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Abstract

A language is selective if there exists a selection algorithm for
it. Such an algorithm selects from any two words one, which is an
element of the language whenever at least one of them is. Restrict-
ing the complexity of selection algorithms yields different selectivity
classes like the P-selective or the semirecursive (i.e. recursively selec-
tive) languages. Generalising a concept introduced by Beigel et al. [4]
we define the selective query complezity of a language as the minimum
number of queries to any selective language needed to decide it. Our
main result shows that the logspace k-truth-table equivalence closure
of every selective, non-cheatable language has parallel selective query
complexity exactly k. We rephrase this result in terms of the lan-
guage ODDY = {(w1,...,wy) | ZfZIXN(wi) is odd} and obtain the
following generalisation of an important recursion theoretic result of
Beigel et al. [4]: For selective, non-cheatable sets IV the parallel selec-
tive query complexity of ODDY is exactly k. Our proofs are based on
a partial information analysis [20, 21] of the involved languages: We
establish matching upper and lower bounds for the partial information
complexity of the different equivalence and reduction closures of selec-
tive languages. From this we derive the main results as these bounds
differ for different numbers of queries.

We give four applications of our main theorem and the proof tech-
nique. First, the relations Ei  (P[SEL]) € R{;_;).(P[SEL]) and
Ef, (P[SEL]) € Riy, (P[SEL]) proven in [14] still hold if we relativise
only the right hand sides. Second, we settle an open problem from [14]:
Equivalence to a P-selective language with k serial queries cannot gen-
erally be replaced by a reduction using less than 2¥ — 1 parallel queries.
Third, the k-truth-table reduction closures of selectivity classes are
(m,n)-verbose [7] iff every walk on the n-dimensional hypercube with
transition counts at most k visits at most m bitstrings. Lastly, these
reduction closures are (m,n)-recursive [24] iff every such walk is con-
tained in a closed ball of radius n — m.
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A selector for a language L C ¥* is a binary function f: ¥* x ¥* — ¥* such that
flu,v) € {u,v}, and f(u,v) € L whenever u € L or v € L. Jockusch [15] coined
the term semirecursive languages for languages which have a recursive selector. The
class of semirecursive languages, denoted by REC[SEL] in the following, plays a key
role in the solution of Post’s Problem [22].

Selman [25] introduced P-selective languages. Such languages have a polynomial
time computable selector. The class of P-selective languages will be denoted by
P[sEL], see Definitions 7 and 8 for the reasons for this notation. Selman proved that
the satisfiability problem is not P-selective unless P = NP. This result has been
considerably strengthened by extending it to reduction closures of the P-selective
languages, see the following Facts 2 and 3.

Fact 1 ([25]). If some NP-hard language is P-selective, then NP = P.

Fact 2 ([6, 23, 1]). If some NP-hard language is sublinear truth-table reducible to
a P-selective language, then NP = P.

Fact 3 ([25, 17]). If some NP-hard language is Turing reducible to a P-selective
language, then NP C P/poly.

Let us call a language L-selective if it has a logspace computable selector. An easy
transfer of a result of Selman [25, Theorem 2] shows that L-selective languages are
in L if they are logspace many-one reducible to their complements. Since the circuit
value problem and the directed reachability problem are logspace many-one reducible
to their complements, we can transfer Fact 1 to logspace. We do not know whether a
logspace version of Fact 2 also holds, but conjecture that if the circuit value problem
is logspace 1-truth-table reducible to an L-selective language, then L = P.

Observation 4. If the circuit value problem is L-selective, then L = P.

Observation 5. If the directed reachability problem is L-selective, then L = NL.

Facts 1 to 3 have been a major motivation for the study of the power of extra queries
to P-selective languages. Observations 4 and 5 suggest that this study could be ex-
tended to L-selective languages. The underlying theme of this paper is that eztra
queries to selective languages are helpful. In order to state this more precisely we
propose the notion of selective query complexity as a generalisation of the semire-
cursive query complexity defined in [4]. For ‘reasonable’ computational models C
the (parallel) C-selective query complexity of a language L is the minimum number,
taken over all C-selective sets N, of (parallel) queries to N needed in order to de-
cide L. For example, by Fact 2 the P-selective query complexity of NP-hard problems
is infinite unless P = NP.

