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Abstract

A language is selective if there exists a selection algorithm for it. Such
an algorithm selects from any two words one, which is an element of the
language whenever at least one of them is. Restricting the complexity of
selection algorithms yields different selectivity classes like the P-selective
or the semirecursive (i.e. recursively selective) languages. A language is
supportive if k queries to the language are more powerful than k—1 queries
for every k. Recently, Beigel et al. [4] proved a powerful recursion theoretic
theorem: A semirecursive language is supportive iff it is nonrecursive. For
restricted computational models like polynomial time this theorem does
not hold in this form. Our main result states that for any reasonable com-
putational model a selective language is supportive iff it is not cheatable.
Beigel et al.’s result is a corollary of this general theorem since ‘recursively
cheatable’ languages are recursive by Beigel’s Nonspeedup Theorem [2].
Our proof is based on a partial information analysis [17, 18] of the involved
languages: We establish matching upper and lower bounds for the par-
tial information complexity of the equivalence and reduction closures of
selective languages. From this we derive the main results as these bounds
differ for different k.

We give four applications of our main theorem and the proof technique.
Firstly, the relation Ef,, (P[sEL]) € R?k_l)_tt (P[sEL]) proven in [12] still
holds, if we relativise only the right hand side. Secondly, we settle an
open problem from [12]: Equivalence to a P-selective language with k se-
rial queries cannot generally be replaced by a reduction using less than
2% — 1 parallel queries. Thirdly, the k-truth-table reduction closures of se-
lectivity classes are (m,n)-verbose [7] iff every walk on the n-dimensional
hypercube with transition counts at most k visits at most m bitstrings.
Lastly, these reduction closures are (m, n)-recursive [21] iff every such walk
is contained in a closed ball of radius n — m.
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A selector for alanguage L C ¥* is a binary function f: ¥* x¥* — ¥* such that
f(u,v) € {u,v}, and f(u,v) € L whenever u € L or v € L. Jockusch [13] coined
the term semirecursive languages for languages which have a recursive selector.
The class of semirecursive languages, denoted by REC[SEL] in the following,
plays a key role in the solution of Post’s Problem [19].
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Selman [22] introduced P-selective languages. Such languages have a polynomial
time computable selector. The class of P-selective languages will be denoted by
P[SEL], see Definitions 9 and 14 for the reasons for this notation. Selman proved
that the satisfiability problem is not P-selective, unless P = NP. This result
has been considerably strengthened by extending it to reduction closures of the
P-selective languages, see the following Facts 2 and 3.

Fact 1 ([22]). If some NP-hard language is P-selective, then NP = P.

Fact 2 ([6, 20, 1]). If some NP-hard language is sublinear truth-table reducible
to a P-selective language, then NP = P.

Fact 3 ([22, 15]). If some NP-hard language is Turing reducible to o P-selec-
tive language, then NP C P/poly.

These three facts have been a major motivation for the study of the power of
extra queries to P-selective languages. Hemaspaandra et al. [12] proved that
each extra query to the class of P-selective languages helps to decide harder
problems, see Fact 4. Following [4], we call a class of languages supportive if its
bounded Turing reduction closures form a proper hierarchy. We call it parallel
supportive if the same is true for the truth-table closures.

Fact 4 ([12]). The class P[SEL] is both polynomial time supportive and parallel
polynomial time supportive.

Recently, using recursion theoretic methods Beigel et al. proved the much more
powerful Fact 5. The complexity theoretic Fact 4 follows from an extended
version of the recursion theoretic Fact 5, see Corollary 30.

Fact 5 ([4]). A semirecursive language is supportive and parallel supportive iff
it 1s nonrecursive.

Just like Facts 4 and 5, our results hold for both serial and parallel queries.
However, due to lack of space we formulate theorems only for parallel queries in
the following. The transferal to serial queries is trivial for most computational
models, including polynomial time computations — see Fact 21 for details.

