of the communication matrix
of KON, is shown to be large by a reduction from the disjointness problem.

Theorem 7 Let KON, = {0,1}*0M,,0{0, 1}*, where M, contains all words in {0,1}*
with a number of ones that is divisible by m. KON, can be recognized by an nfa A
with ambiga(n),leafa(n) = O(n) and size m + 2, while any nfa with ambiguity k for
KON,, needs at least 2(m=V/k — 9 states.

PROOF: Since the upper bound of theorem 7 is obvious, we focus on proving the lower
bound.

Consider the communication problem for the complement of the disjointness predicate
NDISJ,. The inputs are of the form z,y € {0,1}, where z and y are interpreted
as incidence vectors of subsets of a size | universe. The goal is to find out, whether
the two sets have a nontrivial intersection. Note that the rank of the communication
matrix Myprsy, is 2" — 1. We reduce NDISJ,,_; to KON,,, i.e., identify a submatrix
of Mkon,, that is the communication matrix Myprsy,, -

Consider inputs to KON,, of the form 01 ...01™ with t < m, 0 < r;, and {ry,r; +
T 1, ¢+ --+r}=8C{l,...,m — 1} with addition over Z,,. For any subset
s C {1,...,m — 1} one can find such an input z,. These 2"~! inputs correspond to
the rows of our submatrix.

For each subset s = {s1,...,s:} C {1,...,m—1} fix an input y, of the form 01" ... 01"
with t <m,0 < r;, and {ry,ry +re,...,711+---+ 1} = {m—s1,...,m — s;}. These
2™=1 inputs correspond to the columns of our submatrix.

Now consider the obtained submatrix: if s and r intersect non-trivially, then z,y, €
KON,,. On the other hand, if s and r are disjoint, then there is no sub-word 01...10
of z,y, which has a number of ones divisible by m. So z;y, is not in KON,,. We have
identified a submatrix of rank 27! — 1. Applying Theorem 1(b) we obtain our lower
bound. O
For every constant m, the language KON,,2 of Theorem 7 can be recognized with size
O(m?), leaf number and ambiguity ©(n), and advice ©(n), while every m—ambiguous
nfa has size 2%, We conjecture that the language KON,, cannot be computed by
nfa’s with constant ambiguity and size poly(m).

20

5 Conclusions and Open Problems

We have shown that communication complexity can be used to prove lower bounds on
the size of nfa’s with small ambiguity. This approach is limited, because for nontrivial
bounds ambiguity has to be smaller than the size of a minimal nfa. Is it possible to
prove lower bounds for automata with arbitrarily large, but constant ambiguity, when
equivalent automata of small size and polynomial ambiguity exist?

In this context it would be also of interest to investigate the fine structure of languages
with regard to constant ambiguity. At best one could show exponential differences
between the number of states for ambiguity £ and the number of states for ambiguity
k+1. Observe however, that such an increase in power is impossible provided that the
size of unfa’s does not increase substantially under complementation [K00]. Analogous
questions apply to polynomial and exponential ambiguity.

Are there automata with non-constant but sub-linear ambiguity? A negative answer
establishes Theorem 3 also for ambiguity as complexity measure.

Other questions concern the quality of communication as a lower bound method. How
far can Rank resp. 2V (%) be from the actual size of minimal unfa’s? Note that the
bounds are not polynomially tight. Are there alternative lower bound methods?

Finally, what is the complexity of approximating the minimal number of states of an
nfa?

References

[AbT78] Abelson, H.: Lower bounds on information transfer in distributed compu-
tations. Proc. 19th IEEE FOCS, IEEE 1978, pp. 151-158.

[AUY83] Aho, A.V., Ullman, J.D., Yannakakis, M.: On notions of informations
transfer in VLSI circuits. Proc. 15th ACM STOC, ACM 1983, pp. 133—
139.

[DHRS97] Duri8,P. , Hromkovi¢, J. , Rolim, J.D.P., Schnitger, G.: Las Vegas versus
determinism for one-way communication complexity, finite automata, and
polynomial-time computations. Proc. STACS’97, LNCS 1200, Springer-
Verlag 1997, 117-128.

[DHS96] Dietzfelbinger, M., Hromkovi¢, J., Schnitger, G.: A comparison of two
lower bound methods for communication complexity. Theoretical Computer
Science 168 (1996), 39-51.

[GKW90] Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondetermin-
ism in regular languages. Information and Computation 86 (1990), 179-194.

[GLW92] Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity
and nondeterminism in finite automata. Information and Computation 100
(1992), 261-270.

[Hr86] Hromkovié, J.: Relation between Chomsky Hierarchy and Communication
Complexity Hierarchy. Acta Math. Univ. Com., vol. 48-49, 1986, 311-317.

21

[Hr97]

[Hr00]

[HKKOO]

[HL98]

[HS96]

[HSW97]

[IR36]

[Ji99]

[KNSW94]

[K98]

[KOO]
[KN97]

[L90]

[MS82]

Hromkovi¢, J.: Communication Complexity and Parallel Computing.
Springer, 1997.