Hemaspaandra et al. [14] have constructed for every k a language in the k-truth-
table reduction closure of P[seL] which has parallel P-selective query complexity
exactly k. From this they derive that the polynomial time truth-table reduction
closures of P[seL] form a proper hierarchy. Using recursion theoretic methods Beigel
et al. proved the following much more powerful fact:



Fact 6 ([4]). Let N be semirecursive and non-recursive. Then ODDY has parallel
semirecursive query complexity exactly k.

Here, ODDkN = {(wr,...,wg) | ZfZIXN(wi) is odd} is similar to the parity func-
tion, which has been studied extensively in the contexts of circuit complexity [12, 9],
pseudorandomness [13] and also quantum computing [11]. Note that Hemaspaandra
et al.’s result follows from Fact 6 as there exist P-selective, non-recursive sets N and
ODD,ZCV is trivially reducible to N with k parallel queries.

Fact 6 does not hold for resource bounded computational models as there exist
P-selective languages N outside P which are cheatable [2], see Definition 10. For
cheatable languages ODDkN has parallel P-selective query complexity less than k for
large k, see the remark following Definition 10. So the best result one could hope
for is that for P-selective, non-cheatable languages N the parallel P-selective query
complexity of ODDkN is exactly k for all k. This is exactly the claim of Theorem 23,
which is an equivalent formulation of our main Theorem 20. It turns out that Fact 6
is a special case of Theorem 23 as ‘recursively cheatable’ languages are recursive by
Beigel’s Nonspeedup Theorem [2].

This paper is organised as follows. Section 1 introduces basic notations and defi-
nitions. It includes a review of the main technical tool used in our proofs: partial
information classes, a concept proposed in [5] and studied extensively by Nickelsen
[20, 21]. In Section 2 we establish matching upper and lower bounds on the partial
information complexity of languages truth-table reducible to a partial information
class. Section 3 shows that for the special case of selectivity classes these bounds are
walks on a hypercube with bounded transition counts. We deduce the main results
by noting that for different transition counts these walks visit different numbers of
bitstrings. In Section 4 we reformulate our main Theorem 20 equivalently in terms
of the selective query complexity of ODD{CV , obtaining Theorem 23.

The concluding Section 5 presents applications of }he main result and its proof tech-
nique. First, we prove that Ep . (P[sEL]) € R?k_l)_tt (PA[seL]) and Eg; (P[seL]) ¢
Riy, (PA[seL]) for all oracles A. These are powerful relativisations of the corre-
sponding unrelativised relations proven in [14]. Second, we settle an open problem
from [14]: There is a language which is k-Turing equivalent to a P-selective language,
but not (2¥ —2)-truth-table reducible to any P-selective language. Third, we quantify
the amount of verboseness of reduction closures of selective languages and, lastly,
we do the same for frequency computations. The verboseness of reduction closures
of selective languages has been studied implicitly in [7]. We rephrase, in terms of
walks and transition counts, the combinatorial characterisation established in [7].
This rephrasing shows that a conjecture from [7] seems hard to prove as it implies
the existence of balanced Gray codes for arbitrary bitstring lengths.

1 Preliminaries

We start this section with basic notations and definitions. Then we review the
concept of partial information as introduced in [20, 21]. Finally, we state some basic
facts about truth-table reductions.



Basic Notations and Definitions. For every n, (-,...,): (£*)” — £* is a tu-
pling function computable in logspace with an inverse also computable in logspace.
For a language L C ¥* and a word w € ¥* the characteristic value xr(w) is defined
by xr(w) :=1if w € L, and xr(w) := 0 otherwise. This is extended to tuples by
setting xr(wi,...,wy) := xn(w1) ... x(wy). Let B :={0,1}. Bitstrings of length n
are elements of B". The Cartesian product ¢; X --- X ¢p: B — B" of func-
tions ¢1,...,dn: B¥ — B is defined by (¢1 X +++ X ¢p)(b1-..bp) := ¢1(b1) ... dn(bp)
for b; € B¥. For ¢: B — B™ and a set P C B" the ¢-image of P is $(P) :=
{#(b) | be P}. The Hamming distance d(b,c) of two bitstrings is the number of
position indices where they differ. The closed ball around b € B™ of radius r is
B,(b) :={ceB" | d(b,c) <r}.