Hemaspaandra et al.’s proof of Fact 4 only shows that the class P[SEL] is par-
allel polynomial time supportive, but not that any individual language in it
is. Indeed, the languages constructed in their diagonalisation are cheatable, see
Definition 10, and thus not parallel supportive. This shows that Fact 5 cannot
be directly transferred to polynomial time, since there are P-selective languages
outside P that are not parallel polynomial time supportive.

Our main result, Theorem 28, is a generalisation of Fact 5 which holds for
both polynomial time and the recursive case. It states that for any reasonable
computational model C, a C-selective language is parallel C-supportive iff it is
not C-cheatable. As ‘recursively cheatable’ languages are recursive by Beigel’s
Nonspeedup Theorem [2], Fact 5 becomes a corollary.

This paper is organised as follows. Section 1 studies logspace selective lan-
guages and intends to motivate why the study of selectivity should not be re-
stricted to P-selectivity and semirecursiveness. We transfer Fact 1 to P-hard
and NL-hard languages, see Corollaries 7 and 8, but fail to prove transferred
versions of Facts 2 and 3, even if the reduction is restricted to a single query.



Section 2 introduces basic notations and definitions. It includes a review of the
main technical tool used in our proofs: partial information classes, a concept
proposed in [5] and studied extensively by Nickelsen [17, 18]. In Section 3 we es-
tablish matching upper and lower bounds on the partial information complexity
of languages reducible to a partial information class. Section 4 shows that for the
special case of selectivity classes these bounds are walks on a multi-dimensional
hypercube with bounded transition counts. We deduce that selective languages
are parallel supportive iff they are not cheatable, by noting that for different
transition counts these walks visit different numbers of bitstrings.

The remaining sections present applications of the main result and its proof tech-
nique. In Section 5 we prove that for every oracle A we have Ej . (P[SEL]) &
RFkA_l)_tt (PA[SEL]). This is a powerful relativisation of the corresponding unrel-
ativised relation proven in [12]. In Section 6 we settle an open problem from [12]:
There is a language which is k-Turing equivalent to a P-selective language, but
not (2F — 2)-truth-table reducible to any P-selective language.

Section 7 shows how our proof technique can be used to quantify the amount of
verboseness of reduction closures of selective languages; Section 8 does the same
for frequency computations. The verboseness of reduction closures of selective
languages has been studied implicitly in [7]. We rephrase, in terms of walks and
transition counts, the combinatorial characterisation established in [7]. This
rephrasing shows that a conjecture from [7] seems hard to prove since it implies
the existence of balanced Gray codes for arbitrary bitstring lengths.

1 Selectivity of P- and NL-Complete Problems

Selman [22] showed that the satisfiability problem is not P-selective, unless
P = NP. The proof exploits the self-reducibility of SAT and shows how a selector
can be used to decide the satisfiability of a formula in polynomial time. Two
corollaries below show that the P-complete circuit value problem and the NL-
complete directed reachability problem are not logspace selective, L-selective in
short, unless P = L and NL = L respectively.

Theorem 6. Let X be a class of languages closed under complement. If there
erists a language which is logspace many-one complete for X and L-selective,
then X C L.

Proof. Let N be a such an L-selective language. It suffices to show V € L. As X
is closed under complement and N is complete for X, we have N € X and hence
N <L N via some logspace computable reduction R. For an input u compute
v := R(u). Note that v € N iff u ¢ N. As exactly one of the words v and v is
in N, applying the postulated selector to them tells us which one is. |

As P and NL are closed under complement we get two corollaries:
Corollary 7. If the circuit value problem is L-selective, then L = P.

Corollary 8. If the directed reachability problem is L-selective, then L = NL.

We do not know whether strengthened versions of the above corollaries hold,
but conjecture that if the circuit value problem is logspace truth-table reducible
to an L-selective language with a single query, then L = P.



2 Preliminaries

We start this section with basic notations and definitions. Next, we review the
concept of partial information as introduced in [17, 18]. Finally, we state some
basic facts about truth-table reductions.