Hromkovi¢, J.: Communication protocols: An exemplary study of the
power of randomness. In: Handbook of Randomized Computing (P. Parda-
los, S. Rajarekaran, J. Reif, J. Rolim (Eds.)), Kluwer Publ., to appear.

Hromkovi¢, J., Karhumiki, J., Klauck, H., Seibert, S., Schnitger, G.: Mea-
sures of nondeterminism in finite automata. In: Proc. ICALP 00, Lecture
Notes in Computer Science 1853, Springer-Verlag 2000, pp. 199-210.

Hing Leung: Separating exponentially amgigous finite automata from poly-
nomially ambigous finite automata. SIAM J. Computing 27 (1998), 1073~
1082.

Hromkovi¢, J., Schnitger, G.: Nondeterministic communication with a lim-
ited number of advice bits. Proc. 28th ACM STOC, ACM 1996, pp. 451—
560.

Hromkovi¢, J., Seibert, S., Wilke, T. Translating regular expressions into
small e-free nondeterministic finite automata. Proc. STACS’97, LNCS 1200,
Springer-Verlag 1997, pp. 55—66.

Ibarra, O., Ravikumar, B.: On sparseness, ambiguity and other decision
problems for acceptors and tranducers. Proc. 3rd STACS 86, Lecture Notes
on Computer Science 210, Springer-Verlag 1986, pp. 171-179.

Jirdskova, G.:Finite automata and communication protocols. In: Words,
Sequences, Grammars, Languages: Where Biology, Computer Science, Lin-
guistics and Mathematics Meet II (C. Martin-Vide, V. Mitrana, Eds.), to
appear.

Karchmer, M., Saks, M., Newman, I., Wigderson, A.: Non-deterministic
communication complexity with few witnesses. Journal of Computer and
System Sciences 49 (1994), 247-257.

Klauck, H.: Lower bounds for computation with limited nondeterminism.
Proc. 13th IEEE Conference on Computational Complexity, IEEE 1998,
pp- 141-153.

Klauck, H.: On automata with constant ambiguity. Manuscript.

Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univer-
sity Press, 1997.

Lovasz, L.: Communication Complexity: A survey. In: Paths, Flows, and
VLSI Layout, Springer 1990.

Mehlhorn, K., Schmidt, E.: Las Vegas is better than determinism in VLSI
and distributed computing. Proc. 14th ACM STOC, ACM 1982, pp. 330—
337.

22

[MF71]

[MoT1]

[M80]
[INW95]
[PS82]
[PS84]

[RISY]

[RS59]
[S80]
[Sc78|

[SHS5]

[Th79)

[Th80]

[Yo1]

[Y79]

Meyer, A.R., Fischer, M.J.: Economy of description by automata, gram-
mars and formal systems. Proc. 12th Annual Symp. on Switching and Au-
tomata Theory, 1971, pp. 188-191.

Moore, F.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic and two-way finite automata. IEEE
Trans. Computing 20 (1971), 1211-1214.

Micali, S.: Two-way deterministic finite automata are exponentially more
succinet than sweeping automata. Information Processing Letters 12 (1981).

Nisan, N., Wigderson, A.: On ranks vs. communication complexity. Com-
binatorica 15 (1995), 557-565.

Papadimitriou, C., Sipser, M.: Communication complexity. Proc. 14th
ACM STOC, ACM 1982, pp. 196—-200.

Papadimitriou, C., Sipser, M.: Communication Complexity. Journal of
Computer and System Sciences 28 (1984), pp. 260-269.

Ravimkumar, B., Ibarra, O.: Relating the type of ambiguity of finite au-
tomata to the succinctness of their representation. SIAM J. Computing 19
(1989), 1263-1282.

Rabin, M., Scott, D.: Finite automata and their decision problems. /IBM
J. Res. Development 3 (1959), 114-125.

Sipser, M.: Lower Bounds on the Size of Sweeping Automata. Journal of
Computer and System Sciences 21(2) (1980), pp. 195-202.

Schmidt, E.: Succinctness of descriptions of context-free, regular and finite
languages. Ph. D. thesis, Cornell University, Ithaca, NY, 1978.

Stearns, R., Hunt, H.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata.
SIAM J. Computing 14 (1985), 598-611.

Thompson, C.D.: Area-time complexity for VLSI. Proc. 11th ACM STOC,
ACM 1979, pp. 81-88.

Thompson, C.D.: A complexity theory for VLSI. Doctoral dissertation.
CMU-CS-80-140, Computer Science Department, Carnagie-Mellon Univer-
sity, Pittsburgh, August 1980, 131 p.

Yannakakis, M.: Expressing combinatorial optimization problems by linear
programs. Journal of Computer and System Sciences 43 (1991), pp. 223—
228.

Yao, A.: Some complexity questions related to distributed computing. Proc.
11th ACM STOC, ACM 1979, pp. 209-213.

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

23 ECCC ISSN 1433-8092
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