A walk is a sequence of bitstrings of the same length where consecutive bitstrings
differ at exactly one position. A walk is self-avoiding if the sequence contains no
duplicates except possibly for the first and last bitstring. If these are equal the walk
is called a cycle. The transition sequence of a walk is the sequence of position indices
where consecutive bitstrings differ. The transition count of a position index is its
frequency in a transition sequence. An example of a walk is 001,011,010,110,111;
its transition sequence is 2,3, 1, 3; the transition count is 1 for the first two position
indices and 2 for the last position index.

Partial Information Classes. Traditionally the complexity of a language L is
measured by the amount of time or space needed to compute for words wi, ..., wn,
the characteristic string xr(w1,...,wy). In a partial information analysis 20, 21]
we consider witness functions f such that xp(wi,...,w,) € f(wi,...,w,) for all
words. The function f may produce whole sets of bitstrings, called n-pools in the
following. We now ask, which are the smallest and simplest pools computable in,
say, polynomial time for a given language L7

We will say that @ is an n-pool for the words w1, ..., w, if () contains their character-
istic string. For every non-trivial language every bitstring in B is the characteristic
string of some appropriate words wi,...,w,. Hence the set of all pools which a

witness function outputs must necessarily form a covering of B", called n-covering
in the following. In this paper, we will use the following special n-coverings:

Definition 7. Let sEL, be the set of all n-pools which can be written as {b1,...,bp}
such that from each b; to b;41 only some 0’s are changed into 1’s. Let m-sizg, :=
{P CB"| |P| <m} for sizes m > 1. Let CHEAT,, := n-S1zZE,. Let k-wWALKS;, be the
set of all pools P C B™ which are contained in a walk with transition counts at
most k. Let r-FREQp, := {P | Ib € B": P C B,(b) } for radii r.

A pool is mazimal for a covering if there exists no proper superset of this pool in
the covering. An n-covering D is subset closed if Q C P € D implies Q € D. Note
that all of the special n-coverings just defined are subset closed.

We define partial information classes for different computational models and C will

be a variable for such a model. The arguments used in the following proofs are correct
for all ‘reasonable’ C. In this paper a model will be called reasonable if it is L, P or



REC or a relativisation of one these models — see [27] for a much broader definition.
The only property of a computational model C we will use and be interested in is
the corresponding function class FC from which we can draw the witness functions.
Although the functions in FC map words to words as is customary, in the following
definition functions actually map tuples of words to pools. Since coding and decoding
of both tuples of words and pools are trivial, we will not explicitly write down the
appropriate conversions.

Definition 8. Let C denote a computational model and FC the corresponding func-
tion class. Let D be an n-covering. A language L C 3* is in the partial information
class C[D] (respectively Cgigt[D]) if there exists a witness function f € FC such that
for all (distinct) words wy, ..., w, € ¥* we have

xr(wi,...,wp) € f(wi,...,wy) €D.

Note that we require witness machines to output complete pools. One can also
consider the situation where a witness machine need only enumerate the output
pool. We introduce a special notation for this situation. A language is in RE[D] if
there exists a Turing machine that upon input of n words starts a possibly infinite
computation. During the computation it writes bitstrings to an output tape such
that the set of written bitstrings forms a pool P € D for the input words. For
example, RE[m-s1ZE,] is the class of (m,n)-verbose [7] languages. If a theorem also
holds for RE[D] we give a second version of it, like Theorem 20'.

The class P[SELg] is exactly the class of P-selective languages: If g € FP is a selector
for a language N and u and v are words, then g(u,v) = u iff xn(u,v) € {00,10,11}
and g(u,v) = v iff xy(u,v) € {00,01,11}. Thus we can trivially turn a P-selector into
a witness function for N € P[sELg] and also the other way round. Likewise, L[SELg]
is the class of L-selective languages, REC[SEL2] the class of semirecursive languages
and RE[SELg] the class of weakly semirecursive [16] languages.