Basic Notations and Definitions. For any n, (-,...,-): (£*)" - Z* is a
tupling function computable in logspace. For a language L C ¥* and a word
w € X* the characteristic value xr(w) is defined by xr(w) := 1 if w € L, and
xr(w) := 0 otherwise. This is extended to tuples by setting xr(wi,...,w,) 1=
xr(w1)...xo(wy). Let B := {0,1}. Bitstrings of length n are elements of B".
The Cartesian product ¢y X - -+ X ¢y, : B™ — B” of functions ¢y, ..., ¢,: B¥ - B
is defined by (¢1 x --- X ¢p)(b1...by) 1= ¢1(b1)...dn(by) for b; € BX. For
¢: B" — B™ and aset P C B” the ¢-image of Pis ¢(P) := {¢(b) | b€ P}. The
Hamming distance d(b, ¢) of two bitstrings is the number of positions where they
differ. The closed ball around b of radius r is B, (b) := {c € B" | d(b,c) <r}.

A walk is a sequence of bitstrings of the same length where consecutive bitstrings
differ at exactly one position. A walk is self-avoiding, if the sequence contains
no duplicates except possibly for the first and last bitstring. If these are equal,
the walk is called a cycle. The transition sequence of a walk is the sequence of
position indices where consecutive bitstrings differ. The transition count of a
position index is its frequency in a transition sequence. An example of a walk is
001,011,010, 110, 111; its transition sequence is 2, 3, 1, 3; and the transition count
of the first two position indices is 1 and for the last position index it is 2.

Partial Information Classes. Traditionally the complexity of a language L
is measured by the amount of time or space needed to compute for words

w1, ..., W, the characteristic string xr(w1,...,w,). In a partial information
analysis, first used in [5] and put onto a firm theoretical foundation in [17, 18],
we consider witness functions f such that xr(wi,...,w,) € f(wi,...,w,) for

all words. The function f may produce whole sets of bitstrings, called n-pools
in the following. We now ask, which are the smallest and simplest pools com-
putable in, say, polynomial time for a given language L?

We will say that @) is a pool for the words wy, ..., w,, if Q) contains their char-
acteristic string. For every non-trivial language every bitstring in B™ is the
characteristic string of some appropriate words wy, ..., w,. Hence the set of all
pools which a witness function outputs must necessarily form a covering of B™,
called n-covering in the following. In this paper, we will use the following special
n-coverings:

Definition 9. Define SEL,, as the set of all chains in the Boolean algebra B™.
Such chains will be called selective pools. Phrased differently, SEL,, contains all
pools which can be written as {b1,...,bp} such that from each b; to b;+1 only
some 0’s are changed into 1’s.

Definition 10. Define m-SI1ZE, := { P CB" | |P| < m} for sizes m > 1.
Definition 11. Define CHEAT,, := n-SIZE,,.

Definition 12. Define k-WALKS,, as the set of all pools P C B"™ which are
contained in a walk with transition counts at most k.

Definition 13. Define r-FREQ, :={P|3b € B": P C B,.(b) } for radii r.



We define partial information classes for different computational models and
C will be a variable for such a model. Its only property we will use and be
interested in is its corresponding function class FC. As is customary in com-
plexity theory, the functions in this class map words to words. In the following
definition functions actually map tuples of words to pools. Since coding and
decoding of both tuples of words and pools is trivial, we will not explicitly write
down the appropriate conversions.

Definition 14. Let C denote a computational model and FC the corresponding
function class. Let D be an n-covering. Then a language L C X* is in the partial
information class C[D] (respectively Caist[D]), if there exists a witness f € FC
such that for all (distinct) words wy, ..., w, € X* we have

xL(wi,...,wy) € fwy,...,w,) €D.

The class P[SEL] is exactly the class of P-selective languages, L[SEL3] contains
the L-selective languages, and REC[SELy] contains the semirecursive languages.

Note that we require witness machines to output complete pools. One can also
consider the situation where a witness need only enumerate the output pool.
We introduce a special notation for this situation: A language is in RE[D] if
there exists a Turing machine that upon input of any n words enumerates a pool
from D for them. For example, RE[SEL,] is the class of weakly semirecursive [14]
languages and RE[m-SIZE,] is the class of (m,n)-verbose [7] languages. If a
theorem also holds for RE[D], we give a second version of it, like Theorem 28'.

A pool is called mazimal for some covering, if there exists no proper superset
of this pool in the covering.

An n-covering D is subset closed if Q C P € D implies @) € D. In the following,
we formulate theorems only for subset closed coverings. For partial information
classes in the sense of Definition 14 this is just a convenience. However, for the
classes RE[D] it makes a difference whether the enumerating Turing machine is
allowed to enumerate proper subsets of maximal pools or not. Note that all of
the special coverings we defined above are subset closed.

The arguments used in the following proofs are correct for all ‘reasonable’ FC.
Examples of reasonable function classes are FL, FP, FP/poly, FNPSVy, the class
FREC of recursive functions, and any relativisation of these classes.

Definition 15 ([24]). A computational model C and the corresponding func-
tion class FC are reasonable, if FL C FC and FC is closed under composi-
tion and tupling, i.e., if f,g € FC then fog € FC and {(f,g) € FC. Here,

(£,9) (W) := (f(w), g(w)).

The following fact motivates our liberal notation P[SEL], as it tells us that the
index is not important for selective coverings.

Fact 16 ([18, 22]). For reasonable C we have C[SELy] = C[SELs] for n > 2.

For a reasonable model C, a language will be called C-cheatable if it is in
C[cHEAT] := |J;~, C[cHEAT,] = |J,~, C[n-SIZEy]. The following fact explains
why neither the term ‘r.e. cheatable’ nor the term ‘recursively cheatable’ is used.

Fact 17 (Nonspeedup Theorem [2]). We have RE[CHEAT] = REC.



Bounded Query Reductions. Following [16], we now define the notion of
truth-table reduction for arbitrary computational models C.

Definition 18. Let C denote a computational model and FC the corresponding
function class. A language L is k-truth-table C-reducible to a language N, writ-
ten L gkc_tt N, if there exist a generator g € FC and an evaluator e € FC such
that for all words w € £* we have x.(w) = e(w,xn(q1),..-,xn(qx)). Here,
(q1,---,qr) = g(w) are the queries produced by the generator upon input w.

For a class X of languages define Ry (X) := {L|3IN € X: L<{,, N} and
Ef(X):={L|3NeXx: L<{, N,N<{, L}

Note, that for FC = FREC we require the evaluator to converge on all inputs.
We will also consider weak truth-table reductions, written L <y ¢t N. Here,
the evaluator must only converge when provided with the correct characteristic
string of the queries. As this reduction makes sense only in the recursive setting,
we omit the superscript.

Definition 19. A class X of languages is parallel C-supportive if for all k we
have Rlitt (X) ¢ R(Ck+1)-tt (X).

Fact 20 ([2]). For reasonable C no C-cheatable language is parallel C-suppor-
tive.

Due to lack of space, this paper treats only parallel queries. Fact 21 shows
that for polynomial time computations this is no loss of generality. Note, that
the fact’s proof cannot be transferred to weak truth-table reductions. The new
Lemma 22 is another example of equipotent reductions to selective languages.

Fact 21 ([12]). Let N be P-selective. Then L <Y . N iff L ggk_l)_tt N.
Lemma 22. Let N be P-selective. Then L <} N iff L <[ .. N.

Proof. We only need to prove the first direction. Assume that L <}, N via
a generator g and an evaluator e. For the parity reduction, upon input of a
word w we compute the queries ¢; generated by g. Using the selectivity of N
we compute a permutation ¢ such that XN(qa(i)) < XN (qo(i+1))- Let b; be the
bitstring where the positions o(1),...,0(i) are set to 1 and the other positions
to 0. We construct new queries as follows: Let t¢q,...,%; be the indices where
bitflips occur in the sequence e(w,by),e(w,by),...,e(w,b,). The new queries
are Gy(4,);- -, 4o(ty)- Note that k& < n. If e(w,0") = 0, we accept w iff the
parity of the answers is 1. If e(w,0™) = 1, we accept iff it is 0. O

Interestingly, the P-selective languages share the two properties stated in Fact 21
and Lemma 22 with NP-complete sets [11, 3]. As pointed out in [9], Fact 21 also
holds for non-constant numbers of queries as long as k(n) € O(logn). Likewise,
it is easily seen that Lemma 22 also holds for arbitrary k(n).