The following fact motivates our liberal notation P[SEL] as it tells us that the index
is not important for selective coverings.

Fact 9 ([21, 25]). Let C be reasonable. Then C[SEL,| = C[SELg] for n > 2.

Definition 10. Let C be reasonable. The languages in C[cHEAT| := | J;2 | C[CHEAT}]
will be called C-cheatable.

Cheatable languages have an important property [2]: For languages L € C[CHEAT,,]
every truth-table reduction to L using more than n queries can be replaced by a
truth-table reduction using only n — 1 queries. In other words, starting from n — 1
extra queries to n-cheatable languages do not help.

The following fact explains why neither the term ‘r.e. cheatable’ nor the term ‘re-
cursively cheatable’ is commonly used.

Fact 11 (Nonspeedup Theorem [2]). RE[cHEAT| = REC.



Bounded Query Reductions. The following definition of truth-table reductions
for reasonable computational models C is along the lines of [19].

Definition 12. Let C denote a computational model and FC the corresponding
function class. A language L is k-truth-table C-reducible to a language N, written
L g,g_tt N, if there exist a generator g € FC and an evaluator e € FC such that for
all words w € %* we have xr(w) = e(w,xn(q1,---,qx)). Here, (g1,...,qx) = g(w)
are the queries produced by the generator upon input w.

For a class X of languages we define Rf, (X) := {L|3IN € X: L<{, N} and
E¢.(X):={L|3Nex: L<{ N,N<{ L}

Note that for C = REC we require the evaluators to converge on all inputs. One can
also consider weak truth-table reductions, written L <j_ ¢t N, where an evaluator has
to converge only when provided with the correct characteristic string of the queries.
As this reduction makes sense only in the recursive setting we omit the superscript.

Definition 13. Let X be a class of languages and C a computational model. We
define the parallel C-selective query complezity of X as the minimum number &k such
that X C Rf,(C[seL]) and as infinity if no such number exists.

The following fact shows that polynomial time truth-table and Turing reducibility
to a P-selective language are in some sense interchangeable. The proof is easily
transferred to most computational models, but note that Fact 14 does not hold for
weak truth-table reductions.

Fact 14 ([14]). Let N be P-selective. Then L <. N iff L gf;kfl)_tt N.

2 Upper and Lower Bounds

We now prove matching upper and lower bounds for the partial information complex-
ity of languages reducible to a partial information class. A special case are selectivity
classes, which will be studied in the next section. There, we will use the matching
bounds to prove our main result.

To fix notations, in this section C' denotes a reasonable computational model and
n, k,r are positive integers. For every nk-covering £ the n-covering &+t denotes the
image of € under products of k-ary Boolean functions, defined by

ke = {($1 % - x 64)(Q) | Q € €, ¢i: B — B}.

Theorem 15 (Upper Bound). Let £ be an nk-covering. Then RC,, (C[E]) C
C[gk-tt]-

Proof. Let L <¢.. N € C[€]. Toshow L € C[&.;] we must compute partial informa-
tion from &4 for any n given words wi,...,w,. As L is k-truth-table reducible
to N, for each word w; a generator g yields queries <qz~1, ... ,qf) = g(w;) and the cor-
responding evaluator e computes ¢; := e(w;,) with ¢ (xn (g}, ..., qF)) = xr(w;).
As N € C[€], we can compute a pool @ € £ containing xn(q1,...,¢%,...,¢,...,q%).



Let @ = {b1,...,b,}. One of these bitstrings, say b;, is the correct value of
xn(gl,...,q%). But then (¢ x --- x ¢n)(b;) is the correct value of the charac-
teristic string xr(wi,...,w,). Hence, the (¢1 X -+ X ¢,)-image of @ is a pool for
the input words and an element of £ 1 by definition. O

Theorem 15’. Let £ be an nk-covering. Then Ry _wit (RE[E]) C RE[Ek1t)-

Proof. Same as above, except that pools are enumerated, not computed. O

Under certain conditions the upper bound just established is also a lower bound,
i.e., there exists no smaller n-covering D ¢ &y such that R, (C[E]) C C[D).
The following theorem strengthens this claim in several ways. We show that the
lower bound holds for certain individual languages in C[€]. We consider logspace
equivalence closures instead of arbitrary reduction closures on the left hand side.
Finally we use the slightly larger class Cgig[D] on the right hand side.