3 Upper and Lower Bounds

We now prove matching upper and lower bounds for the partial information
complexity of languages reducible to a partial information class. A special case
are selectivity classes, which will be studied in the next section. There we will
use the matching bounds to prove our main result.



To fix notations, in this section C denotes a reasonable computational model,
n, k are positive integers, and £ is a subset closed nk-covering. The n-covering D
always denotes the image of & under products of Boolean functions, defined by

Di={(g1 % x¢n)Q|QEE ¢i: B - B}.

Theorem 23 (D is Upper Bound). We have R,?_tt(C[E]) C C[D].

Proof. Let L <{.. N € C[€]. To show L € C[D] we must compute partial
information from D for any n given words wi,...,w,. As L is k-truth-table
reducible to N, for each word w; the generator yields queries g}, ..., and the
evaluator computes ¢; := e(w;,-) with ¢;(xn(g},-..qF)) = xp(w;). As N €
C[€] we can compute a pool @ € & containing xn(gt,...,qF,...,qL,...,q¢F).

Let @ = {b1,...,bm}. One of these bitstrings, say b;, is the correct value
of xn(gt,...,qF). But then (¢1 x --- x ¢,)(b;) is the correct value of the

characteristic string xr,(w1,. .., w,). Hence, the (¢1 X --- X ¢, )-image of @ is a
pool for the input words and an element of D by definition. O
Theorem 23’. We have Rj_wit (RE[E]) C RE[D].

Proof. Same as above, except that pools are enumerated, not computed. O

Under certain conditions the upper bound just established is also a lower bound,
i.e., there exists no smaller n-covering D' C D such that Rf, (C[£]) C C[D'].
The following theorem strengthens this claim in several ways. We show that
the lower bound holds for certain individual languages in C[£]. We consider
logspace equivalence closures instead of arbitrary reduction closures on the left
hand side. Finally, we use the larger class Cyist[D'] on the right hand side.

Theorem 24 (D is Lower Bound). Let N € C[E], but N & C[E'] for any
subset closed covering E' C E. Then for every subset closed covering D' C D

Ef.o(N) Z Caist[D'] and

Efiog(k+1)1.1 (V) € Caist[D'].

Proof. We argue by contraposition, starting with the truth-table reduction. Let
D' C D such that Ej . (N) C Cuiss[D’]; we must show that there exists some
&' C & such that N € C[£']. Let P € D be some maximal pool not in D'. By
definition of D there exists some maximal pool ) € £ together with functions
¢i: B¥ — B such that (¢ x --- X ¢,,)(Q) = P. Define &' := £\{Q} and note
that this is a subset closed covering.

We now show N € C[€']. Let N € C[€] via a witness f € FC. Given any
nk words wi,...,w* we must compute a pool for these words from & other
than Q. First, we compute the pool T := f(wi,...,wk) € £ Next, con-
sider N' := {(u1,...,uk, ¢,t) | ¢: B¥ = B, ¢p(xr(ur,...,up)) =1,t € S*}. It
is easily seen that N and N’ are logspace k-truth-table equivalent. We form
n distinct words z; := (w}, ..., wF, ¢;,0?). As N' € B} (N) C Caiss[D'] e can
now compute a pool R € D' such that we have xn(21,...,2,) € R. Note that
PZ Rand ReD.

We define a pool S := {b € B™ | (¢1 x --- X ¢,)(b) € R} which is the inverse
image of R. As

XN’(ZI;---;Zn) = ¢1(XN(’IU},...,’U){G)) ¢H(XN(wrlwawi))
= (d)l X X ¢n)(XN(w%aaw1k;))a



the pool S must contain the bitstring xn(wi,...,wk), since R contains the

bitstring xn+(z1,-- ., 2n). Thus S is a pool for the original words, and so is SNT.
If SNT # @, we are done, since we can then output SNT € &'. But SNT = Q is
impossible, since @ C S implies P = (¢1 X - - X @) (Q) C (1 X - - X ) (S) C R.
To complete the proof for the Turing reduction, simply note that N and N' are
also [log(k + 1)]-Turing equivalent due to Fact 21. O

Theorem 24'. Let N € RE[E], but N € RE[E'] for any subset closed covering
&' C E. Then for every subset closed covering D' C D we have

E;.(N) € REqist[D'] and
Efiog(k+1)]-7(V) Z REaig[D'].