Theorem 16 (Lower Bound). Let £ be a subset closed nk-covering. Let N €
CIE], but N ¢ C[E"] for all subset closed coverings E' C £. Then By (N) € Caist[D]
for all subset closed coverings D C Ey 4.

Proof. We argue by contraposition. Let D C & ¢ and Ek_tt(N ) C Cuist[D]. We must
show that there exists some £ C & such that N € C[E']. Let P € &.4+\D be some
maximal pool. By definition of &_i; there exists some maximal pool @) € £ together
with functions ¢;: B¥ — B such that (¢; x -+ x ¢,)(Q) = P. Define & := £\{Q}
and note that this is a subset closed covering.

We now show N € C[€']. f N = () or N = X* this is trivial. Otherwise let
N € C[€] via a witness function f € FC. Given any nk words wi,...,wf we must
compute a pool for these words from & other than (). First, we compute the pool
T := f(wi,...,wk) € £ Next, consider

NI = {<U1,...,Uk,¢,t> |¢ Bk _>]B’¢(XN(U177UIC)) = l’te 2*}’

which is logspace k-truth-table equivalent to N as N # (), X*. We form n distinct
words z; 1= <wi1, e wk ¢, 0i>. As N' € B, (N) C Cyist[D] we can now compute a
pool R € D such that xys(21,...,2,) € R. Note that P ¢ R and R € 4.

Let S:={beB"™ | (1 X -+ X ¢,)(b) € R} be the preimage of R. As

XN’(zla"'azn) = ¢1(XN(w%,'--7wllc)) "'¢n(XN(wi,'--7wﬁ))
= (¢1 X X ¢n)(XN(w%aawa))a

the pool S must contain the bitstring x (w1, ..., wk) since R contains the bitstring

XN’ (#1,---,2n). Thus S is a pool for the original words, and so is SNT. If SNT # Q
we are done since we can then output SNT € £. But SNT = @ is impossible,
since @ C S implies P = (¢1 X -+- X ¢, )(Q) C (d1 X -+ X ¢p,)(S) C R, contradicting
P ¢ R. O

Theorem 16’. Let £ be a subset closed nk-covering. Let N € RE[E], but N ¢ RE[E']
for all subset closed covering &' C E. Then EX,(N) € REqist[D] for all subset closed
coverings D C E.t-



Proof. Same as for Theorem 16 except that pools are enumerated instead of com-
puted. Note that if R can be enumerated, so does S; and if S and T' can be enumer-
ated, so does SNT. O

3 Selective Query Complexity of Equivalence Closures

This section applies the upper and lower bounds established in Section 2 to selectiv-
ity classes. First, in Lemmas 17 and 18 we study some combinatorial properties of
images of selective pools under products of Boolean functions. In Lemma 19 we show
that the condition N & C[E'] from Theorem 16 is met for non-cheatable languages N.
Put together these lemmas yield our main Theorem 20 on the selective query com-
plexity of logspace equivalence closures of selective, non-cheatable languages.

Lemma 17. The images of mazimal pools in SELy, under products of k-ary Boolean

functions are exactly the mazimal elements of k-WALKS,,, i.e., (SEL”k)k-tt = k-WALKSy,.

Proof. Let QQ be maximal in SEL,; and let ¢1,...,¢,: B¥ — B. In Q from one
bitstring to the next exactly one position is changed from 0 to 1. Hence, in the
image (¢1 X -+ X ¢,)(Q) from one bitstring to the next also at most one position
can change. Leaving out consecutive duplicates the image forms a walk. Note that
the walk need not be self-avoiding. Consider the transition count of some specific
position index i. It is at most k, as a bitflip in the walk at index ¢ can occur only if
a bitflip occurs in the pool @} at one of the k positions used by the function ¢;. For
the other direction it is easily seen that every walk with transition counts at most k

is the image of some selective pool. O
Lemma 18. Let nk+1 < 2". Then k-WALKS, C (k + 1)-WALKS,.
Proof. Let by,...,b, € B" be a walk with transition counts at most k visiting a max-

imal number of bitstrings. As m < nk+1 < 2" there must exist some bitstring b € B"
not visited. We extend the walk from by, as follows: From b, to b,+1 we change
the first position where b, and b differ. Likewise from b,,+1 to b,,4+2 for the second
position and so on. This yields a walk b1, ..., bm, bmt1,- - -, bnyd(s,,,p) = 0- This new
walk visits at least one bitstring more than the old walk, namely b, and has transition
counts at most k + 1. Hence {b1,...,bmiap. s} € (k4 1)-WALKS, \k-WALKs,. O

Lemma 19. Let C be reasonable and &' C SEL,y be subset closed. Then C[E'] con-
tains only C-cheatable languages.

Proof. Let L € C[€']. For input words wy,...,w,, compute pools P, € & for all
permutations o of these words. Each P, induces a pool (), for the unpermuted input
words. Since £ misses a maximal selective pool, one of the Q, has a size at most nk.
Thus, the intersection of the ), has size at most nk. This intersection is a pool for the
input words as all @, are. Thus, L € C[(nk)-s1zE,x] = C[CHEAT,;] C C[cHEAT]. [

Lemma 19’. Let &' C SELy; be subset closed. Then RE[E'] C RE[CHEAT].

The following theorem is our main result.

Theorem 20. Let C be reasonable. Let N be any C-selective, non-C-cheatable lan-
guage. Then Ep  (N) € R(C,;_l)_tt(C[SEL]), i.e., Ep . (N) has parallel C-selective
query complexity exactly k.



Proof. Pick an n large enough such that n(k—1)+1 < 2". Because of Lemma 19 we
can apply Theorem 16 to N. It states that the smallest subset closed n-covering D
with Ep  (N) C C[D] is D = (SELnk), kyr Which is k-waLks, by Lemma 17. By
Theorem 15 the class R(k - « (C[sEL]) is contained in C[(k — 1)-wALks,]. Hence,
if we had B}, (N) C R(k 1)- . (C[seL]) then Ef  (N) C C[(k — 1)-wALKS,] and as D
was minimal we would get (K — 1)-WALKS,, = k-WALKS,,, contradicting Lemma 18. O

Theorem 20’. Let N be any weakly semirecursive, non-recursive language. Then
E%-tt (N) ,@ R(k—l)-wtt (RE[SEL]) .

Proof. The proof is the same as the proof of Theorem 20, except for the addition
that by Fact 11 we have RE[cHEAT] = REC. O

Corollary 21. Let C be reasonable and FC countable. Then
ClseL] ¢ R?—tt(C[SEL]) G Rg—tt(C[SELD G-

and likewise for the equivalence closures.

Proof. Provided there exists a C-selective, non-C-cheatable language N Theorem 20
states that for all k£ we have EL . (N) € RS (k—1)- . (C[sEL]) and hence R{ ,, (C[sEL]) €

R(k 1) L (ClseL]) and Ef , (C[sEL]) Z EG (e—1)- tt(C’[SEL]) However, such a language N
exists for countable FC: Using a dovetall argument, it is easily seen that FC C FRECA
for some oracle A. By a relativised version of the Nonspeedup Theorem the class

REC4[cHEAT] is countable. But even L[SEL] is uncountable by a construction due to
McLaughlin and Martin [15, 26]. O

Note that there also exist hierarchies of the Turing reduction closures for all com-
putational models for which Fact 14 holds.

4 Selective Query Complexity of ODD;@V

We now show that the selective query complexity of ODDkN is exactly k for selective,
non-cheatable N, thus generalising Fact 6. The proof uses the following Fact 22,
which is easily transferred to all reasonable computational models. For a proof of
Fact 22 see for example the discussion after Theorem 4.1 in [3].