Proof. Same as for Theorem 24, except that pools are enumerated instead of
computed. Note, that if R can be enumerated, so can S; and if S and T can be
enumerated, so can SNT. [l

4 Non-Cheatable Selective Languages are Supportive

This section applies the upper and lower bounds established in Section 3 to
selectivity classes. First, we study some combinatorial properties of images
of selective pools under products of Boolean functions, see Lemmas 25 and 26.
Next, we show that the condition N ¢ C[E'] from Theorem 24 is met for non-
cheatable N, see Lemma 27. Put together these lemmas yield Theorem 28.

Lemma 25. The images of maximal pools in SEL,; under products of k-ary
Boolean functions are ezxactly the mazimal elements of k-WALKS,,.

Proof. Let Q be maximal in SEL,;, and let ¢1,...,¢n: B* — B. In Q from one
bitstring to the next exactly one position is changed from 0 to 1. Hence, in
the image (¢1 X -+ X ¢,)(Q) also only one position can, but need not, change.
Leaving out consecutive duplicates, the image forms a walk. Note that the walk
need not be self-avoiding. Next, consider the transition count of some specific
position index . It is at most &, as a bitflip in the walk at index ¢ can occur only,
if a bitflip occurs in the pool @ at one of the positions used by the function ¢;
—and ¢; uses only k positions. Vice versa, it is easily seen that every walk with
transition counts at most k is the image of some selective pool. |

Intuitively, if we allow larger transition counts we get longer walks. The follow-
ing lemma states that this is, indeed, correct.

Lemma 26. Let nk+ 1 < 2". Then k-WALKS,, C (k + 1)-WALKS,,.

Proof. Let by,...,b, € B™ be a walk with transition counts at most k visiting
a maximum number of bitstrings. As m < nk + 1 < 2" there must exist
some bitstring b € B™ not visited. We extend the walk from b, as follows:
From b,, to by, +1 we change the first position where b,, and b differ. Likewise
from by41 to biy4o for the second position and so on. This yields a walk

bi, -3 bm,bmtt, -+ bnga(s,, ) = b- This new walk visits at least one bitstring
more than the old walk, namely b, and has transition counts at most k+1. Hence
{b1,. .., bmsd(o,,p) } € (k+ 1)-WALKS,, \k-WALKS,. O

Lemma 27. Let C be reasonable and &' C SELyy, be subset closed. Then C[E']
contains only C-cheatable languages.



Proof. Let L € C[€']. For input words wy, . . ., wn compute pools P, € £ for all
permutations o of these words. Each P, induces a pool @, for the unpermuted
input words. Since £’ misses a maximal selective pool, one of the ), has a size at
most nk. Thus, the intersection of the (), has size at most nk. This intersection
is a pool for the input words since all ), are. Thus, L € C[CHEAT]. O

Lemma 27’. Let &' C SELyy, be subset closed. Then RE[E'] C RE[CHEAT ;).

Theorem 28. Let C be reasonable. Let N be a C-selective, non-C-cheatable
language. Then N is parallel C-supportive. Furthermore,

Ey; tt( ) Z R, (k—1) 4t (C[SEL]) and
(V) Z RGx_ )4 (CISEL]).

Proof. We start with By (N) € R4 (C[SEL]). Pick some n large enough
such that n(k — 1) + 1 < 2™. Because of Lemma, 27, we can apply Theorem 24
to N. It states that the smallest subset closed n- coverlng D for which E_,(N) C
C[D] is k-WALKS,. By Theorem 23 the class R(k 1)1t (C[sEL]) is contained
in C[(k —1)-WALKS,,]. If we had Ef (N) C R(k 1)- ¢ (C[SEL]) then the class
Ej .. (N) would be contained in C[(k — 1)-WALKS,,]. As D is minimal, we would
get (k — 1)-WALKS,, = k-WALKS,, contradicting Lemma 26.