Fact 22. Let N be P-selective. Then Ry, (N) = RY;(ODDY).
Theorem 23. Let C be reasonable. Let N be any C-selective, non-C-cheatable lan-
guage. Then ODDY € RS, (C[SEL])\R(C,;_l)_tt(C'[SEL]).

Proof. The upper bound on the parallel C-selective query complexity of ODDkN is
trivial. For the lower bound assume ODD} € R( k—1)- . (C[sEL]) for the sake of contra-
diction. Taking the 1-truth-table reduction closure on both sides yields the inclusion
R{, (oDDY) C Ry, (R(C,;_l)_tt (C[sEL])) = R(C,;_l)_tt (C[sEL]). By Fact 22 this implies
R (N) C R(k_l)_tt( [seL]), contradicting Theorem 20. O

Theorem 23’. Let N be any semirecursive, but non-recursive language. Then
ODD} € Ry-wit (RE[SEL]) \ R(k_1)-wis (RE[SEL]).

9



Theorem 23’ has previously been proven by Beigel et al. [4]. Note that compared to
the proof in [4] the proof in this paper is more elementary as it uses only the Non-
speedup Theorem and not the more powerful and difficult Cardinality Theorem [18].

5 Applications

Two Powerful Relativisations. In [14] Hemaspaandra et al. prove the relation
Efk +1)_tt( [seL]) € Ry, (P[sEL]), from which one easily deduces that the k-truth-
table reduction and equivalence closures of P[SEL] form a proper hierarchy. We show
that the relation still holds if we relativise only the right hand side. Likewise, we
show that a one-sided relativisation is also possible for the relation Ef; (P[SEL]) Z
Ri; (P[sEL]), which is also proven in [14].

Theorem 24. Let A be any oracle. Then Ef ), (P[se1]) € RE%, (PA[seL)).

Proof. The proof of Corollary 21 showed that there exists an N € P[sEL]\P4[cHEAT].
For this N Theorem 20 states E(,H_1 (N) Z Rk wt (PA[sEL]). Since E%k_i_l)_tt(N) C
(k+1) .+ (P[SEL]), we get the claim. O

Theorem 25. Let A be any oracle. Then Ef, (P[sEL]) € R, (PA[sEL]).

Proof. Let N € P[seL]\P“4[cHEAT]. Consider the language ODDY := (J3, ODDY. It
is linear truth—table equivalent to N and thus an element of Ef; (P[seL]). If we had
oppY € RYy, (PA[seL]) for some k, we would also have ODDY, | € RL .y, (P4[s1]),
contradicting Theorem 23 for ¢ = PA4. O

Serial Equivalence versus Parallel Reduction. By Fact 14 in a simulation of
serial queries to a P-selective language by parallel ones we cannot avoid an expo-
nential increase in the number of queries. In [14] Hemaspaandra et al. ask whether
perhaps we have at least B} 1 (P[seL]) C R(2k 2)-tt . (P[sEL]). This is not the case.

Theorem 26. Let A be any oracle. Then E|_1(P[seL]) € R, Qk 2)- . (PA[seL)).

Proof. Once more, let N € P[seL]\P“4[cuEaT] and let £ := 2¥ — 1. Theorem 23
states ODD) ¢ R(e 1ot (PA[seL]). As ODDY is trivially polynomial time ¢-truth-

table redu01bleAto N, by Fact 14 it is polynomial time k-Turing equivalent to N. Thus
Eir(N) € R&—l)—tt (PA[SEL])- Since E}, (N) C E} +(P[sEL]) and £ — 1 = 2% — 2, we
get the claim. O

Verboseness of Reduction Closures. The languages in RE[m-SIzE,,| are called
(m,n)-verbose and those in REC[m-S1ZE,,| strongly (m,n)-verbose [7]. Every language
is (2", n)-verbose. A language which is not (2" — 1,n)-verbose is n-superterse [7].