For Turing reductions, repeat the argument for k' := 2¥ — 1.

Since Ej_,(N) C RS, (NV), the language N is parallel C-supportive. O
Theorem 28’. Let N be weakly semirecursive and nonrecursive. Then

EI,;_tt (N) € R(g—1)-wtt (RE[SEL]) and

E;r(N) ¢ R(2%_2)-wtt (RE[SEL]).
Proof. The proof is the same as the proof of Theorem 28, except for the addition
that by the Nonspeedup Theorem we have RE[CHEAT] = REC. O

5 Application 1: A Powerful Relativisation

Hemaspaandra et al. [12] proved the relation E{y, ) (P[SEL]) € R}y, (P[SEL]).
From this, one easily deduces that P[SEL] is parallel polynomial time supportive.
We show that the relation still holds, if we relativise only the right hand side.

Theorem 29. Let A be an oracle. Then E(k+1) «t(P[SEL]) € Rk o (PA[SEL]).

Proof. Fix the oracle A. We wish to apply Theorem 28 with ¢ = P4. In order
to do so, we must find a P-selective language N that is not PA-cheatable. The
class P[SEL] is uncountable due to an argument of McLaughlin and Martin, see
[13] and [23]. But the class PA[CHEAT] is countable by a relativised version of the
Nonspeedup Theorem. Hence, there exists a language N € P[SEL]\ PA[CHEAT].
For this N, Theorem 28 tells us that Efp1).u(V) € RPY, (PA[SEL]) and hence
Efkﬂ)-tt (P[sEL]) € R 1 (P4[sEL]). O
Corollary 30. Let C be reasonable and FC countable. Then

C[seL] € Ry, (C[sEL]) € RSy (ClsEL)) € ...,

C[SEL] € R Larity (CISEL]) € RS paniey (C[SEL]) € ...,

and likewise for the equivalence closures.



Proof. Using a dovetail argument, it is easily seen that FC C FREC# for some
oracle A. The truth-table hierarchy now follows from the same argument as in
the proof of Theorem 29: There are uncountably many C-selective languages,
but only countably many REC“-cheatable languages. The parity hierarchy fol-
lows from Lemma 22. O

Note that there also exist hierarchies of the Turing reduction closures for all
computational models for which Fact 21 holds. Furthermore, a modification of
our proofs shows that the Turing hierarchy is proper also in a recursive setting.

6 Application 2: Serial versus Parallel Queries

Fact 21 tells us that if we simulate serial queries to a P-selective language
by parallel queries, we cannot avoid an exponential increase in the number
of queries. In [12] Hemaspaandra et al. ask whether perhaps we have at least
Ej, 1 (P[SEL]) C R{5x_5) 4 (P[SEL]). This is not the case. Using the same argu-
ments as in the proof of Theorem 29, we even get the following theorem.

Theorem 31. Let A be an oracle. Then Ej_1(P[SEL]) € RFQ:_Q)_M (PA[SEL]).

7 Application 3: Verboseness

The languages in RE[m-SIZE,] are called (m,n)-verbose and the languages in
REC[m-SIZE,| strongly (m,n)-verbose [7]. Every language is (2", n)-verbose. If
a language is not (2" — 1,n)-verbose, it is called n-superterse [7].

Theorem 32. Let C be reasonable, FC C FREC and let m,n,k be positive
integers. Then the following statements are equivalent:

1. All languages in Ef i (C[SEL]) are (m,n)-verbose.
2. All languages in Ry, (C[SEL]) are (m,n)-verbose.

3. Every walk on B™ with transition counts at most k visits at most m bit-
strings.

Proof. Statement 2 trivially implies statement 1. Statement 3 implies state-
ment 2, since R{, (C[SEL]) C REC[k-WALKS,] by Theorem 23. Statement 1
implies statement 3, since by the same argument as in Theorem 28’ the cover-
ing k-WALKS,, is the smallest covering D such that Ry . (C[sEL]) C RE[D]. If
we also have R i, (C[SEL]) C RE[m-SIZE,], we get k-WALKS,, C m-SIZE,. O

The above theorem reduces the problem of quantifying the amount of verbose-
ness of reduction closures of selectivity classes to the purely combinatorial prob-
lem of finding walks visiting a maximum number of bitstrings. The following
fact gives an easy upper bound on this number. Beigel et al. [7] conjecture that
the bound is tight for all k£ for which nk < 27, and they prove this for k < 7.
Lemma 34 shows that the bound is also tight for k¥ = 2"/n and n = 2". The
situation where n is not a power of 2 is discussed, but not fully solved, in [8].

Fact 33 ([7]). Every walk on B™ with transition counts at most k visits at most
nk + 1 bitstrings for odd k and nk bitstrings for even k.

Lemma 34. For n =2" and r > 1 we have (2"/n)-WALKS,, € (2" — 1)-SIZE,,.
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Proof. Wagner and West [25] proved that for n = 2" there exists a balanced n-bit
Gray code. But such a code is a self-avoiding n-bit cycle that has transition
counts exactly 2"/n. O

Corollary 35. Let n = 2" for some r > 1. Then there exists an n-superterse
language in EIin/n-tt (L[SEL]), but none in R?Q]E?n_l)_tt (REC[SEL]).

8 Application 4: Frequency Computations

The languages in RECqist[(n — m)-FREQy,] are called (m,n)-recursive [21]. For
them, for any n distinct words a bitstring can be computed that agrees with
their characteristic string on at least m positions. Arguing as in the previous
section for Theorem 32 we get the following theorem.

Theorem 36. Let C be reasonable and FC C FREC. Then the following state-
ments are equivalent for 0 <m <n and k > 1:

1. All languages in Bf . (C[SEL]) are (m,n)-recursive.

2. All languages in R . (C[SEL]) are (m,n)-recursive.

3. Every walk on B™ with transition counts at most k is contained in a closed
ball of radius n — m.

The following lemma gives loose upper and lower bounds for &k from the above
theorem in terms of the covering number k(n,r). It is the smallest number of
closed balls of radius r needed to cover B™. Except for some special cases [10],
only upper and lower bounds are known for the covering number.

Lemma 37. For 0 <m < n let k :=k(n,m —1) — 1. Then

K-WALKS, € (n — m)-FREQ,,

—1
V J -WALKS,, C (n — m)-FREQ,.
n

Proof. For the first claim, we present a walk on B™ with transition counts at
most k£ whose complement does not contain a closed ball of radius m — 1 and
which is hence not contained in a closed ball of radius n — m. Let by, ...,
bi(n,m—1) be bitstrings such that By,_1(b1), ..., Bm—l(bk(n,mq)) cover B™.
Consider a walk starting at b,. To get from by to b we only need to change every
position at most once. Likewise from b2 to bs and so on. We get a walk visiting
all b; with transition counts at most k. As every ball B,,_1(b) contains at least
one b;, the complement of the constructed walk does not contain any B,,,_1(b).
For the second claim let by, ..., by be an arbitrary walk with transition counts
at most (k — 1)/n. It visits at most n(k — 1)/n + 1 = k many bitstrings. We
claim that the complement of the walk contains a ball of radius m — 1. If this
were not the case By,—1(b1), ... , Bm—1(be) would cover B™ which is impossible
since £ < k < k(n,m — 1). O
Corollary 38. There exists a language in El(k(n,m—1)—1)-tt (L[SEL]) which is not
(m, n)-recursive, while all languages in RﬁE?n,m_l)_Q)/nJ -+ (REC[SEL]) are.

As k(2r + 1,7 — 1) = 7 by [10], for all r there exists a language which is 6-tt
L-equivalent to an L-selective language, but not (r,2r + 1)-recursive. For an-
other example, since k(23,3) = 4096 by [10], every language reducible to a
semirecursive language asking 178 truth-table queries is (4, 23)-recursive.
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