Theorem 27. Let C be reasonable, FC C FREC and let m,n,k be positive integers.
Then the following statements are equivalent:

1. All languages in E{ . (C[sEL]) are (m,n)-verbose.
2. All languages in R . (C[sEL]) are (m,n)-verbose.

3. Every walk on B"™ with transition counts at most k visits at most m bitstrings.
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Proof. Statement 2 trivially implies statement 1. Statement 3 implies statement 2,
since Ry, (C[sEL]) C REC[k-WALKS,] by Theorem 15. Statement 1 implies state-
ment 3, since by the same argument as in Theorem 20’ the covering k-wALKS,, is the
smallest covering D such that Ef ., (C[seL]) C RE[D]. If we also have E{ ,, (C[seL]) C
RE[m-s1zE,, |, we get k-WALKS,, C m-SIZE,,. O

The above theorem reduces the problem of quantifying the amount of verboseness
of reduction closures of selectivity classes to the purely combinatorial problem of
finding walks visiting a maximum number of bitstrings. The following fact gives an
easy upper bound on this number. Beigel et al. [7] conjecture that the bound is tight
for all k£ for which nk < 2", and they prove this for k£ < 7. Lemma, 29 shows that the
bound is also tight for £ = 2"/n and n = 2". The situation where n is not a power
of two is discussed, but not fully solved, in [8].

Fact 28 ([7]). Every walk on B"™ with transition counts at most k wvisits at most
nk + 1 bitstrings for odd k and nk bitstrings for even k.

Lemma 29. Let n =2". Then (2"/n)-wALKs, Z (2" — 1)-SIZEy,.
Proof. Wagner and West [28] proved that for n = 2" there exists a balanced n-bit

Gray code. But such a code is a self-avoiding n-bit cycle that has transition counts
exactly 2"/n. O

Corollary 30. Let n = 2". Then E%n/n—tt (L[SEL]) contains an n-superterse lan-
guage, while Ran/n_1).44 (REC[sEL]) does not.

Frequency Computations for Reduction Closures. The languages in the class
RECqist[(n — m)-FREQy,] are called (m,n)-recursive [24]. For them, for any n distinct
words a bitstring can be computed that agrees with their characteristic string on
at least m positions. Arguing as in the proof of Theorem 27 we get the following
theorem.

Theorem 31. Let C be reasonable and FC C FREC. Then the following statements
are equivalent for 0 <m <mn and k > 1:

1. All languages in EY ., (C[sEL]) are (m,n)-recursive.
2. All languages in RS, (C[sEL]) are (m,n)-recursive.
3. Every walk on B™ with transition counts at most k is contained in a closed ball

of radius n —m.

The following lemma, whose simple proof is given in the appendix, gives loose upper
and lower bounds for k£ from the above theorem in terms of the covering number
k(n,r). It is the smallest number of closed balls of radius r needed to cover B".
Except for some special cases [10] only upper and lower bounds are known for the
covering number.

Lemma 32. For 0 < m < n let K := k(n,m —1) — 1. Then we have K-WALKS,,
(n — m)-FREQ, and |(k —1)/n|-WALKS, C (n — m)-FREQ,.

Corollary 33. There exist languages in E%k(n m—1)—1)-tt (L[seL]) that are not (m,n)-
recursive, while all languages in R|((nm—1)—2)/n]-tt (REC[sEL]) are.
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Technical Appendix

Proof of Lemma 32. For the first claim, we present a walk on B"” with transition
counts at most x whose complement does not contain a closed ball of radius m—1 and
which is hence not contained in a closed ball of radius n —m. Let by, ..., bx(nm-—1)
be bitstrings such that B,,—1(b1), ..., Bm—l(bk(n,m—l)) cover B". Consider a walk
starting at b;. To get from b; to b2 we only need to change every position at most
once. Likewise from by to b3 and so on. We get a walk visiting all b; with transition
counts at most . As every ball B,,_1(b) contains at least one b;, the complement of
the constructed walk does not contain any B, 1(b).

For the second claim let by, ..., by be an arbitrary walk with transition counts
at most (k — 1)/n. It visits at most n(k — 1)/n + 1 = k many bitstrings. We
claim that the complement of the walk contains a ball of radius m — 1. If this
were not the case B,,—1(b1), ..., Bin—1(be) would cover B" which is impossible since
L< Kk <k(n,m-—1). O
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